inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Silver indium diphosphate, AgInP2O7

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and bCentre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco
*Correspondence e-mail: zouihri@cnrst.ma

(Received 9 December 2010; accepted 14 December 2010; online 18 December 2010)

Polycrystalline material of the title compound, AgInP2O7, was synthesized by traditional high-temperature solid-state methods and single crystals were grown from the melt of a mixture of AgInP2O7 and B2O3 as flux in a platinium crucible. The structure consists of InO6 octa­hedra, which are corner-shared to PO4 tetra­hedra into a three-dimensional network with hexa­gonal channels running parallel to the c axis. The silver cation, located in the channel, is bonded to seven O atoms of the [InP2O7] framework with Ag–O distances ranging from 2.370 (2) to 3.015 (2) Å. The P2O7 diphosphate anion is characterized by a P—O—P angle of 137.27 (9) and a nearly eclipsed conformation. AgInP2O7 is isotypic with the MIFeP2O7 (MI = Na, K, Rb, Cs and Ag) diphosphate family.

Related literature

For properties of MIFeP2O7 (MI = Na, K, Rb, Cs and Ag) diphosphates, see: Terebilenko et al. (2010[Terebilenko, K. V., Kirichok, A. A., Baumer, V. N., Sereduk, M., Slobodyanik, N. S. & Gütlich, P. (2010). J. Solid State Chem. 183, 1473-1476.]); Hizhnyi et al. (2008[Hizhnyi, Y. A., Oliynyk, A., Gomenyuk, O., Nedilko, S. G., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687-689.]); Whangbo et al. (2004[Whangbo, M.-H., Dai, D. & Koo, H.-J. (2004). Dalton Trans. pp. 3019-3025.]); Vitins et al. (2000[Vitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electochem. 4, 146-152.]). For isotypic structures, see: Belkouch et al. (1995[Belkouch, J., Monceaux, L. & Courtine, P. (1995). Mater. Res. Bull. 30, 149-160.]); Gabelica-Robert et al. (1982[Gabelica-Robert, M., Goreaud, M., Labbe, Ph. & Raveau, B. (1982). J. Solid State Chem. 45, 389-395.]); Moya-Pizarro et al. (1984[Moya-Pizarro, T., Salmon, R., Fournes, S. L., Le Flem, G., Wanklyn, B. S. & Hagenmuller, P. (1984). J. Solid State Chem. 53, 387-397.]); Mercader et al. (1990[Mercader, R. C., Terminiello, L., Long, G. J., Reichel, D. G., Dickhaus, K., Zysler, R., Sanchez, R. & Tovar, M. (1990). Phys. Rev. B Condens. Matter, 42, 25-32.]).

Experimental

Crystal data
  • AgInP2O7

  • Mr = 396.63

  • Monoclinic, P 21 /c

  • a = 7.4867 (3) Å

  • b = 8.2620 (3) Å

  • c = 9.8383 (5) Å

  • β = 112.038 (2)°

  • V = 564.09 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.11 mm−1

  • T = 296 K

  • 0.08 × 0.06 × 0.05 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.563, Tmax = 0.667

  • 21692 measured reflections

  • 3730 independent reflections

  • 3245 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.03

  • 3730 reflections

  • 101 parameters

  • Δρmax = 1.62 e Å−3

  • Δρmin = −2.04 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The diphosphates AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Ga, Cr, Fe, In, Y) are extensively studied for their electrical and optical properties and for its perspective application as magnetic materials (Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000)). The crystal structures of most of these compounds are known except a few cases in which the crystal growth is difficult. In this context, the present paper reports on the determination of AgInP2O7 crystal structure from X-ray diffraction single-crystal data.

The structure of this phosphate is characterized by a three-dimensional network built up from indum octahedra linked to diphosphate groups by a corner-sharing. Each InO6 octahedra is surrounded by six PO4 tetrahedra belonging to five different P2O7 groups (see Fig.1 and Fig.2). As a result of these blocks, assemblage three-dimensional-framework is formed with hexagonal channels, where silver cations reside. Although, the coordination sphere of Ag+ cations is composed of seven O2- anions in an irregular geometry, located at Ag–O distances between 2.370 (2) and 3.015 (2) Å (see Fig.2). Furthermore, the diphosphate group contains two distorted PO4 tetrahedra sharing one corner and display a nearly eclipsed conformation. The P–O bond-lengths range between 1.492 (2) Å for terminal P1–O1 and 1.606 (2) Å for the bridging P2–O7 bond. Therefore, a P1–O7–P2 angle of 137.27 (9) ° is wider than 133.6 (3)° and 132.9 (3) ° reported for both AgFeP2O7 and NaFeP2O7 respectively (Belkouch et al. (1995); Gabelica-Robert et al. (1982); Moya-Pizarro et al. (1984); Mercader et al. (1990)).

Silver indium diphosphate (pyrophosphate) is isostructural to AIFeP2O7 (AI = Na, K, Rb, Cs and Ag) diphosphates family and is categorized as a dichromate type.

Related literature top

For properties of MIFeP2O7 (MI = Na, K, Rb, Cs and Ag) diphosphates, see: Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000). For isotypic structures, see: Belkouch et al. (1995); Gabelica-Robert et al. (1982); Moya-Pizarro et al. (1984); Mercader et al. (1990).

Experimental top

AgInP2O7 in the form of single crystals was prepared by stoichiometric reaction of AgNO3, (NH4)2HPO4 and In2O3 in B2O3 flux. The mixture was heated at 773 K under ambiante atmosphere for 6 h and 973 K for 2 h with intermediate grindings to ensure complete reaction. Subsequent melting at 1323 K followed by slow cooling to room temperature at a rate of 12°K h-1 resulted in colourless crystals of the title compound.

Refinement top

The highest and deepest hole residual peak in the final difference Fourier map are located at 0.49 Å and 0.58 Å, respectively from Ag1 atom. The not significants bonds and angles were removed from the CIF file.

Structure description top

The diphosphates AIMIIIP2O7 (AI = Li, Na, K, Rb, Cs and Ag; MIII = Al, Ga, Cr, Fe, In, Y) are extensively studied for their electrical and optical properties and for its perspective application as magnetic materials (Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000)). The crystal structures of most of these compounds are known except a few cases in which the crystal growth is difficult. In this context, the present paper reports on the determination of AgInP2O7 crystal structure from X-ray diffraction single-crystal data.

The structure of this phosphate is characterized by a three-dimensional network built up from indum octahedra linked to diphosphate groups by a corner-sharing. Each InO6 octahedra is surrounded by six PO4 tetrahedra belonging to five different P2O7 groups (see Fig.1 and Fig.2). As a result of these blocks, assemblage three-dimensional-framework is formed with hexagonal channels, where silver cations reside. Although, the coordination sphere of Ag+ cations is composed of seven O2- anions in an irregular geometry, located at Ag–O distances between 2.370 (2) and 3.015 (2) Å (see Fig.2). Furthermore, the diphosphate group contains two distorted PO4 tetrahedra sharing one corner and display a nearly eclipsed conformation. The P–O bond-lengths range between 1.492 (2) Å for terminal P1–O1 and 1.606 (2) Å for the bridging P2–O7 bond. Therefore, a P1–O7–P2 angle of 137.27 (9) ° is wider than 133.6 (3)° and 132.9 (3) ° reported for both AgFeP2O7 and NaFeP2O7 respectively (Belkouch et al. (1995); Gabelica-Robert et al. (1982); Moya-Pizarro et al. (1984); Mercader et al. (1990)).

Silver indium diphosphate (pyrophosphate) is isostructural to AIFeP2O7 (AI = Na, K, Rb, Cs and Ag) diphosphates family and is categorized as a dichromate type.

For properties of MIFeP2O7 (MI = Na, K, Rb, Cs and Ag) diphosphates, see: Terebilenko et al. (2010); Hizhnyi et al. (2008); Whangbo et al. (2004); Vitins et al. (2000). For isotypic structures, see: Belkouch et al. (1995); Gabelica-Robert et al. (1982); Moya-Pizarro et al. (1984); Mercader et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of AgInP2O7 crystal structure shawing plyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x, -y + 3/2, z - 1/2; (v) x - 1, y, z; (vi) x - 1, -y + 3/2, z - 1/2; (vii) -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. Perspective view along [101] of the AgInP2O7 framework structure shawing tunnel where silver cations are located.
Silver indium diphosphate top
Crystal data top
AgInP2O7F(000) = 728
Mr = 396.63Dx = 4.670 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 317 reflections
a = 7.4867 (3) Åθ = 2.5–30.2°
b = 8.2620 (3) ŵ = 8.11 mm1
c = 9.8383 (5) ÅT = 296 K
β = 112.038 (2)°Block, colourless
V = 564.09 (4) Å30.08 × 0.06 × 0.05 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3730 independent reflections
Radiation source: fine-focus sealed tube3245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 41.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1313
Tmin = 0.563, Tmax = 0.667k = 1515
21692 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.017P)2 + 0.9979P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.62 e Å3
3730 reflectionsΔρmin = 2.04 e Å3
101 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0171 (4)
Crystal data top
AgInP2O7V = 564.09 (4) Å3
Mr = 396.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4867 (3) ŵ = 8.11 mm1
b = 8.2620 (3) ÅT = 296 K
c = 9.8383 (5) Å0.08 × 0.06 × 0.05 mm
β = 112.038 (2)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3730 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3245 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.667Rint = 0.035
21692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021101 parameters
wR(F2) = 0.0480 restraints
S = 1.03Δρmax = 1.62 e Å3
3730 reflectionsΔρmin = 2.04 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.242354 (15)0.495357 (12)0.247622 (11)0.00618 (3)
Ag10.20911 (3)0.52697 (2)0.30478 (2)0.02442 (4)
P10.57689 (6)0.74758 (5)0.46083 (4)0.00600 (6)
P20.17589 (6)0.78735 (5)0.45174 (4)0.00656 (6)
O10.6810 (2)0.86792 (17)0.40464 (15)0.0141 (2)
O20.6836 (2)0.71622 (16)0.62241 (14)0.0136 (2)
O30.52473 (17)0.59259 (15)0.36935 (14)0.01027 (19)
O40.04427 (18)0.91166 (17)0.35059 (15)0.0123 (2)
O50.1917 (2)0.79561 (16)0.60976 (14)0.0126 (2)
O60.13231 (18)0.61348 (15)0.39564 (14)0.01054 (19)
O70.37868 (18)0.83601 (16)0.44239 (16)0.0128 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00656 (4)0.00614 (4)0.00593 (4)0.00024 (3)0.00244 (3)0.00045 (3)
Ag10.01913 (7)0.02720 (8)0.03341 (9)0.00235 (6)0.01725 (7)0.01071 (7)
P10.00574 (14)0.00643 (14)0.00582 (14)0.00025 (11)0.00217 (11)0.00044 (11)
P20.00588 (14)0.00706 (14)0.00644 (14)0.00073 (11)0.00195 (11)0.00090 (12)
O10.0185 (6)0.0141 (5)0.0133 (5)0.0053 (4)0.0104 (5)0.0012 (4)
O20.0195 (6)0.0098 (5)0.0070 (4)0.0006 (4)0.0001 (4)0.0018 (4)
O30.0072 (4)0.0099 (5)0.0130 (5)0.0012 (3)0.0030 (4)0.0040 (4)
O40.0084 (5)0.0135 (5)0.0135 (5)0.0034 (4)0.0023 (4)0.0041 (4)
O50.0211 (6)0.0099 (5)0.0072 (4)0.0009 (4)0.0058 (4)0.0023 (4)
O60.0116 (5)0.0097 (5)0.0123 (5)0.0019 (4)0.0067 (4)0.0039 (4)
O70.0078 (5)0.0100 (5)0.0217 (6)0.0010 (4)0.0069 (4)0.0020 (4)
Geometric parameters (Å, º) top
In1—O1i2.0799 (13)Ag1—O5vii2.7829 (14)
In1—O4ii2.1120 (12)Ag1—O6vii3.0153 (14)
In1—O2iii2.1133 (13)P1—O11.4919 (13)
In1—O5iv2.1401 (13)P1—O21.5097 (13)
In1—O32.1562 (12)P1—O31.5292 (13)
In1—O62.1569 (12)P1—O71.6021 (13)
Ag1—O3v2.3703 (12)P2—O41.5101 (13)
Ag1—O62.4757 (13)P2—O51.5158 (13)
Ag1—O4ii2.4865 (14)P2—O61.5295 (13)
Ag1—O2vi2.6991 (14)P2—O71.6062 (13)
Ag1—O7ii2.7744 (15)
O1i—In1—O4ii90.70 (6)O3v—Ag1—O5vii94.99 (4)
O1i—In1—O2iii86.35 (6)O6—Ag1—O5vii104.03 (4)
O4ii—In1—O2iii89.82 (6)O4ii—Ag1—O5vii80.85 (4)
O1i—In1—O5iv89.04 (5)O2vi—Ag1—O5vii157.25 (4)
O4ii—In1—O5iv93.79 (5)O7ii—Ag1—O5vii71.00 (4)
O2iii—In1—O5iv174.18 (6)O3v—Ag1—O6vii72.37 (4)
O1i—In1—O396.36 (5)O6—Ag1—O6vii88.04 (4)
O4ii—In1—O3172.86 (5)O4ii—Ag1—O6vii119.79 (4)
O2iii—In1—O389.55 (5)O2vi—Ag1—O6vii148.46 (4)
O5iv—In1—O387.43 (5)O7ii—Ag1—O6vii119.64 (4)
O1i—In1—O6173.56 (5)O5vii—Ag1—O6vii50.65 (4)
O4ii—In1—O682.94 (5)O1—P1—O2111.17 (8)
O2iii—In1—O692.62 (5)O1—P1—O3113.17 (8)
O5iv—In1—O692.35 (5)O2—P1—O3113.16 (8)
O3—In1—O689.98 (5)O1—P1—O7104.17 (8)
O3v—Ag1—O6134.04 (4)O2—P1—O7107.40 (8)
O3v—Ag1—O4ii155.99 (4)O3—P1—O7107.10 (7)
O6—Ag1—O4ii69.47 (4)O4—P2—O5115.20 (8)
O3v—Ag1—O2vi85.86 (5)O4—P2—O6113.76 (8)
O6—Ag1—O2vi91.29 (4)O5—P2—O6109.65 (8)
O4ii—Ag1—O2vi89.15 (5)O4—P2—O7100.90 (8)
O3v—Ag1—O7ii102.17 (4)O5—P2—O7109.63 (8)
O6—Ag1—O7ii123.47 (4)O6—P2—O7107.01 (7)
O4ii—Ag1—O7ii54.04 (4)P1—O7—P2137.27 (9)
O2vi—Ag1—O7ii86.57 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x1, y, z; (vi) x1, y+3/2, z1/2; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaAgInP2O7
Mr396.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4867 (3), 8.2620 (3), 9.8383 (5)
β (°) 112.038 (2)
V3)564.09 (4)
Z4
Radiation typeMo Kα
µ (mm1)8.11
Crystal size (mm)0.08 × 0.06 × 0.05
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.563, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
21692, 3730, 3245
Rint0.035
(sin θ/λ)max1)0.923
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.03
No. of reflections3730
No. of parameters101
Δρmax, Δρmin (e Å3)1.62, 2.04

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

Permanent address: Centre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray data collection.

References

First citationBelkouch, J., Monceaux, L. & Courtine, P. (1995). Mater. Res. Bull. 30, 149–160.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabelica-Robert, M., Goreaud, M., Labbe, Ph. & Raveau, B. (1982). J. Solid State Chem. 45, 389–395.  CAS Google Scholar
First citationHizhnyi, Y. A., Oliynyk, A., Gomenyuk, O., Nedilko, S. G., Nagornyi, P., Bojko, R. & Bojko, V. (2008). Opt. Mater. 30, 687–689.  CrossRef CAS Google Scholar
First citationMercader, R. C., Terminiello, L., Long, G. J., Reichel, D. G., Dickhaus, K., Zysler, R., Sanchez, R. & Tovar, M. (1990). Phys. Rev. B Condens. Matter, 42, 25–32.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMoya-Pizarro, T., Salmon, R., Fournes, S. L., Le Flem, G., Wanklyn, B. S. & Hagenmuller, P. (1984). J. Solid State Chem. 53, 387–397.  CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerebilenko, K. V., Kirichok, A. A., Baumer, V. N., Sereduk, M., Slobodyanik, N. S. & Gütlich, P. (2010). J. Solid State Chem. 183, 1473–1476.  Web of Science CrossRef CAS Google Scholar
First citationVitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electochem. 4, 146–152.  CAS Google Scholar
First citationWhangbo, M.-H., Dai, D. & Koo, H.-J. (2004). Dalton Trans. pp. 3019–3025.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds