metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium di­bromido­tricarbon­yl(o-toluidine)rhenate(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com

(Received 23 November 2010; accepted 30 November 2010; online 4 December 2010)

In the title compound, (C8H20N)[ReBr2(C7H9N)(CO)3], the ReI atom is octa­hedrally surrounded by three carbonyl ligands orientated in a facial arrangement, two bromide ligands and an o-toluidine ligand. The amine lies trans to the carbonyl ligand and is substitutionally disordered over two positions in a 0.66 (1):0.34 (1) ratio. An array of C—H⋯O, C—H⋯Br and N—H⋯Br hydrogen-bonding inter­actions between the cations and the surrounding rhenate anions stabilize the crystal structure.

Related literature

For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]); Brink et al. (2009[Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175-o3176.]). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004[Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]); Wang et al. (2003[Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.]); Saw et al. (2006[Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087-4094.]); Schutte et al. (2008[Schutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610-m1611.], 2009[Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575-m1576.], 2010[Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859-m860.]); Wei et al. (2003[Wei, L., Banerjee, S. R., Levadala, M. K., Babich, J. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 1099-1103.]); Schibli et al. (2000[Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjug. Chem. 11, 345-351.]). For kinetic studies of related Re compounds, see: Smith et al. (1996[Smith, J., Purcell, W., Lamprecht, G. J. & Roodt, A. (1996). Polyhedron, 15, 1389-1395.]); Abou-Hamdan et al. (1998[Abou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278-1288.]). For related dibromido structures, see: Alberto et al. (1999[Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190, 901-919.]); Abram et al. (1998[Abram, U., Abram, S., Schibli, R., Alberto, R. & Dilworth, J. R. (1998). Polyhedron, 17, 1303-1309.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[ReBr2(C7H9N)(CO)3]

  • Mr = 667.45

  • Monoclinic, P 21 /c

  • a = 10.776 (2) Å

  • b = 18.466 (4) Å

  • c = 11.745 (2) Å

  • β = 106.74 (3)°

  • V = 2238.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.02 mm−1

  • T = 100 K

  • 0.42 × 0.32 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.116, Tmax = 0.532

  • 45095 measured reflections

  • 5371 independent reflections

  • 4411 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.06

  • 5371 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 2.5 e Å−3

  • Δρmin = −2.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br2i 0.92 2.7 3.542 (4) 153
N1—H1B⋯Br1i 0.92 2.75 3.594 (4) 153
C121—H12C⋯O03ii 0.98 2.5 3.139 (10) 123
C35—H35B⋯O03iii 0.99 2.39 3.196 (7) 138
C37—H37A⋯Br1iv 0.99 2.92 3.911 (6) 174
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+2, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of fac-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006, Schutte et al., 2009, 2008, 2010, Wei et al., 2003, Schibli et al., 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto et al., 1999, Abram et al., 1998).

The title complex crystallized as a distorted octahedral anionic ReI compound with one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and trans to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram et al., 1998).

The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram et al., 1998, Schutte et al., 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.

Related literature top

For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996); Brink et al. (2009). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006); Schutte et al. (2008, 2009, 2010); Wei et al. (2003); Schibli et al. (2000). For related rhenium kinetic studies, see: Smith et al. (1996); Abou-Hamdan et al. (1998). For related dibromido structures, see: Alberto et al. (1999); Abram et al. (1998).

Experimental top

[NEt4]2[Re(CO)3Br3] (0.13 mmol) (synthesized according to Alberto et al. (1996)) was dissolved in 6 ml methanol. The ligand 2-(o-tolyliminomethyl)phenol (0.14 mmol) (for related synthesis see Brink et al., 2009), containing 10% o-toluidine as byproduct, was dissolved in 6 ml MeOH and slowly added. The reaction mixture was stirred for 2 h at room temperature. Crystals of the title complex whereby the Re bonded preferentially to the amine were obtained by the slow evaporation of the solvent at 4°C.

Refinement top

The aromatic and aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5eq(Cmethyl). The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak in the final difference map are located 0.81Å from Re1. The minor occupied atoms were refined isotropically.

Structure description top

The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of fac-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006, Schutte et al., 2009, 2008, 2010, Wei et al., 2003, Schibli et al., 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto et al., 1999, Abram et al., 1998).

The title complex crystallized as a distorted octahedral anionic ReI compound with one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and trans to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram et al., 1998).

The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram et al., 1998, Schutte et al., 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.

For the synthesis of the ReI–tricarbonyl synthon, see: Alberto et al. (1996); Brink et al. (2009). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006); Schutte et al. (2008, 2009, 2010); Wei et al. (2003); Schibli et al. (2000). For related rhenium kinetic studies, see: Smith et al. (1996); Abou-Hamdan et al. (1998). For related dibromido structures, see: Alberto et al. (1999); Abram et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Representation of the hydrogen-bonding interactions (only one complete molecular structure (symm. op.: x, y, z) is shown).
Tetraethylammonium dibromidotricarbonyl(o-toluidine)rhenate(I) top
Crystal data top
(C8H20N)[ReBr2(C7H9N)(CO)3]F(000) = 1280
Mr = 667.45Dx = 1.981 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9885 reflections
a = 10.776 (2) Åθ = 3.2–28.3°
b = 18.466 (4) ŵ = 9.02 mm1
c = 11.745 (2) ÅT = 100 K
β = 106.74 (3)°Plate, yellow
V = 2238.2 (8) Å30.42 × 0.32 × 0.08 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5371 independent reflections
Radiation source: sealed tube4411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 512 pixels mm-1θmax = 28°, θmin = 3.2°
ω and φ scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 2424
Tmin = 0.116, Tmax = 0.532l = 1515
45095 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0446P)2 + 2.6175P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.06Δρmax = 2.5 e Å3
5371 reflectionsΔρmin = 2.99 e Å3
270 parameters
Crystal data top
(C8H20N)[ReBr2(C7H9N)(CO)3]V = 2238.2 (8) Å3
Mr = 667.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.776 (2) ŵ = 9.02 mm1
b = 18.466 (4) ÅT = 100 K
c = 11.745 (2) Å0.42 × 0.32 × 0.08 mm
β = 106.74 (3)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4411 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.532Rint = 0.072
45095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 2.5 e Å3
5371 reflectionsΔρmin = 2.99 e Å3
270 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1977 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.4% completeness accomplished

