organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­chloro­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 27 November 2010; accepted 1 December 2010; online 4 December 2010)

In the title compound, C13H11Cl2NO2S, the N—C bond in the C—SO2—NH—C segment has gauche torsion angles with respect to the S=O bonds. The mol­ecule is bent at the S atom with an C—SO2—NH—C torsion angle of 62.1 (2)°. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the adjacent benzene ring. The benzene rings are tilted by 67.8 (1)° relative to each other. The crystal structure features dimers linked by N—H⋯O hydrogen bonds. An intra­molecular N—H⋯Cl hydrogen bond is also observed.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]; 2010a[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o15.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Acta Cryst. E66, o594.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /c

  • a = 9.075 (1) Å

  • b = 14.232 (2) Å

  • c = 10.773 (1) Å

  • β = 90.49 (1)°

  • V = 1391.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.58 mm−1

  • T = 299 K

  • 0.45 × 0.40 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3316 measured reflections

  • 2474 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 120 min intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 1.14

  • 2474 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.35 (2) 3.163 (3) 161 (3)
N1—H1N⋯Cl1 0.85 (2) 2.51 (3) 2.976 (2) 116 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; 2010a, b), in the present work, the structure of 4-methyl-N-(2,5-dichlorophenyl)- benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). The molecule is bent at the S atoms with the C—SO2—NH—C torsion angle of 62.1 (2)°, compared to the values of -61.0 (2)° in 4-methyl-N- (2,5-dimethylphenyl)-benzenesulfonamide (II) (Gowda et al., 2010a), -51.6 (3)° in 4-Methyl-N-(phenyl)-benzenesulfonamide (III) (Gowda et al., 2009) and 66.4 (2)° in N-(2,5-dichlorophenyl)-benzenesulfonamide (IV) (Gowda et al., 2010b).

The conformation of the N—H bond is syn to the ortho-chloro group in the adjacent benzene ring.The benzene rings in the title compound are tilted relative to each other by 67.8 (1)°, compared to the values of 49.4 (1)° in (II), 68.4 (1)° in (III) and 73.3 (1)° in (IV)

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

An intramolecular N—H···Cl hydrogen bond is observed. The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009; 2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 2,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-methyl-N-(2,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra.

The prism like light brown single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; 2010a, b), in the present work, the structure of 4-methyl-N-(2,5-dichlorophenyl)- benzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds (Fig. 1). The molecule is bent at the S atoms with the C—SO2—NH—C torsion angle of 62.1 (2)°, compared to the values of -61.0 (2)° in 4-methyl-N- (2,5-dimethylphenyl)-benzenesulfonamide (II) (Gowda et al., 2010a), -51.6 (3)° in 4-Methyl-N-(phenyl)-benzenesulfonamide (III) (Gowda et al., 2009) and 66.4 (2)° in N-(2,5-dichlorophenyl)-benzenesulfonamide (IV) (Gowda et al., 2010b).

The conformation of the N—H bond is syn to the ortho-chloro group in the adjacent benzene ring.The benzene rings in the title compound are tilted relative to each other by 67.8 (1)°, compared to the values of 49.4 (1)° in (II), 68.4 (1)° in (III) and 73.3 (1)° in (IV)

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

An intramolecular N—H···Cl hydrogen bond is observed. The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009; 2010a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(2,5-Dichlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.509 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.075 (1) Åθ = 4.9–15.1°
b = 14.232 (2) ŵ = 5.58 mm1
c = 10.773 (1) ÅT = 299 K
β = 90.49 (1)°Prism, light-brown
V = 1391.3 (3) Å30.45 × 0.40 × 0.40 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 4.9°
Graphite monochromatorh = 103
ω/2θ scansk = 160
3316 measured reflectionsl = 1212
2474 independent reflections3 standard reflections every 120 min
2268 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0718P)2 + 1.1523P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.012
2474 reflectionsΔρmax = 0.49 e Å3
177 parametersΔρmin = 0.43 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0121 (10)
Crystal data top
C13H11Cl2NO2SV = 1391.3 (3) Å3
Mr = 316.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.075 (1) ŵ = 5.58 mm1
b = 14.232 (2) ÅT = 299 K
c = 10.773 (1) Å0.45 × 0.40 × 0.40 mm
β = 90.49 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
3316 measured reflections3 standard reflections every 120 min
2474 independent reflections intensity decay: 0.5%
2268 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.49 e Å3
2474 reflectionsΔρmin = 0.43 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8106 (3)0.44716 (18)0.0868 (3)0.0336 (6)
C20.9194 (4)0.4179 (3)0.1653 (4)0.0740 (13)
H20.93490.44870.24040.089*
C31.0068 (4)0.3426 (4)0.1335 (4)0.0804 (14)
H31.07880.32200.18910.096*
C40.9905 (3)0.2980 (2)0.0237 (3)0.0487 (7)
C50.8815 (5)0.3281 (3)0.0543 (4)0.0720 (12)
H50.86760.29780.13000.086*
C60.7909 (4)0.4027 (3)0.0237 (3)0.0635 (10)
H60.71720.42220.07830.076*
C70.5866 (3)0.44233 (18)0.3242 (2)0.0324 (6)
C80.5187 (3)0.35642 (19)0.3458 (3)0.0372 (6)
C90.5373 (4)0.3097 (2)0.4565 (3)0.0531 (8)
H90.48920.25290.46980.064*
C100.6268 (4)0.3467 (3)0.5475 (3)0.0566 (9)
H100.64180.31490.62190.068*
C110.6936 (3)0.4315 (2)0.5263 (3)0.0470 (7)
C120.6738 (3)0.47999 (19)0.4179 (3)0.0407 (6)
H120.71880.53810.40710.049*
C131.0874 (5)0.2165 (3)0.0099 (4)0.0756 (12)
H13A1.15480.20390.05720.091*
H13B1.14170.23140.08330.091*
H13C1.02750.16200.02500.091*
N10.5612 (2)0.49095 (16)0.2114 (2)0.0359 (5)
H1N0.505 (3)0.463 (2)0.161 (3)0.043*
O10.6219 (2)0.57604 (14)0.0235 (2)0.0505 (6)
O20.7747 (2)0.59971 (14)0.2118 (2)0.0520 (6)
Cl10.40649 (9)0.30737 (5)0.23286 (7)0.0535 (3)
Cl20.80520 (12)0.47898 (8)0.64157 (9)0.0756 (4)
S10.69445 (7)0.53899 (4)0.13097 (6)0.0357 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (12)0.0293 (13)0.0411 (14)0.0017 (10)0.0051 (10)0.0042 (11)
C20.0472 (19)0.109 (3)0.066 (2)0.033 (2)0.0193 (17)0.034 (2)
C30.056 (2)0.116 (4)0.069 (2)0.048 (2)0.0184 (18)0.017 (2)
C40.0414 (15)0.0433 (17)0.0616 (19)0.0084 (13)0.0124 (14)0.0074 (15)
C50.080 (3)0.075 (3)0.060 (2)0.036 (2)0.0136 (19)0.0246 (19)
C60.072 (2)0.071 (2)0.0469 (18)0.0357 (19)0.0144 (16)0.0109 (16)
C70.0331 (12)0.0260 (12)0.0384 (14)0.0027 (10)0.0108 (10)0.0014 (10)
C80.0434 (14)0.0303 (14)0.0381 (14)0.0049 (11)0.0068 (11)0.0025 (11)
C90.071 (2)0.0378 (16)0.0504 (17)0.0163 (14)0.0031 (15)0.0113 (13)
C100.075 (2)0.053 (2)0.0426 (16)0.0126 (17)0.0025 (15)0.0120 (14)
C110.0492 (17)0.0501 (18)0.0415 (16)0.0054 (14)0.0011 (13)0.0010 (13)
C120.0423 (14)0.0308 (14)0.0493 (16)0.0072 (11)0.0039 (12)0.0003 (12)
C130.069 (2)0.059 (2)0.099 (3)0.029 (2)0.019 (2)0.004 (2)
N10.0340 (12)0.0317 (12)0.0419 (13)0.0019 (9)0.0056 (9)0.0061 (10)
O10.0587 (12)0.0381 (11)0.0547 (13)0.0088 (9)0.0056 (10)0.0209 (10)
O20.0611 (13)0.0322 (10)0.0628 (14)0.0158 (9)0.0111 (11)0.0046 (10)
Cl10.0703 (5)0.0432 (5)0.0469 (4)0.0217 (3)0.0009 (3)0.0060 (3)
Cl20.0841 (7)0.0846 (7)0.0576 (6)0.0247 (5)0.0215 (5)0.0002 (5)
S10.0393 (4)0.0232 (4)0.0449 (4)0.0015 (2)0.0083 (3)0.0069 (3)
Geometric parameters (Å, º) top
C1—C61.358 (4)C8—Cl11.727 (3)
C1—C21.360 (4)C9—C101.373 (5)
C1—S11.748 (3)C9—H90.9300
C2—C31.378 (5)C10—C111.370 (5)
C2—H20.9300C10—H100.9300
C3—C41.350 (5)C11—C121.367 (4)
C3—H30.9300C11—Cl21.733 (3)
C4—C51.362 (5)C12—H120.9300
C4—C131.502 (4)C13—H13A0.9600
C5—C61.385 (5)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.643 (2)
C7—C121.385 (4)N1—H1N0.847 (18)
C7—C81.390 (4)O1—S11.428 (2)
C7—N11.415 (3)O2—S11.423 (2)
C8—C91.375 (4)
C6—C1—C2119.4 (3)C8—C9—H9120.0
C6—C1—S1120.8 (2)C11—C10—C9118.6 (3)
C2—C1—S1119.7 (2)C11—C10—H10120.7
C1—C2—C3119.9 (3)C9—C10—H10120.7
C1—C2—H2120.0C12—C11—C10122.2 (3)
C3—C2—H2120.0C12—C11—Cl2119.1 (2)
C4—C3—C2121.7 (3)C10—C11—Cl2118.7 (2)
C4—C3—H3119.2C11—C12—C7119.8 (3)
C2—C3—H3119.2C11—C12—H12120.1
C3—C4—C5117.8 (3)C7—C12—H12120.1
C3—C4—C13121.0 (3)C4—C13—H13A109.5
C5—C4—C13121.2 (3)C4—C13—H13B109.5
C4—C5—C6121.6 (3)H13A—C13—H13B109.5
C4—C5—H5119.2C4—C13—H13C109.5
C6—C5—H5119.2H13A—C13—H13C109.5
C1—C6—C5119.5 (3)H13B—C13—H13C109.5
C1—C6—H6120.2C7—N1—S1122.79 (18)
C5—C6—H6120.2C7—N1—H1N114 (2)
C12—C7—C8118.0 (2)S1—N1—H1N108 (2)
C12—C7—N1121.6 (2)O2—S1—O1120.12 (13)
C8—C7—N1120.3 (2)O2—S1—N1107.79 (13)
C9—C8—C7121.3 (3)O1—S1—N1104.19 (13)
C9—C8—Cl1118.9 (2)O2—S1—C1108.31 (13)
C7—C8—Cl1119.8 (2)O1—S1—C1109.27 (14)
C10—C9—C8120.1 (3)N1—S1—C1106.30 (12)
C10—C9—H9120.0
C6—C1—C2—C31.2 (6)C9—C10—C11—C120.0 (5)
S1—C1—C2—C3176.9 (4)C9—C10—C11—Cl2179.4 (3)
C1—C2—C3—C42.0 (8)C10—C11—C12—C71.5 (5)
C2—C3—C4—C51.7 (7)Cl2—C11—C12—C7179.1 (2)
C2—C3—C4—C13179.5 (4)C8—C7—C12—C111.6 (4)
C3—C4—C5—C60.8 (7)N1—C7—C12—C11178.9 (3)
C13—C4—C5—C6179.5 (4)C12—C7—N1—S148.0 (3)
C2—C1—C6—C50.3 (6)C8—C7—N1—S1134.7 (2)
S1—C1—C6—C5177.8 (3)C7—N1—S1—O253.8 (3)
C4—C5—C6—C10.1 (7)C7—N1—S1—O1177.5 (2)
C12—C7—C8—C90.1 (4)C7—N1—S1—C162.1 (2)
N1—C7—C8—C9177.5 (3)C6—C1—S1—O2152.1 (3)
C12—C7—C8—Cl1179.0 (2)C2—C1—S1—O229.8 (3)
N1—C7—C8—Cl11.6 (3)C6—C1—S1—O119.6 (3)
C7—C8—C9—C101.4 (5)C2—C1—S1—O1162.3 (3)
Cl1—C8—C9—C10179.5 (3)C6—C1—S1—N192.3 (3)
C8—C9—C10—C111.4 (6)C2—C1—S1—N185.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.35 (2)3.163 (3)161 (3)
N1—H1N···Cl10.85 (2)2.51 (3)2.976 (2)116 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.075 (1), 14.232 (2), 10.773 (1)
β (°) 90.49 (1)
V3)1391.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.58
Crystal size (mm)0.45 × 0.40 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3316, 2474, 2268
Rint0.053
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 1.14
No. of reflections2474
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.43

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.847 (18)2.35 (2)3.163 (3)161 (3)
N1—H1N···Cl10.847 (18)2.51 (3)2.976 (2)116 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o15.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Acta Cryst. E66, o594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds