organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(2,4-di­chloro­phen­yl)-6-(naphthalen-1-yl)nicotino­nitrile

aSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: dalantom@126.com

(Received 24 November 2010; accepted 2 December 2010; online 11 December 2010)

In the crystal structure of the title compound, C22H13Cl2N3, the mol­ecules are connected via inter­molecular C—H⋯N and N—H⋯N hydrogen bonds, forming a three-dimensional network. The dihedral angles between naphthyl ring system and the pyridyl and benzene rings are 55.04 (7) and 75.87 (7)°, respectively, whereas the pyridyl and benzene rings are oriented at a dihedral angle of 59.56 (8)°.

Related literature

For the synthetic procedure, see: Mantri et al. (2008[Mantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449-4455.]). For the use of the title compound in the preparation of medicines, see: Mkhalid et al. (2006[Mkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489-491.]). For general background to this type of compound, see: Moreau & Huber (1999[Moreau, J. L. & Huber, G. (1999). Brain. Res. Rev. 31, 65-82.]).

[Scheme 1]

Experimental

Crystal data
  • C22H13Cl2N3

  • Mr = 390.25

  • Triclinic, [P \overline 1]

  • a = 9.5020 (19) Å

  • b = 10.054 (2) Å

  • c = 10.735 (2) Å

  • α = 72.78 (3)°

  • β = 89.17 (3)°

  • γ = 74.81 (3)°

  • V = 943.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Entaf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.901, Tmax = 0.965

  • 3686 measured reflections

  • 3463 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.014

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.00

  • 3463 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.85 (3) 2.19 (3) 3.034 (3) 176 (2)
C4—H4A⋯N3ii 0.93 2.62 3.488 (4) 155
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C22H13Cl2N3,(I), contains amino group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine (Mantri et al., 2008). The molecular structure of (I) is shown in Fig. 1. In (I), the naphthyl and the two rings, pyridyl and phenyl are oriented with different dihedral angles; 55.04 (7) ° between naphthyl and pyridyl, 75.87 (7) ° between naphthyl and phenyl and 59.56 (8) ° between pyridyl and phenyl. In the crystal structure of the title compound, the molecules were connected together via N—H···N and C—H···N intermolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

Related literature top

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: Mantri et al. (2008). For related literature [on what subject?], see: Mkhalid et al. (2006). For general background [to what?], see: Moreau & Huber (1999).

Experimental top

The title compound, (I) was prepared by the literature method (Mantri et al., 2008). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.86 Å for N—H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

The title compound, C22H13Cl2N3,(I), contains amino group, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate which can be used for many fields such as medicine (Mantri et al., 2008). The molecular structure of (I) is shown in Fig. 1. In (I), the naphthyl and the two rings, pyridyl and phenyl are oriented with different dihedral angles; 55.04 (7) ° between naphthyl and pyridyl, 75.87 (7) ° between naphthyl and phenyl and 59.56 (8) ° between pyridyl and phenyl. In the crystal structure of the title compound, the molecules were connected together via N—H···N and C—H···N intermolecular hydrogen bonds to form a three dimensional network, which seems to be very effective in the stabilization of the crystal structure.

The title compound is an important organic synthesis intermediate. For the synthetic procedure, see: Mantri et al. (2008). For related literature [on what subject?], see: Mkhalid et al. (2006). For general background [to what?], see: Moreau & Huber (1999).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). C—H···N and N—H···N hydrogen bonds are shown by dashed lines.
2-Amino-4-(2,4-dichlorophenyl)-6-(naphthalen-1-yl)nicotinonitrile top
Crystal data top
C22H13Cl2N3Z = 2
Mr = 390.25F(000) = 400
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5020 (19) ÅCell parameters from 25 reflections
b = 10.054 (2) Åθ = 10–14°
c = 10.735 (2) ŵ = 0.36 mm1
α = 72.78 (3)°T = 293 K
β = 89.17 (3)°Block, colourless
γ = 74.81 (3)°0.30 × 0.10 × 0.10 mm
V = 943.1 (3) Å3
Data collection top
Entaf–Nonius CAD-4
diffractometer
2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.4°, θmin = 2.0°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1112
Tmin = 0.901, Tmax = 0.965l = 1212
3686 measured reflections3 standard reflections every 200 reflections
3463 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.095P)2 + ]
where P = (Fo2 + 2Fc2)/3
3463 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H13Cl2N3γ = 74.81 (3)°
Mr = 390.25V = 943.1 (3) Å3
Triclinic, P1Z = 2
a = 9.5020 (19) ÅMo Kα radiation
b = 10.054 (2) ŵ = 0.36 mm1
c = 10.735 (2) ÅT = 293 K
α = 72.78 (3)°0.30 × 0.10 × 0.10 mm
β = 89.17 (3)°
Data collection top
Entaf–Nonius CAD-4
diffractometer
2648 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.901, Tmax = 0.9653 standard reflections every 200 reflections
3686 measured reflections intensity decay: 1%
3463 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
3463 reflectionsΔρmin = 0.37 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37446 (8)0.08316 (9)0.92700 (9)0.0687 (3)
N10.36411 (19)0.4640 (2)0.89712 (17)0.0331 (4)
C10.0992 (3)0.2943 (3)0.9925 (3)0.0425 (6)
H1B0.09420.35311.04390.051*
Cl20.13996 (8)0.12749 (9)0.73801 (8)0.0635 (3)
N20.4248 (2)0.3529 (3)1.1161 (2)0.0414 (5)
H2A0.480 (3)0.408 (3)1.110 (2)0.044 (7)*
H2B0.398 (3)0.313 (3)1.193 (3)0.053 (8)*
C20.2176 (3)0.2375 (3)0.9987 (3)0.0477 (6)
H2C0.29190.25801.05320.057*
C30.2235 (3)0.1508 (3)0.9234 (3)0.0442 (6)
N30.1702 (3)0.1711 (3)1.2494 (2)0.0542 (6)
C40.1143 (3)0.1165 (3)0.8436 (2)0.0426 (6)
H4A0.11920.05570.79420.051*
C50.0034 (3)0.1752 (3)0.8384 (2)0.0390 (6)
C60.0130 (2)0.2659 (2)0.9114 (2)0.0350 (5)
C70.1356 (2)0.3340 (2)0.9053 (2)0.0347 (5)
C80.1657 (3)0.4256 (3)0.7898 (2)0.0394 (6)
H8A0.11140.44310.71250.047*
C90.2771 (2)0.4911 (2)0.7898 (2)0.0353 (5)
C100.3364 (2)0.3766 (2)1.0103 (2)0.0315 (5)
C110.2194 (2)0.3119 (2)1.0184 (2)0.0327 (5)
C120.1897 (2)0.2309 (3)1.1454 (2)0.0372 (5)
C130.3005 (2)0.6054 (3)0.6730 (2)0.0364 (5)
C140.1836 (3)0.7200 (3)0.6165 (3)0.0528 (7)
H14A0.09070.71810.64410.063*
C150.2017 (4)0.8417 (3)0.5168 (3)0.0660 (9)
H15A0.12090.91840.47830.079*
C160.3370 (3)0.8461 (3)0.4774 (3)0.0615 (8)
H16A0.34860.92780.41400.074*
C170.4602 (3)0.7293 (3)0.5308 (2)0.0459 (6)
C180.6025 (3)0.7317 (4)0.4896 (3)0.0615 (8)
H18A0.61560.81400.42800.074*
C190.7199 (3)0.6162 (4)0.5385 (3)0.0623 (8)
H19A0.81280.62080.51260.075*
C200.7004 (3)0.4907 (3)0.6275 (3)0.0520 (7)
H20A0.78010.41010.65760.062*
C210.5663 (3)0.4846 (3)0.6708 (2)0.0411 (6)
H21A0.55610.39990.73060.049*
C220.4431 (3)0.6037 (3)0.6270 (2)0.0355 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0450 (4)0.0707 (5)0.1083 (7)0.0386 (4)0.0167 (4)0.0338 (5)
N10.0318 (10)0.0407 (11)0.0316 (10)0.0177 (8)0.0053 (8)0.0112 (8)
C10.0358 (13)0.0445 (14)0.0554 (15)0.0182 (11)0.0083 (11)0.0211 (12)
Cl20.0653 (5)0.0837 (5)0.0692 (5)0.0447 (4)0.0347 (4)0.0439 (4)
N20.0432 (12)0.0565 (14)0.0308 (11)0.0301 (11)0.0007 (9)0.0078 (10)
C20.0350 (13)0.0484 (15)0.0667 (17)0.0175 (11)0.0154 (12)0.0227 (13)
C30.0327 (13)0.0409 (14)0.0607 (16)0.0206 (11)0.0027 (11)0.0083 (12)
N30.0611 (15)0.0587 (14)0.0428 (13)0.0297 (12)0.0063 (11)0.0038 (11)
C40.0444 (14)0.0422 (14)0.0486 (14)0.0229 (12)0.0031 (11)0.0148 (11)
C50.0370 (13)0.0454 (14)0.0371 (12)0.0202 (11)0.0064 (10)0.0083 (11)
C60.0315 (12)0.0369 (12)0.0376 (12)0.0161 (10)0.0002 (10)0.0068 (10)
C70.0308 (11)0.0372 (12)0.0412 (13)0.0154 (10)0.0055 (10)0.0141 (10)
C80.0367 (13)0.0532 (15)0.0345 (12)0.0242 (11)0.0004 (10)0.0117 (11)
C90.0351 (12)0.0412 (13)0.0338 (12)0.0166 (10)0.0067 (10)0.0124 (10)
C100.0307 (11)0.0338 (12)0.0339 (12)0.0131 (9)0.0056 (9)0.0122 (9)
C110.0314 (11)0.0344 (12)0.0359 (12)0.0149 (9)0.0062 (9)0.0110 (10)
C120.0361 (12)0.0378 (13)0.0418 (14)0.0186 (10)0.0031 (10)0.0106 (11)
C130.0376 (13)0.0434 (13)0.0310 (12)0.0179 (11)0.0030 (10)0.0092 (10)
C140.0411 (15)0.0617 (18)0.0483 (15)0.0126 (13)0.0071 (12)0.0071 (13)
C150.0593 (19)0.0566 (18)0.0579 (18)0.0013 (15)0.0045 (15)0.0059 (14)
C160.0656 (19)0.0498 (17)0.0534 (17)0.0141 (15)0.0135 (14)0.0057 (13)
C170.0513 (15)0.0503 (15)0.0363 (13)0.0222 (13)0.0078 (11)0.0062 (11)
C180.065 (2)0.069 (2)0.0523 (16)0.0370 (17)0.0211 (14)0.0053 (15)
C190.0465 (16)0.088 (2)0.0569 (18)0.0307 (17)0.0174 (14)0.0192 (16)
C200.0407 (14)0.0675 (18)0.0458 (15)0.0114 (13)0.0085 (12)0.0174 (14)
C210.0445 (14)0.0472 (14)0.0315 (12)0.0153 (12)0.0056 (10)0.0094 (11)
C220.0396 (13)0.0437 (13)0.0290 (11)0.0191 (11)0.0039 (9)0.0125 (10)
Geometric parameters (Å, º) top
Cl1—C31.736 (2)C9—C131.488 (3)
N1—C101.341 (3)C10—C111.417 (3)
N1—C91.345 (3)C11—C121.434 (3)
C1—C21.382 (3)C13—C141.365 (4)
C1—C61.392 (3)C13—C221.432 (3)
C1—H1B0.9300C14—C151.414 (4)
Cl2—C51.736 (2)C14—H14A0.9300
N2—C101.347 (3)C15—C161.356 (4)
N2—H2A0.84 (3)C15—H15A0.9300
N2—H2B0.86 (3)C16—C171.406 (4)
C2—C31.365 (4)C16—H16A0.9300
C2—H2C0.9300C17—C181.421 (4)
C3—C41.376 (3)C17—C221.421 (3)
N3—C121.139 (3)C18—C191.358 (4)
C4—C51.388 (3)C18—H18A0.9300
C4—H4A0.9300C19—C201.394 (4)
C5—C61.387 (3)C19—H19A0.9300
C6—C71.490 (3)C20—C211.360 (4)
C7—C81.386 (3)C20—H20A0.9300
C7—C111.390 (3)C21—C221.405 (3)
C8—C91.384 (3)C21—H21A0.9300
C8—H8A0.9300
C10—N1—C9118.57 (19)C7—C11—C10119.3 (2)
C2—C1—C6121.8 (2)C7—C11—C12123.0 (2)
C2—C1—H1B119.1C10—C11—C12117.6 (2)
C6—C1—H1B119.1N3—C12—C11175.9 (3)
C10—N2—H2A117.4 (17)C14—C13—C22120.1 (2)
C10—N2—H2B118.6 (19)C14—C13—C9118.0 (2)
H2A—N2—H2B118 (2)C22—C13—C9121.7 (2)
C3—C2—C1118.7 (2)C13—C14—C15121.0 (3)
C3—C2—H2C120.7C13—C14—H14A119.5
C1—C2—H2C120.7C15—C14—H14A119.5
C2—C3—C4122.0 (2)C16—C15—C14119.8 (3)
C2—C3—Cl1119.0 (2)C16—C15—H15A120.1
C4—C3—Cl1118.96 (19)C14—C15—H15A120.1
C3—C4—C5118.3 (2)C15—C16—C17121.2 (3)
C3—C4—H4A120.8C15—C16—H16A119.4
C5—C4—H4A120.8C17—C16—H16A119.4
C6—C5—C4121.7 (2)C16—C17—C18121.9 (3)
C6—C5—Cl2121.38 (17)C16—C17—C22119.7 (2)
C4—C5—Cl2116.88 (19)C18—C17—C22118.4 (2)
C5—C6—C1117.4 (2)C19—C18—C17121.3 (3)
C5—C6—C7123.1 (2)C19—C18—H18A119.3
C1—C6—C7119.5 (2)C17—C18—H18A119.3
C8—C7—C11118.0 (2)C18—C19—C20119.6 (3)
C8—C7—C6121.8 (2)C18—C19—H19A120.2
C11—C7—C6120.2 (2)C20—C19—H19A120.2
C9—C8—C7119.8 (2)C21—C20—C19120.8 (3)
C9—C8—H8A120.1C21—C20—H20A119.6
C7—C8—H8A120.1C19—C20—H20A119.6
N1—C9—C8122.7 (2)C20—C21—C22121.4 (2)
N1—C9—C13115.38 (19)C20—C21—H21A119.3
C8—C9—C13121.8 (2)C22—C21—H21A119.3
N1—C10—N2117.0 (2)C21—C22—C17118.2 (2)
N1—C10—C11121.53 (19)C21—C22—C13123.8 (2)
N2—C10—C11121.4 (2)C17—C22—C13118.0 (2)
C6—C1—C2—C30.3 (4)N2—C10—C11—C7176.9 (2)
C1—C2—C3—C41.1 (4)N1—C10—C11—C12174.4 (2)
C1—C2—C3—Cl1178.1 (2)N2—C10—C11—C125.6 (3)
C2—C3—C4—C51.3 (4)C7—C11—C12—N3155 (4)
Cl1—C3—C4—C5177.91 (18)C10—C11—C12—N322 (4)
C3—C4—C5—C60.1 (4)N1—C9—C13—C14123.8 (2)
C3—C4—C5—Cl2179.22 (19)C8—C9—C13—C1451.5 (3)
C4—C5—C6—C11.2 (4)N1—C9—C13—C2250.6 (3)
Cl2—C5—C6—C1177.86 (18)C8—C9—C13—C22134.1 (2)
C4—C5—C6—C7178.2 (2)C22—C13—C14—C153.2 (4)
Cl2—C5—C6—C72.7 (3)C9—C13—C14—C15171.4 (3)
C2—C1—C6—C51.4 (4)C13—C14—C15—C160.9 (5)
C2—C1—C6—C7178.0 (2)C14—C15—C16—C172.3 (5)
C5—C6—C7—C859.9 (3)C15—C16—C17—C18179.4 (3)
C1—C6—C7—C8119.5 (3)C15—C16—C17—C220.4 (5)
C5—C6—C7—C11123.1 (3)C16—C17—C18—C19177.6 (3)
C1—C6—C7—C1157.5 (3)C22—C17—C18—C191.3 (4)
C11—C7—C8—C90.3 (4)C17—C18—C19—C202.2 (5)
C6—C7—C8—C9177.4 (2)C18—C19—C20—C213.1 (4)
C10—N1—C9—C84.0 (3)C19—C20—C21—C220.4 (4)
C10—N1—C9—C13171.27 (19)C20—C21—C22—C173.1 (4)
C7—C8—C9—N13.5 (4)C20—C21—C22—C13177.5 (2)
C7—C8—C9—C13171.4 (2)C16—C17—C22—C21175.1 (2)
C9—N1—C10—N2179.4 (2)C18—C17—C22—C213.9 (4)
C9—N1—C10—C110.7 (3)C16—C17—C22—C134.4 (4)
C8—C7—C11—C103.4 (3)C18—C17—C22—C13176.7 (2)
C6—C7—C11—C10179.4 (2)C14—C13—C22—C21173.7 (2)
C8—C7—C11—C12173.9 (2)C9—C13—C22—C2112.0 (3)
C6—C7—C11—C123.3 (3)C14—C13—C22—C175.7 (3)
N1—C10—C11—C73.1 (3)C9—C13—C22—C17168.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.85 (3)2.19 (3)3.034 (3)176 (2)
C4—H4A···N3ii0.932.623.488 (4)155
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC22H13Cl2N3
Mr390.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5020 (19), 10.054 (2), 10.735 (2)
α, β, γ (°)72.78 (3), 89.17 (3), 74.81 (3)
V3)943.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEntaf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.901, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
3686, 3463, 2648
Rint0.014
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.00
No. of reflections3463
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.85 (3)2.19 (3)3.034 (3)176 (2)
C4—H4A···N3ii0.932.623.488 (4)155
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, and the fund of Jinling Institute of Technology (jit-n-2009–017) for support..

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMantri, M., Graaf, O., Veldhoven, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMkhalid, I. A. I., Coventry, D. N., Albesa-Jove, D., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. (2006). Angew. Chem. Int. Ed. 45, 489–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreau, J. L. & Huber, G. (1999). Brain. Res. Rev. 31, 65–82.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds