metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(di­phenyl­phosphan­yl)-1,2-di­methyl­hydrazine-κ2P:P′]bis­­[chlorido­gold(I)]

aProject AuTEK, Mintek, Private Bag X3015, Randburg 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 16 November 2010; accepted 2 December 2010; online 8 December 2010)

The title compound, [Au2Cl2(C26H26N2P2)], is formed from a bidentate phosphine ligand complexed to two linearly coordinated gold(I) atoms. The gold(I) atoms are 3.4873 (7) Å apart. The mol­ecule exhibits a crystallographic twofold rotation axis.

Related literature

For the structure of the parent ligand, see: Kriel et al. (2010a[Kriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.]). For the synthesis of the parent ligand and related structures utilising alternative metals, see: Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Kriel et al. (2010b[Kriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.]). For Au⋯Au inter­actions, see: Holleman & Wiberg (2001[Holleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San Diego: Academic Press]). For related gold structures of dppe and dppen (dppe = 1,2-bis­(diphenyl­phosphino)ethane; dppen = 1,2-bis­(diphenyl­phosphino)ethene), see: Eggleston et al. (1985[Eggleston, D. S., Chodosh, D. F., Girard, G. R. & Hill, D. T. (1985). Inorg. Chim. Acta, 108, 221-226.]) and Jones (1980[Jones, P. G. (1980). Acta Cryst. B36, 2775-2776.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C26H26N2P2)]

  • Mr = 893.26

  • Tetragonal, P 41 21 2

  • a = 10.6720 (14) Å

  • c = 23.439 (4) Å

  • V = 2669.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.32 mm−1

  • T = 173 K

  • 0.18 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: integration (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.294, Tmax = 0.457

  • 25347 measured reflections

  • 3312 independent reflections

  • 2709 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.056

  • S = 0.98

  • 3312 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.78 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1332 Friedel pairs

  • Flack parameter: 0.011 (10)

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the title compound, gold(I) forms an almost linear complex with a P—Au—Cl angles of 176.34 °. The Au—Au distances is 3.487 Å and is slightly too long to be classified as an aurophilic interaction, which is defined as between 2.7 Å and 3.4 Å (Holleman et al., 2001). Other bond lengths are within expected ranges.

A direct comparison of the title compound and the analogous dppe complex (where dppe = 1,2-bis(diphenylphosphino)ethane); ClAu(dppe)AuCl shows that the preference for the gauche conformation of the hydrazine backbone in the parent ligand (Kriel et al.) may explain the observed intramolecular Au—Au interactions as compared to the intermolecular Au—Au interactions observed in the two polymorphs of ClAu(dppe)AuCl (3.189 Å and 3.221 Å ). The formation of intermolecular Au—Au interactions between dimers of ClAu(dppe)AuCl may be attributed to the different conformation of the ethyl backbone as illustrated by the torsion angles of the two polymorphs (-18.6 ° and 50.7 °) (Eggleston et al., 1985). Intermolecular Au—Au contacts are also observed for the analogous ClAu(dppen)AuCl complex (dppen = 1,2–bis(diphenylphosphino)ethene) (3.05 Å), where the ethene bridge is constrained to a cis conformation by the double bond (Jones, 1980).

The insolubility of the title compound in both non polar and highly polar solvents once crystallized may be a result of the tightly packed parallel helixes, that are formed in the solid state. While the complex readily crystallizes from THF it does not include THF in the structure. This structure exhibits a α-helical packing down the c axis (Figure 2). This unique packing results in parallel helixes that have no voids large enough to include solvent and leads to a stabilizing short contact distance of 2.900 Å between Cl and H(15).

Related literature top

For the structure of the parent ligand, see: Kriel et al. (2010a). For the synthesis of the parent ligand and related structures utilising alternative metals, see: Reddy et al. (1994, 1995); Kriel et al. (2010b). For Au···Au interactions, see: Holleman et al. (2001). For related gold structures of dppe and dppen (dppe = 1,2-bis(diphenylphosphino)ethane; dppen = 1,2-bis(diphenylphosphino)ethene), see: Eggleston et al. (1985) and Jones (1980) respectively.

Experimental top

General procedure

Tetrahydrothiophenegold(I) chloride [(THT)AuCl] was suspended in tetrahydrofuran. 0.5 equivalents of the ligand, bis(diphenylphosphino)-1,2-dimethylhydrazine, dissolved in dicloromethane was added to the stirred suspension. The suspension turned yellow and after a short time micro crystals started to form. The solvent was removed in vacuo to afford the product as a micro-crystalline powder.

Alternatively, the reaction was carried out in dichloromethane to afforded the title compound. By addition of a few drops of tehrahydrofuran it was possible to grow crystals overnight.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar—H) or 1.5 (CH3) Ueq(C).

Structure description top

In the title compound, gold(I) forms an almost linear complex with a P—Au—Cl angles of 176.34 °. The Au—Au distances is 3.487 Å and is slightly too long to be classified as an aurophilic interaction, which is defined as between 2.7 Å and 3.4 Å (Holleman et al., 2001). Other bond lengths are within expected ranges.

A direct comparison of the title compound and the analogous dppe complex (where dppe = 1,2-bis(diphenylphosphino)ethane); ClAu(dppe)AuCl shows that the preference for the gauche conformation of the hydrazine backbone in the parent ligand (Kriel et al.) may explain the observed intramolecular Au—Au interactions as compared to the intermolecular Au—Au interactions observed in the two polymorphs of ClAu(dppe)AuCl (3.189 Å and 3.221 Å ). The formation of intermolecular Au—Au interactions between dimers of ClAu(dppe)AuCl may be attributed to the different conformation of the ethyl backbone as illustrated by the torsion angles of the two polymorphs (-18.6 ° and 50.7 °) (Eggleston et al., 1985). Intermolecular Au—Au contacts are also observed for the analogous ClAu(dppen)AuCl complex (dppen = 1,2–bis(diphenylphosphino)ethene) (3.05 Å), where the ethene bridge is constrained to a cis conformation by the double bond (Jones, 1980).

The insolubility of the title compound in both non polar and highly polar solvents once crystallized may be a result of the tightly packed parallel helixes, that are formed in the solid state. While the complex readily crystallizes from THF it does not include THF in the structure. This structure exhibits a α-helical packing down the c axis (Figure 2). This unique packing results in parallel helixes that have no voids large enough to include solvent and leads to a stabilizing short contact distance of 2.900 Å between Cl and H(15).

For the structure of the parent ligand, see: Kriel et al. (2010a). For the synthesis of the parent ligand and related structures utilising alternative metals, see: Reddy et al. (1994, 1995); Kriel et al. (2010b). For Au···Au interactions, see: Holleman et al. (2001). For related gold structures of dppe and dppen (dppe = 1,2-bis(diphenylphosphino)ethane; dppen = 1,2-bis(diphenylphosphino)ethene), see: Eggleston et al. (1985) and Jones (1980) respectively.

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Packing of the title compound as seen down the c axis.
[µ-1,2-Bis(diphenylphosphanyl)-1,2-dimethylhydrazine- κ2P:P']bis[chloridogold(I)] top
Crystal data top
[Au2Cl2(C26H26N2P2)]Dx = 2.223 Mg m3
Mr = 893.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 7602 reflections
Hall symbol: P 4abw 2nwθ = 5.2–49.5°
a = 10.6720 (14) ŵ = 11.32 mm1
c = 23.439 (4) ÅT = 173 K
V = 2669.5 (7) Å3Prismic, colourless
Z = 40.18 × 0.10 × 0.08 mm
F(000) = 1672
Data collection top
Bruker SMART CCD area-detector
diffractometer
3312 independent reflections
Radiation source: fine-focus sealed tube2709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: integration
(SADABS; Bruker, 1999)
h = 1414
Tmin = 0.294, Tmax = 0.457k = 1114
25347 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3312 reflectionsΔρmax = 1.43 e Å3
154 parametersΔρmin = 0.78 e Å3
0 restraintsAbsolute structure: Flack (1983), 1332 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (10)
Crystal data top
[Au2Cl2(C26H26N2P2)]Z = 4
Mr = 893.26Mo Kα radiation
Tetragonal, P41212µ = 11.32 mm1
a = 10.6720 (14) ÅT = 173 K
c = 23.439 (4) Å0.18 × 0.10 × 0.08 mm
V = 2669.5 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3312 independent reflections
Absorption correction: integration
(SADABS; Bruker, 1999)
2709 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 0.457Rint = 0.091
25347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.056Δρmax = 1.43 e Å3
S = 0.98Δρmin = 0.78 e Å3
3312 reflectionsAbsolute structure: Flack (1983), 1332 Friedel pairs
154 parametersAbsolute structure parameter: 0.011 (10)
0 restraints
Special details top

Experimental. Reaction: bis(diphenylphosphino)-1,2-dimethylhydrazine: 146 mg (0.34 mmol), (THT)AuCl: 200 mg (0.68 mmol), THF: 2 ml, DCM: 5 ml, Yield: 89% Grey crystals or white precipitate. Crystals are insoluble in organic and highly polar solvents. 1H NMR: (CDCl3, 300 MHz) δH 7.85 (dd, Arom, J (1H-31P) = 13.2, J (1H-1H) = 8.1), 7.52 (t, Arom, J (1H-1H) = 9.40 Hz), 7.40 (dd, Arom, J (1H-31P) = 17.7, J (1H-1H) = 7.4), 2.76 (d, CH3, 3J = 7.8 Hz). 13C NMR: Compound too insoluble in NMR solvents. 31P NMR: (CDCl3, 121 MHz) δP 87.1. MS: No useful information could be obtained. EA: Calc: (Au2Cl2P2N2C26H26) C 34.96%, H 2.93%, N 3.14% Found: C 35.29%, H 2.93%, N 3.13%. MP: 228 - 230 °C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0733 (7)0.2483 (7)0.0265 (3)0.0412 (18)
H1A0.01680.31830.02690.062*
H1B0.03770.18160.00430.062*
H1C0.08710.21990.06490.062*
C110.1070 (6)0.3372 (6)0.1127 (2)0.0242 (14)
C120.0234 (7)0.3312 (6)0.1112 (2)0.0272 (16)
H120.06580.35460.07820.033*
C130.0888 (7)0.2919 (6)0.1571 (3)0.0367 (17)
H130.17580.28840.15550.044*
C140.0262 (7)0.2563 (6)0.2072 (3)0.0378 (19)
H140.07190.23310.23930.045*
C150.1029 (8)0.2556 (6)0.2089 (2)0.0325 (17)
H150.14500.22710.24110.039*
C160.1693 (6)0.2981 (6)0.1618 (3)0.0277 (16)
H160.25640.30060.16300.033*
C210.1195 (6)0.5279 (6)0.0255 (3)0.0248 (15)
C220.0479 (6)0.6049 (6)0.0614 (2)0.0315 (16)
H220.03210.58040.09880.038*
C230.0009 (7)0.7174 (7)0.0411 (3)0.0358 (18)
H230.04550.76870.06520.043*
C240.0220 (7)0.7542 (7)0.0142 (3)0.0387 (19)
H240.01140.82910.02760.046*
C250.0927 (7)0.6797 (6)0.0496 (3)0.0356 (17)
H250.10820.70520.08680.043*
C260.1405 (6)0.5680 (7)0.0303 (3)0.0311 (16)
H260.18770.51840.05490.037*
N0.1921 (5)0.2864 (5)0.0014 (2)0.0235 (12)
P0.19968 (15)0.39132 (16)0.05313 (6)0.0224 (4)
Cl0.60720 (16)0.45361 (16)0.09865 (6)0.0346 (4)
Au0.40052 (2)0.42768 (2)0.073875 (9)0.02472 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (5)0.046 (5)0.044 (4)0.007 (4)0.011 (4)0.019 (4)
C110.024 (4)0.023 (3)0.025 (3)0.005 (3)0.001 (3)0.004 (3)
C120.033 (4)0.026 (4)0.023 (4)0.001 (3)0.002 (3)0.004 (3)
C130.028 (4)0.028 (4)0.054 (4)0.002 (4)0.004 (4)0.003 (3)
C140.043 (5)0.026 (4)0.045 (4)0.010 (4)0.016 (4)0.003 (3)
C150.057 (5)0.019 (3)0.021 (3)0.009 (4)0.003 (3)0.003 (3)
C160.027 (4)0.022 (4)0.035 (4)0.002 (3)0.002 (3)0.008 (3)
C210.015 (3)0.028 (4)0.031 (3)0.005 (3)0.008 (3)0.003 (3)
C220.036 (4)0.034 (4)0.025 (3)0.003 (4)0.007 (3)0.003 (3)
C230.027 (4)0.032 (4)0.048 (5)0.006 (3)0.001 (3)0.015 (4)
C240.039 (5)0.022 (4)0.055 (5)0.006 (4)0.009 (4)0.009 (4)
C250.034 (4)0.037 (4)0.036 (4)0.004 (4)0.001 (3)0.014 (3)
C260.021 (3)0.040 (4)0.032 (4)0.006 (3)0.002 (3)0.007 (4)
N0.019 (3)0.024 (3)0.027 (3)0.007 (2)0.002 (2)0.006 (2)
P0.0200 (8)0.0247 (10)0.0226 (7)0.0048 (8)0.0003 (6)0.0011 (7)
Cl0.0263 (9)0.0423 (10)0.0353 (8)0.0062 (8)0.0089 (7)0.0025 (7)
Au0.02271 (14)0.02537 (15)0.02609 (10)0.00065 (11)0.00336 (11)0.00038 (11)
Geometric parameters (Å, º) top
C1—N1.455 (8)C21—C261.394 (8)
C1—H1A0.9600C21—C221.402 (9)
C1—H1B0.9600C21—P1.811 (6)
C1—H1C0.9600C22—C231.386 (9)
C11—C161.393 (8)C22—H220.9300
C11—C121.394 (9)C23—C241.372 (9)
C11—P1.805 (6)C23—H230.9300
C12—C131.349 (9)C24—C251.374 (9)
C12—H120.9300C24—H240.9300
C13—C141.404 (9)C25—C261.373 (9)
C13—H130.9300C25—H250.9300
C14—C151.379 (10)C26—H260.9300
C14—H140.9300N—Ni1.425 (10)
C15—C161.388 (8)N—P1.702 (5)
C15—H150.9300P—Au2.2318 (16)
C16—H160.9300Cl—Au2.2976 (17)
N—C1—H1A109.5C22—C21—P120.9 (5)
N—C1—H1B109.5C23—C22—C21119.9 (6)
H1A—C1—H1B109.5C23—C22—H22120.1
N—C1—H1C109.5C21—C22—H22120.1
H1A—C1—H1C109.5C24—C23—C22120.8 (6)
H1B—C1—H1C109.5C24—C23—H23119.6
C16—C11—C12118.9 (6)C22—C23—H23119.6
C16—C11—P118.2 (5)C23—C24—C25119.6 (6)
C12—C11—P122.9 (5)C23—C24—H24120.2
C13—C12—C11120.8 (6)C25—C24—H24120.2
C13—C12—H12119.6C26—C25—C24120.5 (6)
C11—C12—H12119.6C26—C25—H25119.7
C12—C13—C14120.3 (7)C24—C25—H25119.7
C12—C13—H13119.8C25—C26—C21121.0 (6)
C14—C13—H13119.8C25—C26—H26119.5
C15—C14—C13120.0 (6)C21—C26—H26119.5
C15—C14—H14120.0Ni—N—C1115.9 (4)
C13—C14—H14120.0Ni—N—P113.3 (5)
C14—C15—C16119.1 (6)C1—N—P121.9 (4)
C14—C15—H15120.4N—P—C11110.1 (3)
C16—C15—H15120.4N—P—C21103.8 (3)
C15—C16—C11120.8 (6)C11—P—C21106.0 (3)
C15—C16—H16119.6N—P—Au108.89 (18)
C11—C16—H16119.6C11—P—Au114.4 (2)
C26—C21—C22118.1 (6)C21—P—Au113.1 (2)
C26—C21—P120.4 (5)P—Au—Cl176.34 (6)
C16—C11—C12—C132.0 (10)C1—N—P—C1156.8 (6)
P—C11—C12—C13179.0 (5)Ni—N—P—C21157.7 (3)
C11—C12—C13—C140.0 (10)C1—N—P—C2156.3 (6)
C12—C13—C14—C153.1 (10)Ni—N—P—Au37.0 (4)
C13—C14—C15—C164.1 (10)C1—N—P—Au177.0 (5)
C14—C15—C16—C112.1 (9)C16—C11—P—N110.1 (5)
C12—C11—C16—C150.9 (9)C12—C11—P—N69.0 (6)
P—C11—C16—C15180.0 (5)C16—C11—P—C21138.3 (5)
C26—C21—C22—C230.2 (10)C12—C11—P—C2142.7 (6)
P—C21—C22—C23171.6 (5)C16—C11—P—Au13.0 (6)
C21—C22—C23—C240.9 (10)C12—C11—P—Au168.0 (5)
C22—C23—C24—C251.3 (11)C26—C21—P—N42.6 (6)
C23—C24—C25—C261.1 (11)C22—C21—P—N145.7 (5)
C24—C25—C26—C210.5 (10)C26—C21—P—C11158.7 (5)
C22—C21—C26—C250.0 (9)C22—C21—P—C1129.7 (6)
P—C21—C26—C25171.8 (5)C26—C21—P—Au75.2 (5)
Ni—N—P—C1189.2 (4)C22—C21—P—Au96.5 (5)
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C26H26N2P2)]
Mr893.26
Crystal system, space groupTetragonal, P41212
Temperature (K)173
a, c (Å)10.6720 (14), 23.439 (4)
V3)2669.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)11.32
Crystal size (mm)0.18 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionIntegration
(SADABS; Bruker, 1999)
Tmin, Tmax0.294, 0.457
No. of measured, independent and
observed [I > 2σ(I)] reflections
25347, 3312, 2709
Rint0.091
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.056, 0.98
No. of reflections3312
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.78
Absolute structureFlack (1983), 1332 Friedel pairs
Absolute structure parameter0.011 (10)

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors would like to thank Project AuTEK (Mintek and Harmony) and the University of the Witwatersrand for financial support.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEggleston, D. S., Chodosh, D. F., Girard, G. R. & Hill, D. T. (1985). Inorg. Chim. Acta, 108, 221–226.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry, p. 1248. San Diego: Academic Press  Google Scholar
First citationJones, P. G. (1980). Acta Cryst. B36, 2775–2776.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355–1357.  Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds