metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[6-(1H-Benzimidazol-2-yl-κN3)-2-pyridyl-κN]benzimidazolato-κN}(dicyanamido-κN)(methanol-κO)copper(II)

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: chizhang@ujs.edu.cn

(Received 16 November 2010; accepted 1 December 2010; online 11 December 2010)

In the title compound, [Cu(C19H12N5)(C2N3)(CH3OH)], the CuII atom is coordinated by three N atoms from an anionic 2,6-bis­(1H-benzimidazol-2-yl)pyridine (bbp) ligand, an O atom from a methanol mol­ecule and one N atom from a dicyanamide anion. The crystal structure is stabilized by O—H⋯N and N—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For potential applications of benzimidazole derivatives and their metal complexes, see: Khaled (2003[Khaled, K. F. (2003). Electrochim. Acta, 48, 2493-2503.]); Hay et al. (1998[Hay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575-3581.]); Petoud et al. (1997[Petoud, S., Bünzli, J. C. G., Schenk, K. J. & Piguet, C. (1997). Inorg. Chem. 36, 1345-1353.]); Liu et al. (2005[Liu, S. G., Zuo, J. L., Wang, Y., Li, Y. Z. & You, X. Z. (2005). J. Phys. Chem. Solids, 66, 735-740.]); Boinnard et al. (1990[Boinnard, D., Cassoux, P., Petrouleas, V., Savariault, J. M. & Tuchagues, J. P. (1990). Inorg. Chem. 29, 4114-4122.]); Mo et al. (2009[Mo, H. J., Zhong, Y. R., Cao, M. L., Ou, Y. C. & Ye, B. H. (2009). Cryst. Growth. Des. 9, 488-496.]); Addison & Burke (1981[Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803-805.]). For examples of other bbp-containing complexes, see: Wang et al. (1994[Wang, S. X., Yu, S. Y., Luo, Q. H., Wang, Q. Y., Shi, J. Q. & Wu, Q. J. (1994). Transition Met. Chem. 19, 205-208.]); Bernardinelli et al. (1990[Bernardinelli, G., Hopfgartner, G. & Williams, A. F. (1990). Acta Cryst. C46, 1642-1645.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H12N5)(C2N3)(CH4O)]

  • Mr = 471.98

  • Triclinic, [P \overline 1]

  • a = 6.8262 (14) Å

  • b = 12.189 (2) Å

  • c = 12.609 (3) Å

  • α = 101.74 (3)°

  • β = 99.03 (3)°

  • γ = 97.12 (3)°

  • V = 1001.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.806, Tmax = 0.874

  • 7787 measured reflections

  • 3591 independent reflections

  • 3294 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.02

  • 3591 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N5i 0.82 1.93 2.743 (3) 172
N3—H3A⋯N8ii 0.86 1.96 2.807 (3) 166
Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzimidazole derivatives and their metal complexes have attracted considerable interest over several decades, because many of these materials have been applied to various fields such as biological systems (Khaled, 2003; Hay et al., 1998), Luminescent (Petoud et al., 1997; Liu et al., 2005), and magnetic properties (Boinnard et al., 1990; Mo et al., 2009). 2,6-bis(2-benzimidazol-2-yl)pyridine(bbp) (Addison et al., 1981) as a benzimidazole derivative, is a tridentate ligand with two benzimidazole and one pyridine nitrogen atoms. In this paper, we report the structue of a new CuII complex based on bbp ligand.

Figure 1 shows that the CuII atom is coordinated by N1, N2 and N4 from the tridentate bbp ligand and N6 from the dicyanamide anion, and O1 from one methanol molecule. The distance of Cu-N bonds range from 1.9528 (19) to 2.0364 (2) Å. While the Cu-N1, Cu-N2 and Cu-N4 distances are 1.9763 (18), 2.0364 (19), 1.9955 (19) Å, respectively; and the N1-Cu-N2 and N1-Cu-N4 angles are 79.36 (7), 79.51 (7)°, respectively, these parameters are similar to those reported for other bbp-containing complexes (Wang et al., 1994; Bernardinelli et al., 1990). Due to intermolecular hydrogen-bonding interactions, the crystal structure is extended to a three-dimensional network (Figure 2).

Related literature top

For potential applications of benzimidazole derivatives and their metal complexes, see: Khaled (2003); Hay et al. (1998); Petoud et al. (1997); Liu et al. (2005); Boinnard et al. (1990); Mo et al. (2009) Addison & Burke (1981). For examples of other bbp-containing complexes see: Wang et al. (1994); Bernardinelli et al. (1990).

Experimental top

The bbp (0.1 mmol) and CuClO4.6H2O (0.1 mmol) were added to 3 ml dimethylformamide with thorough stirring for 2 minutes. After filtering, the filtrate was carefully layered with 0.5 ml dimethylformamide and 5 ml methanol solution of Sodium dicyanamide (0.2 mol L-1), in turn. Green crystals suitable for X-ray analysis were obtained after one week. Elemental analysis found: C 55.56, H 3.33, N 23.46%; calculated for C22H16CuN8O: C 55.98, H 3.42, N 23.75%.

Refinement top

H atoms were positioned geometrically with C-H(phenyl, pyridyl) = 0.93 Å or 0.96 Å (methyl) and N-H = 0.8601 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C)phenyl, pyridyl, 1.2Ueq(N) or 1.5Ueq(C)methyl.

Structure description top

Benzimidazole derivatives and their metal complexes have attracted considerable interest over several decades, because many of these materials have been applied to various fields such as biological systems (Khaled, 2003; Hay et al., 1998), Luminescent (Petoud et al., 1997; Liu et al., 2005), and magnetic properties (Boinnard et al., 1990; Mo et al., 2009). 2,6-bis(2-benzimidazol-2-yl)pyridine(bbp) (Addison et al., 1981) as a benzimidazole derivative, is a tridentate ligand with two benzimidazole and one pyridine nitrogen atoms. In this paper, we report the structue of a new CuII complex based on bbp ligand.

Figure 1 shows that the CuII atom is coordinated by N1, N2 and N4 from the tridentate bbp ligand and N6 from the dicyanamide anion, and O1 from one methanol molecule. The distance of Cu-N bonds range from 1.9528 (19) to 2.0364 (2) Å. While the Cu-N1, Cu-N2 and Cu-N4 distances are 1.9763 (18), 2.0364 (19), 1.9955 (19) Å, respectively; and the N1-Cu-N2 and N1-Cu-N4 angles are 79.36 (7), 79.51 (7)°, respectively, these parameters are similar to those reported for other bbp-containing complexes (Wang et al., 1994; Bernardinelli et al., 1990). Due to intermolecular hydrogen-bonding interactions, the crystal structure is extended to a three-dimensional network (Figure 2).

For potential applications of benzimidazole derivatives and their metal complexes, see: Khaled (2003); Hay et al. (1998); Petoud et al. (1997); Liu et al. (2005); Boinnard et al. (1990); Mo et al. (2009) Addison & Burke (1981). For examples of other bbp-containing complexes see: Wang et al. (1994); Bernardinelli et al. (1990).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. All H atoms have been omitted.
[Figure 2] Fig. 2. The packing diagram of the title compound.
{2-[6-(1H-Benzimidazol-2-yl-κN3)-2-pyridyl- κN]benzimidazolato-κN}(dicyanamido-κN)(methanol- κO)copper(II) top
Crystal data top
[Cu(C19H12N5)(C2N3)(CH4O)]Z = 2
Mr = 471.98F(000) = 482
Triclinic, P1Dx = 1.566 Mg m3
a = 6.8262 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.189 (2) ÅCell parameters from 4368 reflections
c = 12.609 (3) Åθ = 3.5–29.1°
α = 101.74 (3)°µ = 1.13 mm1
β = 99.03 (3)°T = 293 K
γ = 97.12 (3)°Block, green
V = 1001.2 (4) Å30.2 × 0.16 × 0.12 mm
Data collection top
Rigaku Saturn724
diffractometer
3591 independent reflections
Radiation source: fine-focus sealed tube3294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 87
Tmin = 0.806, Tmax = 0.874k = 1414
7787 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.7506P]
where P = (Fo2 + 2Fc2)/3
3591 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C19H12N5)(C2N3)(CH4O)]γ = 97.12 (3)°
Mr = 471.98V = 1001.2 (4) Å3
Triclinic, P1Z = 2
a = 6.8262 (14) ÅMo Kα radiation
b = 12.189 (2) ŵ = 1.13 mm1
c = 12.609 (3) ÅT = 293 K
α = 101.74 (3)°0.2 × 0.16 × 0.12 mm
β = 99.03 (3)°
Data collection top
Rigaku Saturn724
diffractometer
3591 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
3294 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.874Rint = 0.020
7787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
3591 reflectionsΔρmin = 0.28 e Å3
290 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40402 (4)0.04545 (2)0.20901 (2)0.01736 (10)
O10.1127 (2)0.03746 (13)0.27080 (12)0.0254 (4)
H10.02410.05460.22820.030*
N10.3511 (3)0.14654 (14)0.10718 (14)0.0168 (4)
N20.5225 (3)0.19964 (14)0.31068 (14)0.0196 (4)
N30.5742 (3)0.38708 (14)0.32891 (15)0.0225 (4)
H3A0.57190.45210.31250.027*
N40.2876 (3)0.06889 (14)0.06878 (14)0.0178 (4)
N50.1565 (3)0.09661 (14)0.11513 (14)0.0188 (4)
N60.5284 (3)0.05076 (15)0.29717 (15)0.0246 (4)
N70.7320 (3)0.19234 (16)0.34181 (17)0.0307 (5)
N80.6356 (4)0.39938 (18)0.2773 (2)0.0430 (6)
C10.2400 (3)0.18446 (17)0.02561 (17)0.0171 (4)
C20.2565 (3)0.27628 (17)0.07551 (19)0.0203 (5)
H2A0.30670.26520.15050.024*
C30.1956 (3)0.38377 (18)0.0091 (2)0.0247 (5)
H3B0.20480.44640.04010.030*
C40.1200 (3)0.40094 (19)0.1044 (2)0.0260 (5)
H4A0.08270.47470.14690.031*
C50.0996 (3)0.31132 (19)0.15430 (19)0.0238 (5)
H5B0.04780.32330.22920.029*
C60.1599 (3)0.20125 (17)0.08783 (17)0.0181 (4)
C70.2323 (3)0.02371 (17)0.01919 (17)0.0166 (4)
C80.2646 (3)0.10090 (17)0.00213 (17)0.0172 (4)
C90.2181 (3)0.17004 (18)0.07045 (18)0.0203 (5)
H9A0.15450.13890.14310.024*
C100.2695 (3)0.28666 (18)0.03130 (19)0.0225 (5)
H10A0.24090.33450.07850.027*
C110.3629 (3)0.33284 (18)0.07713 (19)0.0211 (5)
H11A0.39850.41100.10330.025*
C120.4016 (3)0.25952 (17)0.14528 (18)0.0185 (5)
C130.4982 (3)0.28491 (17)0.26130 (18)0.0186 (5)
C140.6564 (3)0.36794 (18)0.42919 (19)0.0240 (5)
C150.7569 (4)0.4417 (2)0.5265 (2)0.0351 (6)
H15A0.77860.52000.53370.042*
C160.8230 (4)0.3930 (2)0.6122 (2)0.0400 (7)
H16A0.89170.43980.67880.048*
C170.7900 (4)0.2751 (2)0.6023 (2)0.0343 (6)
H17A0.83740.24570.66210.041*
C180.6886 (4)0.2019 (2)0.50539 (19)0.0272 (5)
H18A0.66550.12380.49910.033*
C190.6224 (3)0.24939 (18)0.41759 (18)0.0209 (5)
C200.6166 (3)0.12164 (18)0.31518 (17)0.0205 (5)
C210.6717 (4)0.3023 (2)0.3061 (2)0.0273 (5)
C220.1031 (4)0.0833 (2)0.3824 (2)0.0383 (6)
H22A0.10130.16340.39310.057*
H22B0.21850.07050.42970.057*
H22C0.01690.04700.39990.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02205 (16)0.01322 (14)0.01587 (15)0.00307 (10)0.00051 (11)0.00332 (10)
O10.0220 (8)0.0372 (9)0.0165 (8)0.0072 (7)0.0009 (7)0.0057 (7)
N10.0174 (9)0.0157 (9)0.0182 (9)0.0033 (7)0.0042 (7)0.0049 (7)
N20.0220 (10)0.0169 (9)0.0190 (10)0.0037 (7)0.0017 (8)0.0033 (7)
N30.0276 (10)0.0132 (9)0.0256 (11)0.0029 (8)0.0044 (8)0.0026 (7)
N40.0181 (9)0.0161 (9)0.0180 (9)0.0017 (7)0.0021 (8)0.0031 (7)
N50.0165 (9)0.0222 (9)0.0171 (9)0.0033 (7)0.0029 (8)0.0029 (7)
N60.0330 (11)0.0158 (9)0.0234 (10)0.0036 (8)0.0005 (9)0.0055 (8)
N70.0317 (12)0.0227 (10)0.0371 (12)0.0092 (9)0.0029 (9)0.0101 (9)
N80.0559 (16)0.0243 (12)0.0550 (16)0.0137 (11)0.0164 (13)0.0145 (10)
C10.0143 (10)0.0155 (10)0.0203 (11)0.0013 (8)0.0048 (9)0.0007 (8)
C20.0178 (11)0.0203 (11)0.0225 (12)0.0026 (9)0.0031 (9)0.0045 (9)
C30.0220 (12)0.0171 (11)0.0344 (14)0.0023 (9)0.0060 (10)0.0047 (9)
C40.0228 (12)0.0175 (11)0.0318 (13)0.0002 (9)0.0029 (10)0.0037 (9)
C50.0195 (12)0.0258 (12)0.0214 (12)0.0005 (9)0.0028 (10)0.0027 (9)
C60.0145 (11)0.0201 (11)0.0194 (11)0.0019 (8)0.0057 (9)0.0026 (8)
C70.0142 (10)0.0195 (10)0.0166 (11)0.0039 (8)0.0030 (9)0.0044 (8)
C80.0133 (11)0.0200 (11)0.0186 (11)0.0021 (8)0.0048 (9)0.0040 (8)
C90.0188 (11)0.0266 (12)0.0176 (11)0.0048 (9)0.0047 (9)0.0080 (9)
C100.0218 (12)0.0249 (12)0.0272 (12)0.0087 (9)0.0083 (10)0.0145 (9)
C110.0211 (12)0.0170 (11)0.0281 (12)0.0063 (9)0.0074 (10)0.0079 (9)
C120.0170 (11)0.0172 (10)0.0222 (12)0.0041 (9)0.0061 (9)0.0040 (8)
C130.0203 (11)0.0143 (10)0.0217 (11)0.0032 (8)0.0066 (9)0.0029 (8)
C140.0231 (12)0.0228 (11)0.0241 (12)0.0029 (9)0.0052 (10)0.0006 (9)
C150.0378 (15)0.0275 (13)0.0315 (14)0.0026 (11)0.0034 (12)0.0057 (10)
C160.0400 (16)0.0421 (15)0.0256 (14)0.0023 (13)0.0029 (12)0.0080 (11)
C170.0317 (14)0.0474 (16)0.0207 (13)0.0069 (12)0.0010 (11)0.0051 (11)
C180.0277 (13)0.0302 (13)0.0228 (13)0.0058 (10)0.0022 (10)0.0053 (10)
C190.0188 (11)0.0222 (11)0.0195 (12)0.0026 (9)0.0028 (9)0.0009 (9)
C200.0255 (12)0.0174 (11)0.0157 (11)0.0016 (9)0.0006 (9)0.0023 (8)
C210.0322 (14)0.0256 (13)0.0295 (13)0.0108 (10)0.0080 (11)0.0128 (10)
C220.0356 (15)0.0572 (17)0.0196 (13)0.0053 (13)0.0073 (11)0.0028 (12)
Geometric parameters (Å, º) top
Cu1—N61.9528 (19)C3—H3B0.9300
Cu1—N11.9763 (18)C4—C51.378 (3)
Cu1—N41.9955 (19)C4—H4A0.9300
Cu1—N22.0364 (19)C5—C61.403 (3)
Cu1—O12.2452 (16)C5—H5B0.9300
O1—C221.420 (3)C7—C81.470 (3)
O1—H10.8200C8—C91.392 (3)
N1—C81.336 (3)C9—C101.387 (3)
N1—C121.344 (3)C9—H9A0.9300
N2—C131.330 (3)C10—C111.384 (3)
N2—C191.388 (3)C10—H10A0.9300
N3—C131.348 (3)C11—C121.381 (3)
N3—C141.378 (3)C11—H11A0.9300
N3—H3A0.8601C12—C131.461 (3)
N4—C71.358 (3)C14—C151.386 (3)
N4—C11.380 (3)C14—C191.408 (3)
N5—C71.331 (3)C15—C161.377 (4)
N5—C61.389 (3)C15—H15A0.9300
N6—C201.151 (3)C16—C171.404 (4)
N7—C201.296 (3)C16—H16A0.9300
N7—C211.315 (3)C17—C181.380 (3)
N8—C211.148 (3)C17—H17A0.9300
C1—C21.399 (3)C18—C191.390 (3)
C1—C61.412 (3)C18—H18A0.9300
C2—C31.378 (3)C22—H22A0.9600
C2—H2A0.9300C22—H22B0.9600
C3—C41.406 (3)C22—H22C0.9600
N6—Cu1—N1164.13 (8)N5—C7—C8127.12 (19)
N6—Cu1—N4100.45 (8)N4—C7—C8116.10 (18)
N1—Cu1—N479.51 (7)N1—C8—C9120.47 (19)
N6—Cu1—N298.73 (8)N1—C8—C7110.70 (18)
N1—Cu1—N279.36 (7)C9—C8—C7128.83 (19)
N4—Cu1—N2158.46 (7)C10—C9—C8118.1 (2)
N6—Cu1—O197.03 (7)C10—C9—H9A121.0
N1—Cu1—O198.82 (7)C8—C9—H9A121.0
N4—Cu1—O193.63 (7)C11—C10—C9120.9 (2)
N2—Cu1—O193.64 (7)C11—C10—H10A119.6
C22—O1—Cu1122.14 (14)C9—C10—H10A119.6
C22—O1—H1111.5C12—C11—C10118.1 (2)
Cu1—O1—H1111.4C12—C11—H11A121.0
C8—N1—C12121.54 (18)C10—C11—H11A121.0
C8—N1—Cu1119.15 (14)N1—C12—C11120.9 (2)
C12—N1—Cu1119.31 (14)N1—C12—C13109.69 (18)
C13—N2—C19105.85 (17)C11—C12—C13129.39 (19)
C13—N2—Cu1112.46 (14)N2—C13—N3112.53 (19)
C19—N2—Cu1141.69 (15)N2—C13—C12119.10 (18)
C13—N3—C14107.20 (18)N3—C13—C12128.36 (19)
C13—N3—H3A126.4N3—C14—C15131.6 (2)
C14—N3—H3A126.4N3—C14—C19106.14 (19)
C7—N4—C1103.53 (17)C15—C14—C19122.3 (2)
C7—N4—Cu1114.48 (13)C16—C15—C14116.4 (2)
C1—N4—Cu1141.98 (15)C16—C15—H15A121.8
C7—N5—C6102.69 (17)C14—C15—H15A121.8
C20—N6—Cu1156.97 (18)C15—C16—C17122.1 (2)
C20—N7—C21120.2 (2)C15—C16—H16A118.9
N4—C1—C2131.1 (2)C17—C16—H16A118.9
N4—C1—C6107.57 (18)C18—C17—C16121.3 (2)
C2—C1—C6121.29 (19)C18—C17—H17A119.4
C3—C2—C1117.4 (2)C16—C17—H17A119.4
C3—C2—H2A121.3C17—C18—C19117.5 (2)
C1—C2—H2A121.3C17—C18—H18A121.3
C2—C3—C4121.5 (2)C19—C18—H18A121.3
C2—C3—H3B119.2N2—C19—C18131.3 (2)
C4—C3—H3B119.2N2—C19—C14108.28 (19)
C5—C4—C3121.7 (2)C18—C19—C14120.5 (2)
C5—C4—H4A119.1N6—C20—N7173.5 (2)
C3—C4—H4A119.1N8—C21—N7174.3 (3)
C4—C5—C6117.5 (2)O1—C22—H22A109.5
C4—C5—H5B121.2O1—C22—H22B109.5
C6—C5—H5B121.2H22A—C22—H22B109.5
N5—C6—C5130.0 (2)O1—C22—H22C109.5
N5—C6—C1109.42 (18)H22A—C22—H22C109.5
C5—C6—C1120.6 (2)H22B—C22—H22C109.5
N5—C7—N4116.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N5i0.821.932.743 (3)172
N3—H3A···N8ii0.861.962.807 (3)166
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C19H12N5)(C2N3)(CH4O)]
Mr471.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8262 (14), 12.189 (2), 12.609 (3)
α, β, γ (°)101.74 (3), 99.03 (3), 97.12 (3)
V3)1001.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.2 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn724
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.806, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
7787, 3591, 3294
Rint0.020
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.02
No. of reflections3591
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.28

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N5i0.821.932.743 (3)172.0
N3—H3A···N8ii0.861.962.807 (3)166.3
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholars Fund (to CZ; 50925207), the Ministry of Science and Technology of China for the Inter­national Science Linkages Program (2009DFA50620), the Special Fund for Inter­national Collab­oration & Exchange of Jiangsu Province (BZ2008049) and the UJS who are gratefully acknowledged.

References

First citationAddison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem. 18, 803–805.  CrossRef CAS Google Scholar
First citationBernardinelli, G., Hopfgartner, G. & Williams, A. F. (1990). Acta Cryst. C46, 1642–1645.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoinnard, D., Cassoux, P., Petrouleas, V., Savariault, J. M. & Tuchagues, J. P. (1990). Inorg. Chem. 29, 4114–4122.  CSD CrossRef CAS Web of Science Google Scholar
First citationHay, R. W., Clifford, T. & Lightfoot, P. (1998). Polyhedron, 17, 3575–3581.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhaled, K. F. (2003). Electrochim. Acta, 48, 2493–2503.  Web of Science CrossRef CAS Google Scholar
First citationLiu, S. G., Zuo, J. L., Wang, Y., Li, Y. Z. & You, X. Z. (2005). J. Phys. Chem. Solids, 66, 735–740.  Web of Science CSD CrossRef CAS Google Scholar
First citationMo, H. J., Zhong, Y. R., Cao, M. L., Ou, Y. C. & Ye, B. H. (2009). Cryst. Growth. Des. 9, 488–496.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetoud, S., Bünzli, J. C. G., Schenk, K. J. & Piguet, C. (1997). Inorg. Chem. 36, 1345–1353.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. X., Yu, S. Y., Luo, Q. H., Wang, Q. Y., Shi, J. Q. & Wu, Q. J. (1994). Transition Met. Chem. 19, 205–208.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds