metal-organic compounds
Tetraethylammonium dibromidotricarbonyl(o-toluidine)rhenate(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com
In the title compound, (C8H20N)[ReBr2(C7H9N)(CO)3], the ReI atom is octahedrally surrounded by three carbonyl ligands orientated in a facial arrangement, two bromide ligands and an o-toluidine ligand. The amine lies trans to the carbonyl ligand and is substitutionally disordered over two positions in a 0.66 (1):0.34 (1) ratio. An array of C—H⋯O, C—H⋯Br and N—H⋯Br hydrogen-bonding interactions between the cations and the surrounding rhenate anions stabilize the crystal structure.
Related literature
For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996); Brink et al. (2009). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006); Schutte et al. (2008, 2009, 2010); Wei et al. (2003); Schibli et al. (2000). For kinetic studies of related Re compounds, see: Smith et al. (1996); Abou-Hamdan et al. (1998). For related dibromido structures, see: Alberto et al. (1999); Abram et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810050038/bt5421sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810050038/bt5421Isup2.hkl
[NEt4]2[Re(CO)3Br3] (0.13 mmol) (synthesized according to Alberto et al. (1996)) was dissolved in 6 ml methanol. The ligand 2-(o-tolyliminomethyl)phenol (0.14 mmol) (for related synthesis see Brink et al., 2009), containing 10% o-toluidine as byproduct, was dissolved in 6 ml MeOH and slowly added. The reaction mixture was stirred for 2 h at room temperature. Crystals of the title complex whereby the Re bonded preferentially to the amine were obtained by the slow evaporation of the solvent at 4°C.
The aromatic and aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5eq(Cmethyl). The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak in the final difference map are located 0.81Å from Re1. The minor occupied atoms were refined isotropically.
The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of fac-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006, Schutte et al., 2009, 2008, 2010, Wei et al., 2003, Schibli et al., 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto et al., 1999, Abram et al., 1998).
The title complex crystallized as a distorted octahedral anionic ReI compound with one tetraethylammonium counter ion in the
(Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and trans to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram et al., 1998).The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram et al., 1998, Schutte et al., 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.
For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996); Brink et al. (2009). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006); Schutte et al. (2008, 2009, 2010); Wei et al. (2003); Schibli et al. (2000). For related rhenium kinetic studies, see: Smith et al. (1996); Abou-Hamdan et al. (1998). For related dibromido structures, see: Alberto et al. (1999); Abram et al. (1998).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity. | |
Fig. 2. Representation of the hydrogen-bonding interactions (only one complete molecular structure (symm. op.: x, y, z) is shown). |
(C8H20N)[ReBr2(C7H9N)(CO)3] | F(000) = 1280 |
Mr = 667.45 | Dx = 1.981 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9885 reflections |
a = 10.776 (2) Å | θ = 3.2–28.3° |
b = 18.466 (4) Å | µ = 9.02 mm−1 |
c = 11.745 (2) Å | T = 100 K |
β = 106.74 (3)° | Plate, yellow |
V = 2238.2 (8) Å3 | 0.42 × 0.32 × 0.08 mm |
Z = 4 |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5371 independent reflections |
Radiation source: sealed tube | 4411 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 512 pixels mm-1 | θmax = 28°, θmin = 3.2° |
ω and φ scans | h = −14→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −24→24 |
Tmin = 0.116, Tmax = 0.532 | l = −15→15 |
45095 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0446P)2 + 2.6175P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 2.5 e Å−3 |
5371 reflections | Δρmin = −2.99 e Å−3 |
270 parameters |
(C8H20N)[ReBr2(C7H9N)(CO)3] | V = 2238.2 (8) Å3 |
Mr = 667.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.776 (2) Å | µ = 9.02 mm−1 |
b = 18.466 (4) Å | T = 100 K |
c = 11.745 (2) Å | 0.42 × 0.32 × 0.08 mm |
β = 106.74 (3)° |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5371 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 4411 reflections with I > 2σ(I) |
Tmin = 0.116, Tmax = 0.532 | Rint = 0.072 |
45095 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | Δρmax = 2.5 e Å−3 |
5371 reflections | Δρmin = −2.99 e Å−3 |
270 parameters |
Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1977 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.4% completeness accomplished |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Re1 | 0.735442 (18) | 0.985810 (11) | 0.808028 (15) | 0.01480 (7) | |
Br1 | 0.81038 (5) | 0.89501 (3) | 0.98836 (4) | 0.01871 (12) | |
Br2 | 0.95834 (5) | 0.96560 (3) | 0.76184 (4) | 0.01895 (12) | |
N1 | 0.8495 (4) | 1.0651 (2) | 0.9422 (3) | 0.0174 (9) | |
H1A | 0.8563 | 1.0468 | 1.0166 | 0.021* | 0.659 (10) |
H1B | 0.932 | 1.0671 | 0.9343 | 0.021* | 0.659 (10) |
H1C | 0.888 | 1.0409 | 1.0119 | 0.021* | 0.341 (10) |
H1D | 0.9145 | 1.0842 | 0.9148 | 0.021* | 0.341 (10) |
N2 | 0.8171 (4) | 0.8488 (2) | 0.3722 (3) | 0.0165 (8) | |
O01 | 0.6021 (4) | 0.8662 (2) | 0.6363 (3) | 0.0324 (10) | |
O02 | 0.6462 (4) | 1.0930 (2) | 0.6027 (3) | 0.0294 (9) | |
O03 | 0.4809 (4) | 1.0153 (2) | 0.8640 (4) | 0.0363 (11) | |
C01 | 0.6523 (5) | 0.9121 (3) | 0.7010 (4) | 0.0208 (11) | |
C02 | 0.6823 (5) | 1.0544 (3) | 0.6816 (4) | 0.0211 (11) | |
C03 | 0.5790 (5) | 1.0036 (3) | 0.8445 (5) | 0.0227 (11) | |
C11 | 0.8014 (8) | 1.1388 (5) | 0.9379 (8) | 0.0200 (19) | 0.659 (10) |
C12 | 0.7270 (8) | 1.1603 (5) | 1.0104 (7) | 0.022 (2) | 0.659 (10) |
C13 | 0.6778 (8) | 1.2305 (5) | 0.9964 (9) | 0.025 (2) | 0.659 (10) |
H13 | 0.627 | 1.2465 | 1.0456 | 0.03* | 0.659 (10) |
C14 | 0.7005 (8) | 1.2773 (6) | 0.9139 (8) | 0.025 (2) | 0.659 (10) |
H14 | 0.6648 | 1.3247 | 0.9058 | 0.03* | 0.659 (10) |
C15 | 0.7754 (8) | 1.2551 (5) | 0.8425 (7) | 0.025 (2) | 0.659 (10) |
H15 | 0.7924 | 1.2871 | 0.7854 | 0.03* | 0.659 (10) |
C16 | 0.8250 (9) | 1.1859 (6) | 0.8557 (8) | 0.023 (2) | 0.659 (10) |
H16 | 0.8766 | 1.1703 | 0.807 | 0.027* | 0.659 (10) |
C121 | 0.7031 (9) | 1.1098 (5) | 1.1036 (9) | 0.032 (2) | 0.659 (10) |
H12A | 0.638 | 1.1311 | 1.1371 | 0.048* | 0.659 (10) |
H12B | 0.7841 | 1.1025 | 1.167 | 0.048* | 0.659 (10) |
H12C | 0.6717 | 1.0631 | 1.0669 | 0.048* | 0.659 (10) |
C25 | 0.6163 (16) | 1.1668 (10) | 1.0700 (14) | 0.029 (4)* | 0.341 (10) |
H25 | 0.5649 | 1.1593 | 1.1224 | 0.035* | 0.341 (10) |
C22 | 0.7679 (15) | 1.1900 (9) | 0.9138 (13) | 0.021 (4)* | 0.341 (10) |
C24 | 0.615 (2) | 1.2320 (11) | 1.0160 (16) | 0.032 (4)* | 0.341 (10) |
H24 | 0.5629 | 1.2698 | 1.0328 | 0.039* | 0.341 (10) |
C23 | 0.6844 (18) | 1.2448 (12) | 0.9392 (19) | 0.020 (4)* | 0.341 (10) |
H23 | 0.6782 | 1.2906 | 0.9013 | 0.025* | 0.341 (10) |
C21 | 0.7704 (18) | 1.1241 (11) | 0.9674 (16) | 0.020 (5)* | 0.341 (10) |
C26 | 0.6933 (16) | 1.1111 (10) | 1.0483 (16) | 0.019 (4)* | 0.341 (10) |
H26 | 0.6955 | 1.0653 | 1.0859 | 0.023* | 0.341 (10) |
C221 | 0.8433 (19) | 1.2027 (11) | 0.8293 (17) | 0.018 (5)* | 0.341 (10) |
H22A | 0.8303 | 1.2526 | 0.8002 | 0.027* | 0.341 (10) |
H22B | 0.8145 | 1.1692 | 0.7622 | 0.027* | 0.341 (10) |
H22C | 0.9355 | 1.1947 | 0.8694 | 0.027* | 0.341 (10) |
C31 | 0.8711 (5) | 0.8176 (3) | 0.2768 (4) | 0.0240 (11) | |
H31A | 0.8 | 0.8148 | 0.2015 | 0.029* | |
H31B | 0.937 | 0.8514 | 0.2639 | 0.029* | |
C32 | 0.9320 (6) | 0.7433 (3) | 0.3040 (5) | 0.0321 (14) | |
H32A | 0.9594 | 0.7263 | 0.2359 | 0.048* | |
H32B | 0.8686 | 0.7095 | 0.3192 | 0.048* | |
H32C | 1.0075 | 0.7462 | 0.3743 | 0.048* | |
C33 | 0.9209 (5) | 0.8507 (3) | 0.4913 (4) | 0.0215 (11) | |
H33A | 0.8832 | 0.8725 | 0.5508 | 0.026* | |
H33B | 0.9455 | 0.8003 | 0.5165 | 0.026* | |
C34 | 1.0420 (5) | 0.8920 (4) | 0.4925 (5) | 0.0336 (14) | |
H34A | 1.0957 | 0.8983 | 0.5748 | 0.05* | |
H34B | 1.0181 | 0.9396 | 0.4558 | 0.05* | |
H34C | 1.0907 | 0.865 | 0.4478 | 0.05* | |
C35 | 0.7702 (5) | 0.9248 (3) | 0.3309 (4) | 0.0217 (11) | |
H35A | 0.8448 | 0.9532 | 0.3222 | 0.026* | |
H35B | 0.7065 | 0.9212 | 0.2513 | 0.026* | |
C36 | 0.7084 (6) | 0.9660 (3) | 0.4118 (5) | 0.0281 (12) | |
H36A | 0.6865 | 1.0151 | 0.3807 | 0.042* | |
H36B | 0.7693 | 0.9687 | 0.4918 | 0.042* | |
H36C | 0.6294 | 0.941 | 0.4153 | 0.042* | |
C37 | 0.7062 (5) | 0.8034 (3) | 0.3888 (5) | 0.0249 (12) | |
H37A | 0.7392 | 0.7541 | 0.4133 | 0.03* | |
H37B | 0.6777 | 0.8244 | 0.4546 | 0.03* | |
C38 | 0.5894 (6) | 0.7972 (3) | 0.2804 (6) | 0.0370 (15) | |
H38A | 0.5259 | 0.7642 | 0.2977 | 0.056* | |
H38B | 0.6167 | 0.7782 | 0.2134 | 0.056* | |
H38C | 0.5502 | 0.8451 | 0.2599 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.01788 (12) | 0.01279 (12) | 0.01337 (10) | −0.00031 (8) | 0.00393 (8) | 0.00151 (7) |
Br1 | 0.0253 (3) | 0.0146 (2) | 0.0156 (2) | −0.0011 (2) | 0.00488 (19) | 0.00306 (17) |
Br2 | 0.0216 (3) | 0.0210 (3) | 0.0157 (2) | −0.0011 (2) | 0.00766 (19) | −0.00174 (18) |
N1 | 0.023 (2) | 0.012 (2) | 0.0162 (19) | −0.0010 (17) | 0.0056 (16) | 0.0001 (15) |
N2 | 0.021 (2) | 0.015 (2) | 0.0133 (18) | 0.0006 (17) | 0.0048 (16) | 0.0014 (15) |
O01 | 0.041 (2) | 0.025 (2) | 0.026 (2) | −0.0135 (19) | 0.0027 (17) | −0.0051 (17) |
O02 | 0.044 (2) | 0.020 (2) | 0.0220 (19) | 0.0010 (18) | 0.0058 (17) | 0.0058 (16) |
O03 | 0.025 (2) | 0.055 (3) | 0.033 (2) | 0.008 (2) | 0.0136 (18) | 0.014 (2) |
C01 | 0.023 (3) | 0.018 (3) | 0.020 (2) | −0.004 (2) | 0.005 (2) | 0.008 (2) |
C02 | 0.025 (3) | 0.020 (3) | 0.019 (2) | −0.001 (2) | 0.008 (2) | −0.001 (2) |
C03 | 0.024 (3) | 0.022 (3) | 0.021 (3) | 0.000 (2) | 0.006 (2) | 0.007 (2) |
C11 | 0.012 (4) | 0.027 (5) | 0.017 (4) | −0.004 (4) | −0.002 (3) | −0.003 (3) |
C12 | 0.023 (4) | 0.020 (4) | 0.022 (4) | 0.004 (3) | 0.005 (3) | −0.005 (3) |
C13 | 0.018 (5) | 0.028 (5) | 0.029 (5) | 0.001 (4) | 0.008 (4) | −0.008 (4) |
C14 | 0.023 (5) | 0.022 (5) | 0.026 (4) | −0.002 (4) | 0.001 (3) | −0.004 (4) |
C15 | 0.023 (4) | 0.022 (5) | 0.026 (4) | −0.006 (4) | −0.002 (3) | 0.006 (3) |
C16 | 0.027 (5) | 0.028 (5) | 0.016 (4) | −0.004 (4) | 0.009 (4) | 0.000 (4) |
C121 | 0.039 (6) | 0.035 (6) | 0.026 (5) | −0.006 (4) | 0.016 (4) | 0.001 (4) |
C31 | 0.033 (3) | 0.025 (3) | 0.016 (2) | 0.003 (2) | 0.011 (2) | −0.001 (2) |
C32 | 0.050 (4) | 0.022 (3) | 0.029 (3) | 0.000 (3) | 0.019 (3) | −0.004 (2) |
C33 | 0.031 (3) | 0.018 (3) | 0.012 (2) | 0.008 (2) | 0.001 (2) | 0.0021 (18) |
C34 | 0.023 (3) | 0.041 (4) | 0.032 (3) | 0.001 (3) | 0.001 (2) | −0.004 (3) |
C35 | 0.023 (3) | 0.015 (3) | 0.023 (2) | 0.000 (2) | 0.001 (2) | 0.006 (2) |
C36 | 0.033 (3) | 0.020 (3) | 0.030 (3) | 0.007 (2) | 0.007 (2) | −0.003 (2) |
C37 | 0.027 (3) | 0.020 (3) | 0.031 (3) | −0.004 (2) | 0.013 (2) | −0.003 (2) |
C38 | 0.028 (3) | 0.029 (4) | 0.052 (4) | −0.010 (3) | 0.008 (3) | −0.011 (3) |
Re1—C03 | 1.884 (6) | C22—C21 | 1.37 (2) |
Re1—C01 | 1.895 (5) | C22—C23 | 1.44 (2) |
Re1—C02 | 1.909 (5) | C22—C221 | 1.47 (2) |
Re1—N1 | 2.241 (4) | C24—C23 | 1.35 (3) |
Re1—Br2 | 2.6370 (8) | C24—H24 | 0.95 |
Re1—Br1 | 2.6389 (7) | C23—H23 | 0.95 |
N1—C11 | 1.452 (10) | C21—C26 | 1.45 (3) |
N1—C21 | 1.47 (2) | C26—H26 | 0.95 |
N1—H1A | 0.92 | C221—H22A | 0.98 |
N1—H1B | 0.92 | C221—H22B | 0.98 |
N1—H1C | 0.92 | C221—H22C | 0.98 |
N1—H1D | 0.92 | C31—C32 | 1.514 (8) |
N2—C31 | 1.518 (6) | C31—H31A | 0.99 |
N2—C37 | 1.518 (6) | C31—H31B | 0.99 |
N2—C33 | 1.518 (6) | C32—H32A | 0.98 |
N2—C35 | 1.523 (6) | C32—H32B | 0.98 |
O01—C01 | 1.162 (6) | C32—H32C | 0.98 |
O02—C02 | 1.145 (6) | C33—C34 | 1.508 (8) |
O03—C03 | 1.164 (7) | C33—H33A | 0.99 |
C11—C16 | 1.377 (14) | C33—H33B | 0.99 |
C11—C12 | 1.385 (12) | C34—H34A | 0.98 |
C12—C13 | 1.392 (12) | C34—H34B | 0.98 |
C12—C121 | 1.516 (12) | C34—H34C | 0.98 |
C13—C14 | 1.372 (13) | C35—C36 | 1.513 (7) |
C13—H13 | 0.95 | C35—H35A | 0.99 |
C14—C15 | 1.383 (12) | C35—H35B | 0.99 |
C14—H14 | 0.95 | C36—H36A | 0.98 |
C15—C16 | 1.377 (13) | C36—H36B | 0.98 |
C15—H15 | 0.95 | C36—H36C | 0.98 |
C16—H16 | 0.95 | C37—C38 | 1.515 (7) |
C121—H12A | 0.98 | C37—H37A | 0.99 |
C121—H12B | 0.98 | C37—H37B | 0.99 |
C121—H12C | 0.98 | C38—H38A | 0.98 |
C25—C24 | 1.36 (3) | C38—H38B | 0.98 |
C25—C26 | 1.39 (2) | C38—H38C | 0.98 |
C25—H25 | 0.95 | ||
C03—Re1—C01 | 89.6 (2) | C23—C24—C25 | 122 (2) |
C03—Re1—C02 | 88.5 (2) | C23—C24—H24 | 118.9 |
C01—Re1—C02 | 89.0 (2) | C25—C24—H24 | 118.9 |
C03—Re1—N1 | 94.1 (2) | C24—C23—C22 | 121 (2) |
C01—Re1—N1 | 174.31 (19) | C24—C23—H23 | 119.5 |
C02—Re1—N1 | 95.41 (19) | C22—C23—H23 | 119.5 |
C03—Re1—Br2 | 177.68 (17) | C22—C21—C26 | 120.7 (17) |
C01—Re1—Br2 | 92.67 (16) | C22—C21—N1 | 120.3 (15) |
C02—Re1—Br2 | 91.17 (16) | C26—C21—N1 | 119.0 (15) |
N1—Re1—Br2 | 83.64 (11) | C25—C26—C21 | 118.8 (17) |
C03—Re1—Br1 | 90.87 (16) | C25—C26—H26 | 120.6 |
C01—Re1—Br1 | 93.02 (15) | C21—C26—H26 | 120.6 |
C02—Re1—Br1 | 177.91 (15) | C22—C221—H22A | 109.5 |
N1—Re1—Br1 | 82.64 (11) | C22—C221—H22B | 109.5 |
Br2—Re1—Br1 | 89.37 (3) | H22A—C221—H22B | 109.5 |
C11—N1—Re1 | 118.0 (4) | C22—C221—H22C | 109.5 |
C21—N1—Re1 | 113.2 (8) | H22A—C221—H22C | 109.5 |
C11—N1—H1A | 107.8 | H22B—C221—H22C | 109.5 |
C21—N1—H1A | 88.4 | C32—C31—N2 | 115.1 (4) |
Re1—N1—H1A | 107.8 | C32—C31—H31A | 108.5 |
C11—N1—H1B | 107.8 | N2—C31—H31A | 108.5 |
C21—N1—H1B | 128.7 | C32—C31—H31B | 108.5 |
Re1—N1—H1B | 107.8 | N2—C31—H31B | 108.5 |
H1A—N1—H1B | 107.1 | H31A—C31—H31B | 107.5 |
C11—N1—H1C | 123.4 | C31—C32—H32A | 109.5 |
C21—N1—H1C | 108.7 | C31—C32—H32B | 109.5 |
Re1—N1—H1C | 108.9 | H32A—C32—H32B | 109.5 |
H1B—N1—H1C | 84.8 | C31—C32—H32C | 109.5 |
C11—N1—H1D | 86 | H32A—C32—H32C | 109.5 |
C21—N1—H1D | 109.3 | H32B—C32—H32C | 109.5 |
Re1—N1—H1D | 108.9 | C34—C33—N2 | 115.2 (4) |
H1A—N1—H1D | 127.7 | C34—C33—H33A | 108.5 |
H1C—N1—H1D | 107.7 | N2—C33—H33A | 108.5 |
C31—N2—C37 | 111.6 (4) | C34—C33—H33B | 108.5 |
C31—N2—C33 | 110.6 (4) | N2—C33—H33B | 108.5 |
C37—N2—C33 | 107.0 (4) | H33A—C33—H33B | 107.5 |
C31—N2—C35 | 106.1 (4) | C33—C34—H34A | 109.5 |
C37—N2—C35 | 110.4 (4) | C33—C34—H34B | 109.5 |
C33—N2—C35 | 111.2 (4) | H34A—C34—H34B | 109.5 |
O01—C01—Re1 | 179.1 (5) | C33—C34—H34C | 109.5 |
O02—C02—Re1 | 176.6 (5) | H34A—C34—H34C | 109.5 |
O03—C03—Re1 | 178.2 (5) | H34B—C34—H34C | 109.5 |
C16—C11—C12 | 120.4 (9) | C36—C35—N2 | 115.4 (4) |
C16—C11—N1 | 118.6 (8) | C36—C35—H35A | 108.4 |
C12—C11—N1 | 120.9 (8) | N2—C35—H35A | 108.4 |
C11—C12—C13 | 117.6 (9) | C36—C35—H35B | 108.4 |
C11—C12—C121 | 121.0 (8) | N2—C35—H35B | 108.4 |
C13—C12—C121 | 121.3 (8) | H35A—C35—H35B | 107.5 |
C14—C13—C12 | 122.0 (9) | C35—C36—H36A | 109.5 |
C14—C13—H13 | 119 | C35—C36—H36B | 109.5 |
C12—C13—H13 | 119 | H36A—C36—H36B | 109.5 |
C13—C14—C15 | 119.8 (9) | C35—C36—H36C | 109.5 |
C13—C14—H14 | 120.1 | H36A—C36—H36C | 109.5 |
C15—C14—H14 | 120.1 | H36B—C36—H36C | 109.5 |
C16—C15—C14 | 118.8 (8) | C38—C37—N2 | 115.4 (4) |
C16—C15—H15 | 120.6 | C38—C37—H37A | 108.4 |
C14—C15—H15 | 120.6 | N2—C37—H37A | 108.4 |
C11—C16—C15 | 121.4 (9) | C38—C37—H37B | 108.4 |
C11—C16—H16 | 119.3 | N2—C37—H37B | 108.4 |
C15—C16—H16 | 119.3 | H37A—C37—H37B | 107.5 |
C24—C25—C26 | 119.9 (17) | C37—C38—H38A | 109.5 |
C24—C25—H25 | 120.1 | C37—C38—H38B | 109.5 |
C26—C25—H25 | 120.1 | H38A—C38—H38B | 109.5 |
C21—C22—C23 | 117.4 (17) | C37—C38—H38C | 109.5 |
C21—C22—C221 | 120.7 (16) | H38A—C38—H38C | 109.5 |
C23—C22—C221 | 121.8 (17) | H38B—C38—H38C | 109.5 |
C03—Re1—N1—C11 | −53.5 (5) | C21—C22—C23—C24 | 2 (3) |
C02—Re1—N1—C11 | 35.4 (5) | C221—C22—C23—C24 | 179.3 (18) |
Br2—Re1—N1—C11 | 126.0 (5) | C23—C22—C21—C26 | −1 (2) |
Br1—Re1—N1—C11 | −143.8 (5) | C221—C22—C21—C26 | −178.4 (16) |
C03—Re1—N1—C21 | −27.2 (8) | C23—C22—C21—N1 | 177.8 (14) |
C02—Re1—N1—C21 | 61.6 (8) | C221—C22—C21—N1 | 1 (2) |
Br2—Re1—N1—C21 | 152.2 (8) | C11—N1—C21—C22 | 8.0 (12) |
Br1—Re1—N1—C21 | −117.6 (8) | Re1—N1—C21—C22 | −99.0 (15) |
C21—N1—C11—C16 | −165 (2) | C11—N1—C21—C26 | −173 (3) |
Re1—N1—C11—C16 | −80.3 (8) | Re1—N1—C21—C26 | 79.9 (15) |
C21—N1—C11—C12 | 11.7 (19) | C24—C25—C26—C21 | 0 (3) |
Re1—N1—C11—C12 | 96.2 (7) | C22—C21—C26—C25 | 0 (3) |
C16—C11—C12—C13 | 0.2 (12) | N1—C21—C26—C25 | −178.6 (14) |
N1—C11—C12—C13 | −176.2 (7) | C37—N2—C31—C32 | −63.7 (6) |
C16—C11—C12—C121 | −178.4 (8) | C33—N2—C31—C32 | 55.3 (6) |
N1—C11—C12—C121 | 5.2 (12) | C35—N2—C31—C32 | 176.0 (5) |
C11—C12—C13—C14 | 0.4 (12) | C31—N2—C33—C34 | 56.7 (6) |
C121—C12—C13—C14 | 178.9 (8) | C37—N2—C33—C34 | 178.4 (5) |
C12—C13—C14—C15 | −0.7 (13) | C35—N2—C33—C34 | −60.9 (6) |
C13—C14—C15—C16 | 0.5 (13) | C31—N2—C35—C36 | 178.4 (4) |
C12—C11—C16—C15 | −0.4 (13) | C37—N2—C35—C36 | 57.3 (6) |
N1—C11—C16—C15 | 176.1 (7) | C33—N2—C35—C36 | −61.3 (6) |
C14—C15—C16—C11 | 0.0 (13) | C31—N2—C37—C38 | −61.2 (6) |
C26—C25—C24—C23 | 1 (3) | C33—N2—C37—C38 | 177.7 (5) |
C25—C24—C23—C22 | −2 (3) | C35—N2—C37—C38 | 56.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···Br2i | 0.92 | 2.7 | 3.542 (4) | 153 |
N1—H1B···Br1i | 0.92 | 2.75 | 3.594 (4) | 153 |
C121—H12C···O03ii | 0.98 | 2.5 | 3.139 (10) | 123 |
C35—H35B···O03iii | 0.99 | 2.39 | 3.196 (7) | 138 |
C37—H37A···Br1iv | 0.99 | 2.92 | 3.911 (6) | 174 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | (C8H20N)[ReBr2(C7H9N)(CO)3] |
Mr | 667.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.776 (2), 18.466 (4), 11.745 (2) |
β (°) | 106.74 (3) |
V (Å3) | 2238.2 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.02 |
Crystal size (mm) | 0.42 × 0.32 × 0.08 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K Kappa CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.116, 0.532 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45095, 5371, 4411 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.086, 1.06 |
No. of reflections | 5371 |
No. of parameters | 270 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.5, −2.99 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···Br2i | 0.92 | 2.7 | 3.542 (4) | 152.8 |
N1—H1B···Br1i | 0.92 | 2.75 | 3.594 (4) | 152.7 |
C121—H12C···O03ii | 0.98 | 2.5 | 3.139 (10) | 123 |
C35—H35B···O03iii | 0.99 | 2.39 | 3.196 (7) | 138.2 |
C37—H37A···Br1iv | 0.99 | 2.92 | 3.911 (6) | 174.1 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2. |
Acknowledgements
Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA–NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.
References
Abou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278–1288. Web of Science CrossRef PubMed CAS Google Scholar
Abram, U., Abram, S., Schibli, R., Alberto, R. & Dilworth, J. R. (1998). Polyhedron, 17, 1303–1309. Web of Science CSD CrossRef CAS Google Scholar
Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089. CSD CrossRef CAS Web of Science Google Scholar
Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190, 901–919. CSD CrossRef Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328. Web of Science CSD CrossRef Google Scholar
Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087–4094. Web of Science CSD CrossRef CAS Google Scholar
Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjug. Chem. 11, 345–351. Web of Science CrossRef PubMed CAS Google Scholar
Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, J., Purcell, W., Lamprecht, G. J. & Roodt, A. (1996). Polyhedron, 15, 1389–1395. CSD CrossRef CAS Web of Science Google Scholar
Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393. Web of Science CSD CrossRef CAS Google Scholar
Wei, L., Banerjee, S. R., Levadala, M. K., Babich, J. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 1099–1103. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of fac-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006, Schutte et al., 2009, 2008, 2010, Wei et al., 2003, Schibli et al., 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto et al., 1999, Abram et al., 1998).
The title complex crystallized as a distorted octahedral anionic ReI compound with one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and trans to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram et al., 1998).
The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram et al., 1998, Schutte et al., 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.