organic compounds
2-Amino-4-methylpyridinium 6-carboxypyridine-2-carboxylate methanol monosolvate
aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com
In the title solvated molecular salt, C6H9N2+·C7H4NO4−·CH4O, the pyridine N atom of 2-amino-4-methylpyridine is protonated and one carboxyl group of pyridine-2,6-dicarboxylic acid is deprotonated. The dihedral angles between the –CO2 and –COH groups and the pyridine ring are 0.65 (13) and 7.4°. The crystal packing is stabilized by intermolecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds.
Related literature
For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aakeröy et al. (1998); Aghabozorg et al. (2006); Al-Allaf et al. (2003); Fu et al. (2005); Linden et al. (2003); Moghimi et al. (2004); Sheshmani et al. (2006); Thanigaimani et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810050245/bt5416sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810050245/bt5416Isup2.hkl
The reaction between a solution of 2,6-pydcH2 (0.1671 mg, 1 mmol) in 10 ml water and 2a4mp (0.2163 mg, 2 mmol) in 10 ml methanol in 1:2 molar ratios gave block colorless crystals of the title compound after slow evaporation of the solvent at room temperature (m.p: 267).
The hydrogen atoms bonded to N and O were found in a difference Fourier map and refined isotropically. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.
Continuing the path to synthesize proton transfer compounds, our group have been focused on forming ion pairs between 2,6-pydcH2 and various organic bases (Aghabozorg et al., 2008). Due to its flat and symmetric structure and two proton donor sites, 2,6-pydcH2 has a potential of constructing supramolecular networks. Proton transfer compounds of 2,6-pydcH2 with nitrogen donor molecules such as 2-chloro-benzylamine (Aakeröy et al.,1998), piperazine (Aghabozorg et al., 2006 & Sheshmani et al., 2006), phenanthroline (Fu et al., 2005), creatinine (Moghimi et al., 2004) and 2-amino-4,6-dimethoxypyrimidine (Thanigaimani et al., 2007) have been synthesized and characterized by single-crystal X-ray diffraction method. In addition, the formation of monoprotonated 2-amino-4-methylpyridine (2a4mpH) has been reported in several proton transfer systems (Al-Allaf et al., 2003; Linden et al. 2003).
The title compound, (2a4mpH)(2,6-pydcH).CH3OH, consist of one mono deprotonated 2,6-pydcH2 unit, one mono protonated 2a4mp, and one methanol molecule. The
of the title compound is shown in Fig. 1. The title compound, was formed from the reaction between 2,6-pydcH2 as a proton donor and 2a4mp as a proton acceptor. There are several N—H···O, O—H···O and weak C—H···O hydrogen bonds, in of the title compound (Table 1 & Fig. 2). The shows that one of the protons of carboxylic groups has been transferred to Npyridine of 2a4mp. Indeed, the structure formed self-assembled supramolecular network through noncovalent interactions.For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aakeröy et al. (1998); Aghabozorg et al. (2006); Al-Allaf et al. (2003); Fu et al. (2005); Linden et al. (2003); Moghimi et al. (2004); Sheshmani et al. (2006); Thanigaimani et al. (2007).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. | |
Fig. 2. The packing diagram of the title compound. The intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds are shown as blue dashed lines. |
C6H9N2+·C7H4NO4−·CH4O | Z = 2 |
Mr = 307.31 | F(000) = 324.0 |
Triclinic, P1 | Dx = 1.361 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2191 (14) Å | Cell parameters from 4005 reflections |
b = 9.5095 (19) Å | θ = 2.2–29.2° |
c = 11.139 (2) Å | µ = 0.11 mm−1 |
α = 94.44 (3)° | T = 298 K |
β = 99.76 (3)° | Block, colorless |
γ = 92.50 (3)° | 0.4 × 0.25 × 0.2 mm |
V = 750.1 (3) Å3 |
Stoe IPDS II diffractometer | 2697 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.058 |
Graphite monochromator | θmax = 29.2°, θmin = 2.2° |
Detector resolution: 0.15 mm pixels mm-1 | h = −9→9 |
rotation method scans | k = −12→13 |
8658 measured reflections | l = −15→15 |
4005 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.216 | w = 1/[σ2(Fo2) + (0.0939P)2 + 0.144P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
4005 reflections | Δρmax = 0.44 e Å−3 |
222 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.07 (2) |
C6H9N2+·C7H4NO4−·CH4O | γ = 92.50 (3)° |
Mr = 307.31 | V = 750.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2191 (14) Å | Mo Kα radiation |
b = 9.5095 (19) Å | µ = 0.11 mm−1 |
c = 11.139 (2) Å | T = 298 K |
α = 94.44 (3)° | 0.4 × 0.25 × 0.2 mm |
β = 99.76 (3)° |
Stoe IPDS II diffractometer | 2697 reflections with I > 2σ(I) |
8658 measured reflections | Rint = 0.058 |
4005 independent reflections |
R[F2 > 2σ(F2)] = 0.079 | 0 restraints |
wR(F2) = 0.216 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | Δρmax = 0.44 e Å−3 |
4005 reflections | Δρmin = −0.26 e Å−3 |
222 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0312 (3) | −0.1514 (2) | 0.73074 (19) | 0.0679 (6) | |
O2 | 0.2937 (3) | −0.1669 (2) | 0.8602 (2) | 0.0686 (6) | |
O3 | −0.3748 (2) | 0.20309 (19) | 0.76854 (17) | 0.0544 (5) | |
O4 | −0.2965 (3) | 0.3911 (2) | 0.9022 (2) | 0.0730 (7) | |
O5 | 0.7131 (3) | 0.9637 (2) | 0.6320 (2) | 0.0685 (6) | |
N1 | −0.0374 (3) | 0.09454 (18) | 0.84467 (16) | 0.0381 (4) | |
N2 | 0.2829 (3) | 0.3098 (2) | 0.70000 (18) | 0.0424 (5) | |
N3 | 0.3671 (4) | 0.5125 (3) | 0.8268 (3) | 0.0689 (8) | |
C2 | 0.1276 (3) | 0.0410 (2) | 0.8845 (2) | 0.0415 (5) | |
C3 | 0.2618 (4) | 0.1087 (3) | 0.9759 (3) | 0.0567 (7) | |
H3 | 0.3748 | 0.0678 | 1.0017 | 0.068* | |
C4 | 0.2249 (4) | 0.2381 (3) | 1.0281 (3) | 0.0587 (7) | |
H4 | 0.3135 | 0.2872 | 1.0890 | 0.070* | |
C5 | 0.0548 (4) | 0.2936 (2) | 0.9886 (2) | 0.0501 (6) | |
H5 | 0.0264 | 0.3806 | 1.0229 | 0.060* | |
C6 | −0.0741 (3) | 0.2185 (2) | 0.8971 (2) | 0.0386 (5) | |
C1 | 0.1592 (4) | −0.1007 (3) | 0.8243 (2) | 0.0495 (6) | |
C7 | −0.2648 (3) | 0.2756 (2) | 0.8524 (2) | 0.0455 (5) | |
C8 | 0.2394 (3) | 0.4369 (2) | 0.7460 (2) | 0.0447 (5) | |
C9 | 0.0583 (3) | 0.4838 (3) | 0.7033 (2) | 0.0509 (6) | |
H9 | 0.0248 | 0.5712 | 0.7337 | 0.061* | |
C10 | −0.0679 (3) | 0.4020 (3) | 0.6179 (2) | 0.0478 (6) | |
C11 | −0.0140 (4) | 0.2706 (3) | 0.5725 (2) | 0.0545 (6) | |
H11 | −0.0972 | 0.2136 | 0.5138 | 0.065* | |
C12 | 0.1599 (4) | 0.2277 (3) | 0.6147 (2) | 0.0515 (6) | |
H12 | 0.1953 | 0.1408 | 0.5848 | 0.062* | |
C13 | −0.2608 (4) | 0.4518 (4) | 0.5746 (3) | 0.0691 (8) | |
H13A | −0.3498 | 0.4075 | 0.6168 | 0.104* | |
H13B | −0.2964 | 0.4272 | 0.4882 | 0.104* | |
H13C | −0.2592 | 0.5525 | 0.5910 | 0.104* | |
C14 | 0.5526 (5) | 0.8734 (4) | 0.6264 (4) | 0.0877 (11) | |
H14A | 0.5833 | 0.7775 | 0.6097 | 0.132* | |
H14B | 0.4556 | 0.8979 | 0.5625 | 0.132* | |
H14C | 0.5088 | 0.8831 | 0.7032 | 0.132* | |
H5A | 0.700 (6) | 1.030 (5) | 0.676 (4) | 0.097 (14)* | |
H2 | 0.392 (5) | 0.282 (3) | 0.727 (3) | 0.058 (8)* | |
H1 | −0.058 (6) | −0.094 (4) | 0.713 (4) | 0.095 (12)* | |
H3A | 0.338 (5) | 0.595 (4) | 0.855 (3) | 0.084 (11)* | |
H3B | 0.465 (5) | 0.479 (4) | 0.861 (3) | 0.068 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0737 (14) | 0.0578 (11) | 0.0673 (13) | 0.0256 (10) | 0.0023 (10) | −0.0158 (9) |
O2 | 0.0602 (12) | 0.0590 (11) | 0.0874 (14) | 0.0301 (9) | 0.0100 (10) | 0.0034 (10) |
O3 | 0.0426 (9) | 0.0509 (9) | 0.0627 (11) | 0.0152 (7) | −0.0078 (8) | −0.0096 (8) |
O4 | 0.0609 (12) | 0.0584 (11) | 0.0882 (15) | 0.0281 (9) | −0.0126 (10) | −0.0246 (10) |
O5 | 0.0592 (12) | 0.0678 (13) | 0.0696 (13) | 0.0078 (10) | −0.0027 (10) | −0.0227 (10) |
N1 | 0.0377 (9) | 0.0360 (9) | 0.0402 (9) | 0.0065 (7) | 0.0046 (7) | 0.0020 (7) |
N2 | 0.0400 (10) | 0.0427 (10) | 0.0432 (10) | 0.0103 (8) | 0.0031 (8) | 0.0000 (8) |
N3 | 0.0466 (13) | 0.0550 (13) | 0.0925 (19) | 0.0163 (11) | −0.0104 (12) | −0.0305 (13) |
C2 | 0.0390 (11) | 0.0390 (10) | 0.0482 (12) | 0.0102 (8) | 0.0089 (9) | 0.0069 (9) |
C3 | 0.0380 (12) | 0.0537 (14) | 0.0738 (17) | 0.0107 (10) | −0.0055 (11) | 0.0060 (12) |
C4 | 0.0488 (14) | 0.0515 (14) | 0.0654 (16) | −0.0006 (11) | −0.0137 (12) | −0.0053 (12) |
C5 | 0.0527 (14) | 0.0368 (11) | 0.0546 (14) | 0.0052 (10) | −0.0049 (11) | −0.0040 (10) |
C6 | 0.0381 (11) | 0.0355 (10) | 0.0408 (11) | 0.0061 (8) | 0.0020 (8) | 0.0031 (8) |
C1 | 0.0512 (14) | 0.0451 (12) | 0.0546 (14) | 0.0161 (10) | 0.0137 (11) | 0.0014 (10) |
C7 | 0.0418 (12) | 0.0420 (11) | 0.0506 (13) | 0.0132 (9) | 0.0021 (9) | −0.0014 (9) |
C8 | 0.0387 (11) | 0.0413 (11) | 0.0526 (13) | 0.0072 (9) | 0.0058 (9) | −0.0029 (9) |
C9 | 0.0421 (12) | 0.0462 (12) | 0.0648 (15) | 0.0127 (10) | 0.0091 (11) | 0.0011 (11) |
C10 | 0.0370 (11) | 0.0550 (13) | 0.0519 (13) | 0.0036 (10) | 0.0043 (10) | 0.0136 (10) |
C11 | 0.0503 (14) | 0.0585 (15) | 0.0491 (14) | −0.0037 (11) | −0.0016 (11) | −0.0042 (11) |
C12 | 0.0538 (14) | 0.0449 (12) | 0.0530 (14) | 0.0051 (10) | 0.0067 (11) | −0.0077 (10) |
C13 | 0.0419 (14) | 0.081 (2) | 0.083 (2) | 0.0088 (13) | −0.0001 (13) | 0.0215 (16) |
C14 | 0.078 (2) | 0.076 (2) | 0.106 (3) | −0.0007 (18) | 0.012 (2) | 0.003 (2) |
O1—C1 | 1.315 (3) | C4—C5 | 1.375 (4) |
O1—H1 | 0.87 (4) | C4—H4 | 0.9300 |
O2—C1 | 1.208 (3) | C5—C6 | 1.386 (3) |
O3—C7 | 1.257 (3) | C5—H5 | 0.9300 |
O4—C7 | 1.240 (3) | C6—C7 | 1.520 (3) |
O5—C14 | 1.401 (4) | C8—C9 | 1.417 (3) |
O5—H5A | 0.78 (5) | C9—C10 | 1.367 (4) |
N1—C6 | 1.332 (3) | C9—H9 | 0.9300 |
N1—C2 | 1.335 (3) | C10—C11 | 1.407 (4) |
N2—C8 | 1.347 (3) | C10—C13 | 1.504 (4) |
N2—C12 | 1.356 (3) | C11—C12 | 1.356 (4) |
N2—H2 | 0.85 (3) | C11—H11 | 0.9300 |
N3—C8 | 1.318 (3) | C12—H12 | 0.9300 |
N3—H3A | 0.87 (4) | C13—H13A | 0.9600 |
N3—H3B | 0.83 (4) | C13—H13B | 0.9600 |
C2—C3 | 1.378 (4) | C13—H13C | 0.9600 |
C2—C1 | 1.503 (3) | C14—H14A | 0.9600 |
C3—C4 | 1.376 (4) | C14—H14B | 0.9600 |
C3—H3 | 0.9300 | C14—H14C | 0.9600 |
C1—O1—H1 | 112 (3) | O3—C7—C6 | 117.74 (19) |
C14—O5—H5A | 106 (3) | N3—C8—N2 | 118.9 (2) |
C6—N1—C2 | 118.17 (19) | N3—C8—C9 | 123.1 (2) |
C8—N2—C12 | 122.1 (2) | N2—C8—C9 | 118.0 (2) |
C8—N2—H2 | 118 (2) | C10—C9—C8 | 120.7 (2) |
C12—N2—H2 | 120 (2) | C10—C9—H9 | 119.6 |
C8—N3—H3A | 118 (2) | C8—C9—H9 | 119.6 |
C8—N3—H3B | 123 (2) | C9—C10—C11 | 118.7 (2) |
H3A—N3—H3B | 118 (3) | C9—C10—C13 | 120.3 (3) |
N1—C2—C3 | 123.2 (2) | C11—C10—C13 | 121.0 (3) |
N1—C2—C1 | 115.8 (2) | C12—C11—C10 | 119.6 (2) |
C3—C2—C1 | 121.0 (2) | C12—C11—H11 | 120.2 |
C4—C3—C2 | 118.5 (2) | C10—C11—H11 | 120.2 |
C4—C3—H3 | 120.8 | C11—C12—N2 | 120.9 (2) |
C2—C3—H3 | 120.8 | C11—C12—H12 | 119.5 |
C5—C4—C3 | 118.9 (2) | N2—C12—H12 | 119.5 |
C5—C4—H4 | 120.6 | C10—C13—H13A | 109.5 |
C3—C4—H4 | 120.6 | C10—C13—H13B | 109.5 |
C4—C5—C6 | 119.3 (2) | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 120.3 | C10—C13—H13C | 109.5 |
C6—C5—H5 | 120.3 | H13A—C13—H13C | 109.5 |
N1—C6—C5 | 122.0 (2) | H13B—C13—H13C | 109.5 |
N1—C6—C7 | 117.22 (19) | O5—C14—H14A | 109.5 |
C5—C6—C7 | 120.77 (19) | O5—C14—H14B | 109.5 |
O2—C1—O1 | 121.0 (2) | H14A—C14—H14B | 109.5 |
O2—C1—C2 | 122.2 (2) | O5—C14—H14C | 109.5 |
O1—C1—C2 | 116.8 (2) | H14A—C14—H14C | 109.5 |
O4—C7—O3 | 125.9 (2) | H14B—C14—H14C | 109.5 |
O4—C7—C6 | 116.3 (2) | ||
C6—N1—C2—C3 | −0.8 (3) | N1—C6—C7—O4 | −180.0 (2) |
C6—N1—C2—C1 | 178.48 (19) | C5—C6—C7—O4 | 0.1 (4) |
N1—C2—C3—C4 | −0.5 (4) | N1—C6—C7—O3 | −0.6 (3) |
C1—C2—C3—C4 | −179.8 (2) | C5—C6—C7—O3 | 179.4 (2) |
C2—C3—C4—C5 | 1.1 (4) | C12—N2—C8—N3 | −178.6 (3) |
C3—C4—C5—C6 | −0.4 (4) | C12—N2—C8—C9 | 0.4 (4) |
C2—N1—C6—C5 | 1.5 (3) | N3—C8—C9—C10 | 178.9 (3) |
C2—N1—C6—C7 | −178.5 (2) | N2—C8—C9—C10 | 0.0 (4) |
C4—C5—C6—N1 | −0.9 (4) | C8—C9—C10—C11 | −0.5 (4) |
C4—C5—C6—C7 | 179.1 (2) | C8—C9—C10—C13 | 179.1 (2) |
N1—C2—C1—O2 | −172.4 (2) | C9—C10—C11—C12 | 0.5 (4) |
C3—C2—C1—O2 | 6.9 (4) | C13—C10—C11—C12 | −179.0 (3) |
N1—C2—C1—O1 | 6.6 (3) | C10—C11—C12—N2 | −0.1 (4) |
C3—C2—C1—O1 | −174.1 (2) | C8—N2—C12—C11 | −0.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14C···O2i | 0.96 | 2.59 | 3.488 (5) | 157 |
O5—H5A···O3ii | 0.78 (5) | 2.02 (5) | 2.796 (3) | 170 (4) |
N3—H3B···O4iii | 0.83 (4) | 1.95 (4) | 2.764 (3) | 166 (3) |
N3—H3A···O2i | 0.87 (4) | 2.30 (4) | 3.122 (3) | 158 (3) |
N2—H2···O3iii | 0.85 (3) | 1.87 (3) | 2.723 (3) | 173 (3) |
O1—H1···O5iv | 0.87 (4) | 1.87 (4) | 2.689 (3) | 156 (4) |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C7H4NO4−·CH4O |
Mr | 307.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.2191 (14), 9.5095 (19), 11.139 (2) |
α, β, γ (°) | 94.44 (3), 99.76 (3), 92.50 (3) |
V (Å3) | 750.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.4 × 0.25 × 0.2 |
Data collection | |
Diffractometer | Stoe IPDS II |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8658, 4005, 2697 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.079, 0.216, 1.17 |
No. of reflections | 4005 |
No. of parameters | 222 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.26 |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14C···O2i | 0.96 | 2.59 | 3.488 (5) | 156.8 |
O5—H5A···O3ii | 0.78 (5) | 2.02 (5) | 2.796 (3) | 170 (4) |
N3—H3B···O4iii | 0.83 (4) | 1.95 (4) | 2.764 (3) | 166 (3) |
N3—H3A···O2i | 0.87 (4) | 2.30 (4) | 3.122 (3) | 158 (3) |
N2—H2···O3iii | 0.85 (3) | 1.87 (3) | 2.723 (3) | 173 (3) |
O1—H1···O5iv | 0.87 (4) | 1.87 (4) | 2.689 (3) | 156 (4) |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x−1, y−1, z. |
Acknowledgements
We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.
References
Aakeröy, C. B., Hughes, D. P., McCabe, J. M. & Nieuwenhuyzen, M. (1998). Supramol. Chem. 9, 127–135. Google Scholar
Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. 22, x253–x254. CAS Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Al-Allaf, T. A. K., Rashan, L. J., Stelzner, A. & Powell, D. R. (2003). Appl. Organomet. Chem. 17, 891–897. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fu, A.-Y., Wang, D.-Q. & Zhang, C.-L. (2005). Acta Cryst. E61, o3119–o3121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Linden, A., Petridis, A. & James, B. D. (2003). Helv. Chim. Acta, 86, 711–725. Web of Science CSD CrossRef CAS Google Scholar
Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, o3620–o3622. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295–o300. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Continuing the path to synthesize proton transfer compounds, our group have been focused on forming ion pairs between 2,6-pydcH2 and various organic bases (Aghabozorg et al., 2008). Due to its flat and symmetric structure and two proton donor sites, 2,6-pydcH2 has a potential of constructing supramolecular networks. Proton transfer compounds of 2,6-pydcH2 with nitrogen donor molecules such as 2-chloro-benzylamine (Aakeröy et al.,1998), piperazine (Aghabozorg et al., 2006 & Sheshmani et al., 2006), phenanthroline (Fu et al., 2005), creatinine (Moghimi et al., 2004) and 2-amino-4,6-dimethoxypyrimidine (Thanigaimani et al., 2007) have been synthesized and characterized by single-crystal X-ray diffraction method. In addition, the formation of monoprotonated 2-amino-4-methylpyridine (2a4mpH) has been reported in several proton transfer systems (Al-Allaf et al., 2003; Linden et al. 2003).
The title compound, (2a4mpH)(2,6-pydcH).CH3OH, consist of one mono deprotonated 2,6-pydcH2 unit, one mono protonated 2a4mp, and one methanol molecule. The asymmetric unit of the title compound is shown in Fig. 1. The title compound, was formed from the reaction between 2,6-pydcH2 as a proton donor and 2a4mp as a proton acceptor. There are several N—H···O, O—H···O and weak C—H···O hydrogen bonds, in crystal structure of the title compound (Table 1 & Fig. 2). The crystal structure shows that one of the protons of carboxylic groups has been transferred to Npyridine of 2a4mp. Indeed, the structure formed self-assembled supramolecular network through noncovalent interactions.