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.735442 (18)0.985810 (11)0.808028 (15)0.01480 (7)
Br10.81038 (5)0.89501 (3)0.98836 (4)0.01871 (12)
Br20.95834 (5)0.96560 (3)0.76184 (4)0.01895 (12)
N10.8495 (4)1.0651 (2)0.9422 (3)0.0174 (9)
H1A0.85631.04681.01660.021*0.659 (10)
H1B0.9321.06710.93430.021*0.659 (10)
H1C0.8881.04091.01190.021*0.341 (10)
H1D0.91451.08420.91480.021*0.341 (10)
N20.8171 (4)0.8488 (2)0.3722 (3)0.0165 (8)
O010.6021 (4)0.8662 (2)0.6363 (3)0.0324 (10)
O020.6462 (4)1.0930 (2)0.6027 (3)0.0294 (9)
O030.4809 (4)1.0153 (2)0.8640 (4)0.0363 (11)
C010.6523 (5)0.9121 (3)0.7010 (4)0.0208 (11)
C020.6823 (5)1.0544 (3)0.6816 (4)0.0211 (11)
C030.5790 (5)1.0036 (3)0.8445 (5)0.0227 (11)
C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10)
C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10)
C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10)
H130.6271.24651.04560.03*0.659 (10)
C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10)
H140.66481.32470.90580.03*0.659 (10)
C150.7754 (8)1.2551 (5)0.8425 (7)0.025 (2)0.659 (10)
H150.79241.28710.78540.03*0.659 (10)
C160.8250 (9)1.1859 (6)0.8557 (8)0.023 (2)0.659 (10)
H160.87661.17030.8070.027*0.659 (10)
C1210.7031 (9)1.1098 (5)1.1036 (9)0.032 (2)0.659 (10)
H12A0.6381.13111.13710.048*0.659 (10)
H12B0.78411.10251.1670.048*0.659 (10)
H12C0.67171.06311.06690.048*0.659 (10)
C250.6163 (16)1.1668 (10)1.0700 (14)0.029 (4)*0.341 (10)
H250.56491.15931.12240.035*0.341 (10)
C220.7679 (15)1.1900 (9)0.9138 (13)0.021 (4)*0.341 (10)
C240.615 (2)1.2320 (11)1.0160 (16)0.032 (4)*0.341 (10)
H240.56291.26981.03280.039*0.341 (10)
C230.6844 (18)1.2448 (12)0.9392 (19)0.020 (4)*0.341 (10)
H230.67821.29060.90130.025*0.341 (10)
C210.7704 (18)1.1241 (11)0.9674 (16)0.020 (5)*0.341 (10)
C260.6933 (16)1.1111 (10)1.0483 (16)0.019 (4)*0.341 (10)
H260.69551.06531.08590.023*0.341 (10)
C2210.8433 (19)1.2027 (11)0.8293 (17)0.018 (5)*0.341 (10)
H22A0.83031.25260.80020.027*0.341 (10)
H22B0.81451.16920.76220.027*0.341 (10)
H22C0.93551.19470.86940.027*0.341 (10)
C310.8711 (5)0.8176 (3)0.2768 (4)0.0240 (11)
H31A0.80.81480.20150.029*
H31B0.9370.85140.26390.029*
C320.9320 (6)0.7433 (3)0.3040 (5)0.0321 (14)
H32A0.95940.72630.23590.048*
H32B0.86860.70950.31920.048*
H32C1.00750.74620.37430.048*
C330.9209 (5)0.8507 (3)0.4913 (4)0.0215 (11)
H33A0.88320.87250.55080.026*
H33B0.94550.80030.51650.026*
C341.0420 (5)0.8920 (4)0.4925 (5)0.0336 (14)
H34A1.09570.89830.57480.05*
H34B1.01810.93960.45580.05*
H34C1.09070.8650.44780.05*
C350.7702 (5)0.9248 (3)0.3309 (4)0.0217 (11)
H35A0.84480.95320.32220.026*
H35B0.70650.92120.25130.026*
C360.7084 (6)0.9660 (3)0.4118 (5)0.0281 (12)
H36A0.68651.01510.38070.042*
H36B0.76930.96870.49180.042*
H36C0.62940.9410.41530.042*
C370.7062 (5)0.8034 (3)0.3888 (5)0.0249 (12)
H37A0.73920.75410.41330.03*
H37B0.67770.82440.45460.03*
C380.5894 (6)0.7972 (3)0.2804 (6)0.0370 (15)
H38A0.52590.76420.29770.056*
H38B0.61670.77820.21340.056*
H38C0.55020.84510.25990.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01788 (12)0.01279 (12)0.01337 (10)0.00031 (8)0.00393 (8)0.00151 (7)
Br10.0253 (3)0.0146 (2)0.0156 (2)0.0011 (2)0.00488 (19)0.00306 (17)
Br20.0216 (3)0.0210 (3)0.0157 (2)0.0011 (2)0.00766 (19)0.00174 (18)
N10.023 (2)0.012 (2)0.0162 (19)0.0010 (17)0.0056 (16)0.0001 (15)
N20.021 (2)0.015 (2)0.0133 (18)0.0006 (17)0.0048 (16)0.0014 (15)
O010.041 (2)0.025 (2)0.026 (2)0.0135 (19)0.0027 (17)0.0051 (17)
O020.044 (2)0.020 (2)0.0220 (19)0.0010 (18)0.0058 (17)0.0058 (16)
O030.025 (2)0.055 (3)0.033 (2)0.008 (2)0.0136 (18)0.014 (2)
C010.023 (3)0.018 (3)0.020 (2)0.004 (2)0.005 (2)0.008 (2)
C020.025 (3)0.020 (3)0.019 (2)0.001 (2)0.008 (2)0.001 (2)
C030.024 (3)0.022 (3)0.021 (3)0.000 (2)0.006 (2)0.007 (2)
C110.012 (4)0.027 (5)0.017 (4)0.004 (4)0.002 (3)0.003 (3)
C120.023 (4)0.020 (4)0.022 (4)0.004 (3)0.005 (3)0.005 (3)
C130.018 (5)0.028 (5)0.029 (5)0.001 (4)0.008 (4)0.008 (4)
C140.023 (5)0.022 (5)0.026 (4)0.002 (4)0.001 (3)0.004 (4)
C150.023 (4)0.022 (5)0.026 (4)0.006 (4)0.002 (3)0.006 (3)
C160.027 (5)0.028 (5)0.016 (4)0.004 (4)0.009 (4)0.000 (4)
C1210.039 (6)0.035 (6)0.026 (5)0.006 (4)0.016 (4)0.001 (4)
C310.033 (3)0.025 (3)0.016 (2)0.003 (2)0.011 (2)0.001 (2)
C320.050 (4)0.022 (3)0.029 (3)0.000 (3)0.019 (3)0.004 (2)
C330.031 (3)0.018 (3)0.012 (2)0.008 (2)0.001 (2)0.0021 (18)
C340.023 (3)0.041 (4)0.032 (3)0.001 (3)0.001 (2)0.004 (3)
C350.023 (3)0.015 (3)0.023 (2)0.000 (2)0.001 (2)0.006 (2)
C360.033 (3)0.020 (3)0.030 (3)0.007 (2)0.007 (2)0.003 (2)
C370.027 (3)0.020 (3)0.031 (3)0.004 (2)0.013 (2)0.003 (2)
C380.028 (3)0.029 (4)0.052 (4)0.010 (3)0.008 (3)0.011 (3)
Geometric parameters (Å, º) top
Re1—C031.884 (6)C22—C211.37 (2)
Re1—C011.895 (5)C22—C231.44 (2)
Re1—C021.909 (5)C22—C2211.47 (2)
Re1—N12.241 (4)C24—C231.35 (3)
Re1—Br22.6370 (8)C24—H240.95
Re1—Br12.6389 (7)C23—H230.95
N1—C111.452 (10)C21—C261.45 (3)
N1—C211.47 (2)C26—H260.95
N1—H1A0.92C221—H22A0.98
N1—H1B0.92C221—H22B0.98
N1—H1C0.92C221—H22C0.98
N1—H1D0.92C31—C321.514 (8)
N2—C311.518 (6)C31—H31A0.99
N2—C371.518 (6)C31—H31B0.99
N2—C331.518 (6)C32—H32A0.98
N2—C351.523 (6)C32—H32B0.98
O01—C011.162 (6)C32—H32C0.98
O02—C021.145 (6)C33—C341.508 (8)
O03—C031.164 (7)C33—H33A0.99
C11—C161.377 (14)C33—H33B0.99
C11—C121.385 (12)C34—H34A0.98
C12—C131.392 (12)C34—H34B0.98
C12—C1211.516 (12)C34—H34C0.98
C13—C141.372 (13)C35—C361.513 (7)
C13—H130.95C35—H35A0.99
C14—C151.383 (12)C35—H35B0.99
C14—H140.95C36—H36A0.98
C15—C161.377 (13)C36—H36B0.98
C15—H150.95C36—H36C0.98
C16—H160.95C37—C381.515 (7)
C121—H12A0.98C37—H37A0.99
C121—H12B0.98C37—H37B0.99
C121—H12C0.98C38—H38A0.98
C25—C241.36 (3)C38—H38B0.98
C25—C261.39 (2)C38—H38C0.98
C25—H250.95
C03—Re1—C0189.6 (2)C23—C24—C25122 (2)
C03—Re1—C0288.5 (2)C23—C24—H24118.9
C01—Re1—C0289.0 (2)C25—C24—H24118.9
C03—Re1—N194.1 (2)C24—C23—C22121 (2)
C01—Re1—N1174.31 (19)C24—C23—H23119.5
C02—Re1—N195.41 (19)C22—C23—H23119.5
C03—Re1—Br2177.68 (17)C22—C21—C26120.7 (17)
C01—Re1—Br292.67 (16)C22—C21—N1120.3 (15)
C02—Re1—Br291.17 (16)C26—C21—N1119.0 (15)
N1—Re1—Br283.64 (11)C25—C26—C21118.8 (17)
C03—Re1—Br190.87 (16)C25—C26—H26120.6
C01—Re1—Br193.02 (15)C21—C26—H26120.6
C02—Re1—Br1177.91 (15)C22—C221—H22A109.5
N1—Re1—Br182.64 (11)C22—C221—H22B109.5
Br2—Re1—Br189.37 (3)H22A—C221—H22B109.5
C11—N1—Re1118.0 (4)C22—C221—H22C109.5
C21—N1—Re1113.2 (8)H22A—C221—H22C109.5
C11—N1—H1A107.8H22B—C221—H22C109.5
C21—N1—H1A88.4C32—C31—N2115.1 (4)
Re1—N1—H1A107.8C32—C31—H31A108.5
C11—N1—H1B107.8N2—C31—H31A108.5
C21—N1—H1B128.7C32—C31—H31B108.5
Re1—N1—H1B107.8N2—C31—H31B108.5
H1A—N1—H1B107.1H31A—C31—H31B107.5
C11—N1—H1C123.4C31—C32—H32A109.5
C21—N1—H1C108.7C31—C32—H32B109.5
Re1—N1—H1C108.9H32A—C32—H32B109.5
H1B—N1—H1C84.8C31—C32—H32C109.5
C11—N1—H1D86H32A—C32—H32C109.5
C21—N1—H1D109.3H32B—C32—H32C109.5
Re1—N1—H1D108.9C34—C33—N2115.2 (4)
H1A—N1—H1D127.7C34—C33—H33A108.5
H1C—N1—H1D107.7N2—C33—H33A108.5
C31—N2—C37111.6 (4)C34—C33—H33B108.5
C31—N2—C33110.6 (4)N2—C33—H33B108.5
C37—N2—C33107.0 (4)H33A—C33—H33B107.5
C31—N2—C35106.1 (4)C33—C34—H34A109.5
C37—N2—C35110.4 (4)C33—C34—H34B109.5
C33—N2—C35111.2 (4)H34A—C34—H34B109.5
O01—C01—Re1179.1 (5)C33—C34—H34C109.5
O02—C02—Re1176.6 (5)H34A—C34—H34C109.5
O03—C03—Re1178.2 (5)H34B—C34—H34C109.5
C16—C11—C12120.4 (9)C36—C35—N2115.4 (4)
C16—C11—N1118.6 (8)C36—C35—H35A108.4
C12—C11—N1120.9 (8)N2—C35—H35A108.4
C11—C12—C13117.6 (9)C36—C35—H35B108.4
C11—C12—C121121.0 (8)N2—C35—H35B108.4
C13—C12—C121121.3 (8)H35A—C35—H35B107.5
C14—C13—C12122.0 (9)C35—C36—H36A109.5
C14—C13—H13119C35—C36—H36B109.5
C12—C13—H13119H36A—C36—H36B109.5
C13—C14—C15119.8 (9)C35—C36—H36C109.5
C13—C14—H14120.1H36A—C36—H36C109.5
C15—C14—H14120.1H36B—C36—H36C109.5
C16—C15—C14118.8 (8)C38—C37—N2115.4 (4)
C16—C15—H15120.6C38—C37—H37A108.4
C14—C15—H15120.6N2—C37—H37A108.4
C11—C16—C15121.4 (9)C38—C37—H37B108.4
C11—C16—H16119.3N2—C37—H37B108.4
C15—C16—H16119.3H37A—C37—H37B107.5
C24—C25—C26119.9 (17)C37—C38—H38A109.5
C24—C25—H25120.1C37—C38—H38B109.5
C26—C25—H25120.1H38A—C38—H38B109.5
C21—C22—C23117.4 (17)C37—C38—H38C109.5
C21—C22—C221120.7 (16)H38A—C38—H38C109.5
C23—C22—C221121.8 (17)H38B—C38—H38C109.5
C03—Re1—N1—C1153.5 (5)C21—C22—C23—C242 (3)
C02—Re1—N1—C1135.4 (5)C221—C22—C23—C24179.3 (18)
Br2—Re1—N1—C11126.0 (5)C23—C22—C21—C261 (2)
Br1—Re1—N1—C11143.8 (5)C221—C22—C21—C26178.4 (16)
C03—Re1—N1—C2127.2 (8)C23—C22—C21—N1177.8 (14)
C02—Re1—N1—C2161.6 (8)C221—C22—C21—N11 (2)
Br2—Re1—N1—C21152.2 (8)C11—N1—C21—C228.0 (12)
Br1—Re1—N1—C21117.6 (8)Re1—N1—C21—C2299.0 (15)
C21—N1—C11—C16165 (2)C11—N1—C21—C26173 (3)
Re1—N1—C11—C1680.3 (8)Re1—N1—C21—C2679.9 (15)
C21—N1—C11—C1211.7 (19)C24—C25—C26—C210 (3)
Re1—N1—C11—C1296.2 (7)C22—C21—C26—C250 (3)
C16—C11—C12—C130.2 (12)N1—C21—C26—C25178.6 (14)
N1—C11—C12—C13176.2 (7)C37—N2—C31—C3263.7 (6)
C16—C11—C12—C121178.4 (8)C33—N2—C31—C3255.3 (6)
N1—C11—C12—C1215.2 (12)C35—N2—C31—C32176.0 (5)
C11—C12—C13—C140.4 (12)C31—N2—C33—C3456.7 (6)
C121—C12—C13—C14178.9 (8)C37—N2—C33—C34178.4 (5)
C12—C13—C14—C150.7 (13)C35—N2—C33—C3460.9 (6)
C13—C14—C15—C160.5 (13)C31—N2—C35—C36178.4 (4)
C12—C11—C16—C150.4 (13)C37—N2—C35—C3657.3 (6)
N1—C11—C16—C15176.1 (7)C33—N2—C35—C3661.3 (6)
C14—C15—C16—C110.0 (13)C31—N2—C37—C3861.2 (6)
C26—C25—C24—C231 (3)C33—N2—C37—C38177.7 (5)
C25—C24—C23—C222 (3)C35—N2—C37—C3856.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.922.73.542 (4)153
N1—H1B···Br1i0.922.753.594 (4)153
C121—H12C···O03ii0.982.53.139 (10)123
C35—H35B···O03iii0.992.393.196 (7)138
C37—H37A···Br1iv0.992.923.911 (6)174
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C8H20N)[ReBr2(C7H9N)(CO)3]
Mr667.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.776 (2), 18.466 (4), 11.745 (2)
β (°) 106.74 (3)
V3)2238.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)9.02
Crystal size (mm)0.42 × 0.32 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.116, 0.532
No. of measured, independent and
observed [I > 2σ(I)] reflections
45095, 5371, 4411
Rint0.072
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.06
No. of reflections5371
No. of parameters270
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.5, 2.99

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br2i0.922.73.542 (4)152.8
N1—H1B···Br1i0.922.753.594 (4)152.7
C121—H12C···O03ii0.982.53.139 (10)123
C35—H35B···O03iii0.992.393.196 (7)138.2
C37—H37A···Br1iv0.992.923.911 (6)174.1
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2.
 

Acknowledgements

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA–NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.

References

First citationAbou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278–1288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAbram, U., Abram, S., Schibli, R., Alberto, R. & Dilworth, J. R. (1998). Polyhedron, 17, 1303–1309.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190, 901–919.  CSD CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationSaw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087–4094.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). Bioconjug. Chem. 11, 345–351.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2008). Acta Cryst. E64, m1610–m1611.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J., Purcell, W., Lamprecht, G. J. & Roodt, A. (1996). Polyhedron, 15, 1389–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, L., Banerjee, S. R., Levadala, M. K., Babich, J. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 1099–1103.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds