metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(η4-1,5-cyclo­octa­diene)[(penta­fluoro­eth­yl)di­phenyl­phosphane]iridium(I)

aDepartment of Chemistry, Wilkes University, Wilkes-Barre, PA 18766, USA, and bDepartment of Chemistry, Truman State University, Kirksville, MO 63501-4221, USA
*Correspondence e-mail: baughman@truman.edu

(Received 1 December 2010; accepted 7 December 2010; online 15 December 2010)

The title structure,[IrCl(C8H12)(C14H10F5P)], reveals that (C2F5)PPh2 (penta­fluoro­ethyl­diphenyl­phosphane or pfepp) disrupts the iridium dimer [(cod)IrCl]2 (cod = cyclo­octa-1,5-diene) by rupturing the bridging chloride ligands and binding in the open coordination site to form (cod)Ir(pfepp)Cl with the IrI atom in a distorted square-planar coordination environment. The structure deviates very little from the IrI–triphenyl­phosphine analog, although a significantly (∼20σ) shorter Ir—P bond is noted for the title compound.

Related literature

The structure of (cod)IrPPh3 was reported by Lebel & Ladjel (2008[Lebel, H. & Ladjel, C. (2008). Organometallics, 27, 2676-2678.]). The synthesis and crystal structure of pfepp has been reported by Palcic et al. (2004[Palcic, J. D., Kapoor, P. N., Roddick, D. M. & Peters, R. G. (2004). Dalton Trans. pp. 644-1647.]).

[Scheme 1]

Experimental

Crystal data
  • [IrCl(C8H12)(C14H10F5P)]

  • Mr = 640.02

  • Monoclinic, P 21 /n

  • a = 10.5498 (5) Å

  • b = 14.9824 (7) Å

  • c = 13.9885 (7) Å

  • β = 94.579 (5)°

  • V = 2203.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.30 mm−1

  • T = 295 K

  • 0.51 × 0.40 × 0.12 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: integration (XSHELL; Bruker, 1999[Bruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.155, Tmax = 0.480

  • 6244 measured reflections

  • 5014 independent reflections

  • 3583 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 100 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.03

  • 5014 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C15 2.100 (8)
Ir1—C16 2.125 (9)
Ir1—C19 2.209 (9)
Ir1—C20 2.235 (8)
Ir1—P1 2.2705 (17)
Ir1—Cl1 2.352 (2)
P1—Ir1—Cl1 89.89 (7)
C7—P1—C1 100.8 (3)
C7—P1—C13 101.3 (3)
C1—P1—C13 102.7 (3)
C7—P1—Ir1 115.1 (2)
C1—P1—Ir1 121.4 (2)
C13—P1—Ir1 112.8 (3)

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC and SHELXL97.

Supporting information


Comment top

The mean deviation of the Ir1/Cl1/P1/Cg1/Cg2 plane (Cg1 = centroid of C15/C16; Cg2 = centroid of C19/C20), is 0.064Å, indicating that Ir1 is in a square planar environment. The pfepp ligand and the chloride occupy the sites trans to the two centroids of the cycloocta-1,5-diene (cod) ligand. The Ir1—Cg1 and Ir1—Cg2 centroid distances are 2.00 (2) and 2.12 (2) Å, respectively, a difference of 0.12 Å (= 6σ). As seen in Fig. 1, the chloride ligand is trans to the shorter distance, possibly due to the high electronegativity of the chloride, which attracts the olefinic electrons and results in a shorter centroid distance. The Ir-centroids bond angle of 86.0 (3)° is compressed from the ideal 90°, while the P1—Ir1—Cl1 bond angle [89.89 (7)°] is essentially ideal.

The title compound is structurally very similar to the PPh3 analog (Lebel & Ladjel, 2008) with the only noticeable difference coming in the Ir1—P1 bond length, which is shorter by 0.040 Å (~20σ) in the title complex. The three torsion angles Cl1—Ir1—P1—C(1, 7, or 13) of the title compound have values within 5° of the counterpart angles in the PPh3 structure, indicating minimal structural effects on the ligand upon substitution of a phenyl group with a —C2F5.

Related literature top

The structure of (cod)IrPPh3 was reported by Lebel & Ladjel (2008). The synthesis and crystal structure of pfepp has been reported by Palcic et al. (2004).

Experimental top

The title complex was prepared by the addition of an excess of pentafluoroethyldiphenylphosphane (C2F5)PPh2 (pfepp) to a heptane solution of [(cod)IrCl]2 under nitrogen. This solution was refluxed for two hours and allowed to cool to room temperature; the title compound was isolated by filtration in 79% yield. Single crystals were grown by the slow evaporation of a diethyl ether solution at room temperature. In addition to the single-crystal structure determination of this complex, multinuclear NMR spectra (1H, 19F, and 31P), IR and elemental analysis were consistent with the X-ray structure.

Refinement top

Approximate positions of the majority of the H's were first obtained from a difference map, then placed into ideal positions and refined as a rotational group. Bond lengths were constrained at 0.93 Å (AFIX 43) for aromatic and ethylenic C—H's; and 0.97 Å (AFIX 23) for methylene C—H's. Uiso(H) were fixed at 1.2 Ueq(parent) for all H's.

In the final stages of refinement, 5 reflections with very small or negative Fo's were deemed to be in high disagreement with their Fc's and were eliminated from final refinement.

Structure description top

The mean deviation of the Ir1/Cl1/P1/Cg1/Cg2 plane (Cg1 = centroid of C15/C16; Cg2 = centroid of C19/C20), is 0.064Å, indicating that Ir1 is in a square planar environment. The pfepp ligand and the chloride occupy the sites trans to the two centroids of the cycloocta-1,5-diene (cod) ligand. The Ir1—Cg1 and Ir1—Cg2 centroid distances are 2.00 (2) and 2.12 (2) Å, respectively, a difference of 0.12 Å (= 6σ). As seen in Fig. 1, the chloride ligand is trans to the shorter distance, possibly due to the high electronegativity of the chloride, which attracts the olefinic electrons and results in a shorter centroid distance. The Ir-centroids bond angle of 86.0 (3)° is compressed from the ideal 90°, while the P1—Ir1—Cl1 bond angle [89.89 (7)°] is essentially ideal.

The title compound is structurally very similar to the PPh3 analog (Lebel & Ladjel, 2008) with the only noticeable difference coming in the Ir1—P1 bond length, which is shorter by 0.040 Å (~20σ) in the title complex. The three torsion angles Cl1—Ir1—P1—C(1, 7, or 13) of the title compound have values within 5° of the counterpart angles in the PPh3 structure, indicating minimal structural effects on the ligand upon substitution of a phenyl group with a —C2F5.

The structure of (cod)IrPPh3 was reported by Lebel & Ladjel (2008). The synthesis and crystal structure of pfepp has been reported by Palcic et al. (2004).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the labeling of the non-H atoms. Displacement ellipsoids are drawn at the 30% probability levels; H atoms have been omitted for clarity.
Chlorido(η4-cycloocta-1,5- diene)[(pentafluoroethyl)diphenylphosphane]iridium(I) top
Crystal data top
[IrCl(C8H12)(C14H10F5P)]F(000) = 1232
Mr = 640.02Dx = 1.929 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 100 reflections
a = 10.5498 (5) Åθ = 11.0–18.7°
b = 14.9824 (7) ŵ = 6.30 mm1
c = 13.9885 (7) ÅT = 295 K
β = 94.579 (5)°Parallelepiped, orange
V = 2203.98 (18) Å30.51 × 0.40 × 0.12 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3583 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
θ/2θ scansh = 113
Absorption correction: integration
(XSHELL; Bruker, 1999)
k = 119
Tmin = 0.155, Tmax = 0.480l = 1818
6244 measured reflections3 standard reflections every 100 reflections
5014 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.041P)2 + 4.9533P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5014 reflectionsΔρmax = 1.08 e Å3
272 parametersΔρmin = 1.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00082 (14)
Crystal data top
[IrCl(C8H12)(C14H10F5P)]V = 2203.98 (18) Å3
Mr = 640.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5498 (5) ŵ = 6.30 mm1
b = 14.9824 (7) ÅT = 295 K
c = 13.9885 (7) Å0.51 × 0.40 × 0.12 mm
β = 94.579 (5)°
Data collection top
Bruker P4
diffractometer
3583 reflections with I > 2σ(I)
Absorption correction: integration
(XSHELL; Bruker, 1999)
Rint = 0.050
Tmin = 0.155, Tmax = 0.4803 standard reflections every 100 reflections
6244 measured reflections intensity decay: 1.3%
5014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 1.08 e Å3
5014 reflectionsΔρmin = 1.31 e Å3
272 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor, wR, and goodness of fit, S, are based on F2, conventional R-factors, R, are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.09989 (2)0.327209 (17)0.78744 (2)0.03420 (11)
Cl10.2697 (2)0.23154 (16)0.7593 (2)0.0625 (6)
P10.00925 (16)0.20976 (11)0.84243 (12)0.0283 (4)
F10.0049 (5)0.1050 (3)1.0012 (4)0.0620 (13)
F20.1605 (5)0.0925 (3)0.9191 (4)0.0652 (14)
F30.1897 (8)0.1652 (5)1.1018 (5)0.109 (3)
F40.0877 (6)0.2798 (4)1.0506 (5)0.090 (2)
F50.2575 (6)0.2431 (5)0.9899 (5)0.094 (2)
C10.1697 (7)0.2233 (4)0.8808 (5)0.0337 (15)
C20.2707 (7)0.2092 (5)0.8127 (6)0.0416 (17)
H20.25480.19240.75080.050*
C30.3940 (8)0.2197 (6)0.8357 (8)0.056 (2)
H30.46040.21000.78920.067*
C40.4206 (8)0.2445 (6)0.9266 (8)0.064 (3)
H40.50400.25020.94260.077*
C50.3202 (9)0.2605 (7)0.9933 (7)0.067 (3)
H50.33630.27831.05480.080*
C60.1962 (8)0.2503 (6)0.9710 (6)0.051 (2)
H60.13000.26211.01710.061*
C70.0332 (6)0.1169 (4)0.7591 (5)0.0326 (15)
C80.0646 (8)0.0314 (5)0.7865 (6)0.0479 (19)
H80.06290.01550.85090.057*
C90.0992 (9)0.0307 (6)0.7137 (8)0.066 (3)
H90.12040.08870.72990.079*
C100.1015 (10)0.0072 (7)0.6199 (8)0.068 (3)
H100.12490.04940.57310.081*
C110.0716 (10)0.0753 (6)0.5928 (7)0.061 (2)
H110.07430.08990.52810.073*
C120.0361 (8)0.1391 (5)0.6618 (6)0.0476 (19)
H120.01400.19630.64340.057*
C130.0785 (8)0.1526 (5)0.9502 (6)0.0469 (19)
C140.1525 (9)0.2123 (7)1.0235 (7)0.062 (2)
C150.0647 (8)0.4023 (5)0.7499 (7)0.052 (2)
H150.10950.34890.74350.063*
C160.0193 (10)0.4263 (5)0.8418 (8)0.066 (3)
H160.02980.38710.89210.079*
C170.0482 (14)0.5150 (7)0.8636 (9)0.094 (4)
H17A0.01470.55940.81790.113*
H17B0.02990.53480.92710.113*
C180.1904 (13)0.5092 (7)0.8593 (10)0.099 (4)
H18A0.22230.56730.84230.119*
H18B0.22890.49420.92260.119*
C190.2299 (10)0.4429 (7)0.7903 (8)0.070 (3)
H190.29400.40400.81300.084*
C200.1848 (9)0.4311 (6)0.6972 (7)0.063 (3)
H200.22050.38600.66240.076*
C210.0793 (10)0.4874 (7)0.6471 (8)0.076 (3)
H21A0.08630.54770.67210.091*
H21B0.09250.49010.57930.091*
C220.0485 (10)0.4553 (7)0.6571 (9)0.080 (3)
H22A0.07410.41740.60270.096*
H22B0.10570.50610.65500.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02825 (15)0.03151 (14)0.04259 (17)0.00469 (13)0.00129 (10)0.00204 (14)
Cl10.0344 (11)0.0660 (13)0.0886 (17)0.0093 (9)0.0145 (11)0.0040 (12)
P10.0271 (8)0.0267 (8)0.0309 (9)0.0012 (7)0.0017 (7)0.0006 (7)
F10.078 (3)0.053 (3)0.055 (3)0.005 (3)0.010 (3)0.020 (2)
F20.064 (3)0.061 (3)0.069 (3)0.034 (3)0.001 (3)0.003 (3)
F30.126 (6)0.126 (6)0.066 (4)0.013 (5)0.045 (4)0.018 (4)
F40.077 (4)0.096 (4)0.093 (5)0.013 (4)0.023 (4)0.046 (4)
F50.061 (4)0.139 (6)0.080 (4)0.025 (4)0.008 (3)0.020 (4)
C10.035 (4)0.028 (3)0.039 (4)0.001 (3)0.012 (3)0.004 (3)
C20.030 (4)0.049 (4)0.046 (4)0.006 (3)0.006 (3)0.000 (3)
C30.035 (4)0.049 (5)0.085 (7)0.002 (4)0.004 (4)0.010 (5)
C40.032 (5)0.058 (5)0.105 (8)0.000 (4)0.026 (5)0.003 (5)
C50.055 (6)0.091 (7)0.059 (6)0.020 (5)0.035 (5)0.001 (5)
C60.044 (5)0.068 (5)0.043 (5)0.008 (4)0.012 (4)0.009 (4)
C70.029 (3)0.029 (3)0.041 (4)0.001 (3)0.007 (3)0.005 (3)
C80.052 (5)0.036 (4)0.057 (5)0.003 (3)0.011 (4)0.004 (4)
C90.069 (6)0.034 (4)0.097 (8)0.011 (4)0.015 (5)0.023 (5)
C100.078 (7)0.060 (6)0.067 (7)0.005 (5)0.011 (5)0.029 (5)
C110.081 (7)0.059 (5)0.045 (5)0.011 (5)0.016 (5)0.020 (4)
C120.056 (5)0.044 (4)0.044 (5)0.013 (4)0.013 (4)0.004 (4)
C130.045 (4)0.050 (5)0.046 (4)0.013 (4)0.004 (4)0.007 (3)
C140.051 (6)0.084 (7)0.048 (5)0.005 (5)0.018 (4)0.001 (5)
C150.037 (4)0.039 (4)0.083 (7)0.008 (3)0.014 (4)0.014 (4)
C160.079 (7)0.030 (4)0.091 (8)0.008 (4)0.028 (6)0.004 (4)
C170.163 (14)0.042 (5)0.079 (8)0.008 (7)0.030 (8)0.017 (5)
C180.116 (11)0.054 (6)0.121 (11)0.031 (7)0.034 (9)0.011 (7)
C190.061 (6)0.057 (6)0.088 (8)0.026 (5)0.018 (5)0.023 (5)
C200.057 (6)0.057 (5)0.076 (7)0.020 (4)0.005 (5)0.029 (5)
C210.085 (8)0.078 (7)0.064 (6)0.014 (6)0.003 (6)0.031 (6)
C220.068 (7)0.068 (7)0.098 (9)0.002 (5)0.020 (6)0.033 (6)
Geometric parameters (Å, º) top
Ir1—C152.100 (8)C9—C101.356 (14)
Ir1—C162.125 (9)C9—H90.9301
Ir1—C192.209 (9)C10—C111.338 (13)
Ir1—C202.235 (8)C10—H100.9298
Ir1—P12.2705 (17)C11—C121.388 (11)
Ir1—Cl12.352 (2)C11—H110.9297
P1—C71.819 (7)C12—H120.9301
P1—C11.827 (7)C13—C141.527 (12)
P1—C131.908 (8)C15—C161.383 (14)
F1—C131.376 (10)C15—C221.542 (13)
F2—C131.344 (9)C15—H150.9300
F3—C141.335 (11)C16—C171.526 (14)
F4—C141.294 (11)C16—H160.9300
F5—C141.321 (12)C17—C181.509 (18)
C1—C61.375 (11)C17—H17A0.9700
C1—C21.388 (10)C17—H17B0.9700
C2—C31.373 (11)C18—C191.469 (17)
C2—H20.9299C18—H18A0.9700
C3—C41.374 (14)C18—H18B0.9700
C3—H30.9295C19—C201.361 (14)
C4—C51.376 (15)C19—H190.9297
C4—H40.9298C20—C211.522 (14)
C5—C61.377 (11)C20—H200.9301
C5—H50.9299C21—C221.449 (14)
C6—H60.9295C21—H21A0.9702
C7—C81.385 (10)C21—H21B0.9698
C7—C121.399 (11)C22—H22A0.9699
C8—C91.406 (12)C22—H22B0.9700
C8—H80.9298
C15—Ir1—C1638.2 (4)F1—C13—C14105.6 (7)
C15—Ir1—C1994.8 (4)F2—C13—P1109.2 (5)
C16—Ir1—C1980.2 (4)F1—C13—P1110.6 (5)
C15—Ir1—C2081.2 (3)C14—C13—P1117.2 (6)
C16—Ir1—C2089.5 (4)F4—C14—F5108.0 (9)
C19—Ir1—C2035.7 (4)F4—C14—F3107.4 (9)
C15—Ir1—P193.9 (2)F5—C14—F3106.0 (8)
C16—Ir1—P195.2 (3)F4—C14—C13113.6 (7)
C19—Ir1—P1158.9 (3)F5—C14—C13111.4 (8)
C20—Ir1—P1165.4 (3)F3—C14—C13110.0 (8)
C15—Ir1—Cl1155.5 (3)C16—C15—C22126.5 (9)
C16—Ir1—Cl1165.0 (3)C16—C15—Ir171.9 (5)
C19—Ir1—Cl190.1 (3)C22—C15—Ir1110.0 (6)
C20—Ir1—Cl189.1 (3)C16—C15—H15116.7
P1—Ir1—Cl189.89 (7)C22—C15—H15116.8
C7—P1—C1100.8 (3)Ir1—C15—H1588.2
C7—P1—C13101.3 (3)C15—C16—C17122.3 (9)
C1—P1—C13102.7 (3)C15—C16—Ir169.9 (5)
C7—P1—Ir1115.1 (2)C17—C16—Ir1113.6 (8)
C1—P1—Ir1121.4 (2)C15—C16—H16119.0
C13—P1—Ir1112.8 (3)C17—C16—H16118.8
C6—C1—C2118.2 (7)Ir1—C16—H1686.5
C6—C1—P1124.3 (6)C18—C17—C16113.0 (9)
C2—C1—P1117.4 (5)C18—C17—H17A109.0
C3—C2—C1120.8 (8)C16—C17—H17A109.0
C3—C2—H2119.6C18—C17—H17B109.0
C1—C2—H2119.6C16—C17—H17B109.0
C2—C3—C4121.0 (9)H17A—C17—H17B107.8
C2—C3—H3119.5C19—C18—C17113.6 (9)
C4—C3—H3119.5C19—C18—H18A108.8
C3—C4—C5118.2 (8)C17—C18—H18A108.8
C3—C4—H4121.0C19—C18—H18B108.8
C5—C4—H4120.8C17—C18—H18B108.8
C4—C5—C6121.3 (9)H18A—C18—H18B107.7
C4—C5—H5119.4C20—C19—C18128.4 (11)
C6—C5—H5119.3C20—C19—Ir173.2 (5)
C1—C6—C5120.5 (8)C18—C19—Ir1109.5 (8)
C1—C6—H6119.7C20—C19—H19115.8
C5—C6—H6119.8C18—C19—H19115.8
C8—C7—C12120.1 (7)Ir1—C19—H1987.0
C8—C7—P1123.7 (6)C19—C20—C21123.7 (11)
C12—C7—P1115.6 (5)C19—C20—Ir171.1 (5)
C7—C8—C9117.7 (8)C21—C20—Ir1109.6 (6)
C7—C8—H8121.1C19—C20—H20118.0
C9—C8—H8121.2C21—C20—H20118.3
C10—C9—C8120.9 (9)Ir1—C20—H2089.3
C10—C9—H9119.5C22—C21—C20115.0 (8)
C8—C9—H9119.6C22—C21—H21A108.6
C11—C10—C9121.8 (9)C20—C21—H21A108.6
C11—C10—H10119.0C22—C21—H21B108.4
C9—C10—H10119.2C20—C21—H21B108.5
C10—C11—C12119.8 (9)H21A—C21—H21B107.5
C10—C11—H11120.2C21—C22—C15114.8 (8)
C12—C11—H11120.0C21—C22—H22A108.7
C11—C12—C7119.8 (8)C15—C22—H22A108.4
C11—C12—H12120.1C21—C22—H22B108.6
C7—C12—H12120.1C15—C22—H22B108.6
F2—C13—F1106.0 (6)H22A—C22—H22B107.6
F2—C13—C14107.6 (7)
C15—Ir1—P1—C799.6 (4)P1—C13—C14—F573.4 (9)
C16—Ir1—P1—C7137.9 (4)F2—C13—C14—F367.3 (10)
C19—Ir1—P1—C7146.1 (9)F1—C13—C14—F345.6 (10)
C20—Ir1—P1—C729.9 (11)P1—C13—C14—F3169.3 (7)
Cl1—Ir1—P1—C756.2 (3)C19—Ir1—C15—C1667.4 (6)
C15—Ir1—P1—C122.3 (4)C20—Ir1—C15—C16100.5 (6)
C16—Ir1—P1—C116.0 (4)P1—Ir1—C15—C1693.4 (5)
C19—Ir1—P1—C192.0 (9)Cl1—Ir1—C15—C16168.2 (5)
C20—Ir1—P1—C192.0 (11)C16—Ir1—C15—C22123.1 (9)
Cl1—Ir1—P1—C1178.1 (3)C19—Ir1—C15—C2255.7 (8)
C15—Ir1—P1—C13144.8 (4)C20—Ir1—C15—C2222.7 (7)
C16—Ir1—P1—C13106.4 (4)P1—Ir1—C15—C22143.5 (7)
C19—Ir1—P1—C1330.4 (9)Cl1—Ir1—C15—C2245.1 (10)
C20—Ir1—P1—C13145.6 (11)C22—C15—C16—C174.0 (15)
Cl1—Ir1—P1—C1359.4 (3)Ir1—C15—C16—C17105.8 (10)
C7—P1—C1—C6146.8 (7)C22—C15—C16—Ir1101.8 (9)
C13—P1—C1—C642.4 (7)C19—Ir1—C16—C15110.9 (6)
Ir1—P1—C1—C684.8 (7)C20—Ir1—C16—C1576.3 (6)
C7—P1—C1—C236.4 (6)P1—Ir1—C16—C1589.8 (5)
C13—P1—C1—C2140.8 (6)Cl1—Ir1—C16—C15160.9 (8)
Ir1—P1—C1—C292.1 (6)C15—Ir1—C16—C17117.4 (10)
C6—C1—C2—C31.7 (12)C19—Ir1—C16—C176.5 (8)
P1—C1—C2—C3178.8 (6)C20—Ir1—C16—C1741.1 (8)
C1—C2—C3—C40.1 (13)P1—Ir1—C16—C17152.8 (8)
C2—C3—C4—C51.4 (14)Cl1—Ir1—C16—C1743.5 (17)
C3—C4—C5—C61.4 (16)C15—C16—C17—C1890.8 (14)
C2—C1—C6—C51.8 (13)Ir1—C16—C17—C1810.5 (14)
P1—C1—C6—C5178.7 (7)C16—C17—C18—C1930.8 (16)
C4—C5—C6—C10.3 (15)C17—C18—C19—C2048.4 (16)
C1—P1—C7—C866.2 (7)C17—C18—C19—Ir135.2 (13)
C13—P1—C7—C839.3 (7)C15—Ir1—C19—C2067.6 (7)
Ir1—P1—C7—C8161.4 (6)C16—Ir1—C19—C20103.0 (7)
C1—P1—C7—C12105.0 (6)P1—Ir1—C19—C20178.3 (6)
C13—P1—C7—C12149.5 (6)Cl1—Ir1—C19—C2088.4 (7)
Ir1—P1—C7—C1227.4 (6)C15—Ir1—C19—C1858.0 (8)
C12—C7—C8—C90.3 (12)C16—Ir1—C19—C1822.6 (8)
P1—C7—C8—C9170.5 (7)C20—Ir1—C19—C18125.6 (11)
C7—C8—C9—C100.1 (14)P1—Ir1—C19—C1856.2 (13)
C8—C9—C10—C110.2 (16)Cl1—Ir1—C19—C18146.0 (8)
C9—C10—C11—C120.5 (16)C18—C19—C20—C210.5 (15)
C10—C11—C12—C70.7 (14)Ir1—C19—C20—C21101.4 (8)
C8—C7—C12—C110.6 (12)C18—C19—C20—Ir1101.9 (11)
P1—C7—C12—C11171.0 (7)C15—Ir1—C20—C19111.2 (7)
C7—P1—C13—F238.6 (6)C16—Ir1—C20—C1973.8 (7)
C1—P1—C13—F2142.6 (6)P1—Ir1—C20—C19177.5 (9)
Ir1—P1—C13—F285.0 (6)Cl1—Ir1—C20—C1991.3 (7)
C7—P1—C13—F177.7 (6)C15—Ir1—C20—C218.9 (8)
C1—P1—C13—F126.3 (6)C16—Ir1—C20—C2146.3 (8)
Ir1—P1—C13—F1158.7 (4)C19—Ir1—C20—C21120.1 (11)
C7—P1—C13—C14161.2 (7)P1—Ir1—C20—C2162.4 (16)
C1—P1—C13—C1494.8 (7)Cl1—Ir1—C20—C21148.6 (8)
Ir1—P1—C13—C1437.5 (7)C19—C20—C21—C2287.9 (13)
F2—C13—C14—F4172.2 (8)Ir1—C20—C21—C228.0 (13)
F1—C13—C14—F474.9 (10)C20—C21—C22—C1528.3 (15)
P1—C13—C14—F448.8 (11)C16—C15—C22—C2146.7 (15)
F2—C13—C14—F550.0 (10)Ir1—C15—C22—C2135.1 (12)
F1—C13—C14—F5162.8 (7)

Experimental details

Crystal data
Chemical formula[IrCl(C8H12)(C14H10F5P)]
Mr640.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.5498 (5), 14.9824 (7), 13.9885 (7)
β (°) 94.579 (5)
V3)2203.98 (18)
Z4
Radiation typeMo Kα
µ (mm1)6.30
Crystal size (mm)0.51 × 0.40 × 0.12
Data collection
DiffractometerBruker P4
Absorption correctionIntegration
(XSHELL; Bruker, 1999)
Tmin, Tmax0.155, 0.480
No. of measured, independent and
observed [I > 2σ(I)] reflections
6244, 5014, 3583
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.03
No. of reflections5014
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 1.31

Computer programs: XSCANS (Bruker, 1996), SHELXS86 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), SHELXTL/PC and SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ir1—C152.100 (8)Ir1—C202.235 (8)
Ir1—C162.125 (9)Ir1—P12.2705 (17)
Ir1—C192.209 (9)Ir1—Cl12.352 (2)
P1—Ir1—Cl189.89 (7)C7—P1—Ir1115.1 (2)
C7—P1—C1100.8 (3)C1—P1—Ir1121.4 (2)
C7—P1—C13101.3 (3)C13—P1—Ir1112.8 (3)
C1—P1—C13102.7 (3)
Cl1—Ir1—P1—C756.2 (3)Cl1—Ir1—P1—C1359.4 (3)
Cl1—Ir1—P1—C1178.1 (3)
 

Acknowledgements

MMC and RGP acknowledge the generous support of this work from the Mentoring Committee at Wilkes University.

References

First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLebel, H. & Ladjel, C. (2008). Organometallics, 27, 2676–2678.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalcic, J. D., Kapoor, P. N., Roddick, D. M. & Peters, R. G. (2004). Dalton Trans. pp. 644–1647.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds