organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-N-(4-Meth­­oxy­phen­yl)-2-(4-meth­­oxy­phenyl­imino)-2H-1,4-benzoxazin-3-amine

aDepartment of Environmental Pollution, Environmental Sciences Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m_mehrdad4@yahoo.com

(Received 29 November 2010; accepted 1 December 2010; online 8 December 2010)

In the crystal structure of the title compound, C22H19N3O3, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a zigzag chain parallel to the face diagonal of the ac plane. The meth­oxy phenyl rings make a dihdral angle of 32.38 (7)° and form dihedral angles of 0.66 (8) and 24.17 (7)° with the fused benzooxazine ring system.

Related literature

For the Baeyer–Villiger oxidation of 1-alkyl-3-aryl­imino-2-indolinone with m-chloro­perbenzoic acid to afford 1-alkyl-4-(aryl­imino)-1H benzo[d][1,3]oxazin-2(4H)-one, see: Mehrdad et al. (2011[Mehrdad, M., Ghanbari, M., Jadidi, K., Asgari, D. & Khavasi, H. R. (2011). In preparation. ]); Azizian et al. (2000[Azizian, J., Mehrdad, M., Jadidi, K. & Sarrafi, Y. (2000). Tetrahedron Lett. 41, 5265-5268.]); Jadidi et al. (2008[Jadidi, K., Ghahremanzadeh, R., Mehrdad, M., Ghanbari, M. & Arvin-Nezhad, H. (2008). Monatsh. Chem. 139, 277-280.]). For a related structure, see: Asgari et al. (2011[Asgari, D., Mehrdad, M., Ghanbari, M., Jadidi, K., Behzad, S. K. & Khavasi, H. R. (2011). Acta Cryst. E67. Submitted [BT5429]]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N3O3

  • Mr = 373.40

  • Monoclinic, P 21 /n

  • a = 14.4225 (14) Å

  • b = 8.0836 (5) Å

  • c = 16.2749 (14) Å

  • β = 107.263 (7)°

  • V = 1811.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.60 × 0.13 × 0.04 mm

Data collection
  • Stoe IPDS II diffractometer

  • 21467 measured reflections

  • 4893 independent reflections

  • 3190 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.195

  • S = 1.15

  • 4893 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.59 3.423 (3) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported a Baeyer–Villiger oxidation of 1-alkyl-3-arylimino-2-indolinone with m-chloroperbenzoic acid to afford 1-alkyl-4-(arylimino)-1H benzo[d][1,3]oxazin-2(4H)-one (Azizian et al., 2000; Jadidi et al., 2008). As a continuation of this work, 2-arylimino-N-aryl-2H-benzo[b][1,4]oxazin-3-amines (2) or N-aryl-N-(2-arylamino-3H-indol-3-ylidene)amine N-oxides (3) were obtained in two different temperatures by Baeyer-Villiger oxidation reaction (Fig. 1) of N-aryl-3-(arylimino)-3H-indol-2-amines (1) (Mehrdad et al., 2011). In this paper, we report the structure of (2Z)-2-(4-methoxyphenylimino)-N-(4-methoxyphenyl)- 2H-benzo[b][1,4]oxazin-3-amine (2a). The molecular structure of the title compound is shown in Fig. 2.

The methoxy phenyl rings, A (C2—C7) and B (C16—C21) and benzooxazine ring C (C9—C14/C8/O2/N2/C15) enclose the dihedral angles: A/B = 32.38 (7)°, A/C = 10.66 (8)° and B/C = 24.17 (7)°. Intermolecular C—H···O interactions (Table 1) stabilize the crystal structure.

Related literature top

For the Baeyer–Villiger oxidation of 1-alkyl-3-arylimino-2-indolinone with m-chloroperbenzoic acid to afford 1-alkyl-4-(arylimino)-1H benzo[d][1,3]oxazin-2(4H)-one, see: Mehrdad et al. (2011); Azizian et al. (2000); Jadidi et al. (2008). For a related structure, see: Asgari et al. (2011).

Experimental top

The solution of N-Aryl-3-(Arylimino)-3H-indol-2-amine (1a) (1.0 mmol) in 25 ml CH2Cl2 was cooled to 253K. Then, m-CPBA (1.5 mmol) dissolved in 25 ml CH2Cl2 was added dropwise to the stirred solution of (1a). After stirring for 6 h at 253K, product (2a) was formed (monitoring by TLC). The crude product was poured into water and extracted with CH2Cl2 (60 ml). The organic layer was dried over Na2SO4, and evaporation of the solvent afforded the crude product (2a), which was purified on silica gel by column chromatography using 90:10 n-hexane:ethyl acetate as eluent to afford (2a) as a light yellow solid (90%); m.p. = 169–171°C (Mehrdad et al., 2011).

Refinement top

All H atoms were positioned geometrically, with N—H=0.86 Å, Cmethyl—H=0.96Å and Caromatic—H=0.93Å and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C,N).

Structure description top

Recently, we reported a Baeyer–Villiger oxidation of 1-alkyl-3-arylimino-2-indolinone with m-chloroperbenzoic acid to afford 1-alkyl-4-(arylimino)-1H benzo[d][1,3]oxazin-2(4H)-one (Azizian et al., 2000; Jadidi et al., 2008). As a continuation of this work, 2-arylimino-N-aryl-2H-benzo[b][1,4]oxazin-3-amines (2) or N-aryl-N-(2-arylamino-3H-indol-3-ylidene)amine N-oxides (3) were obtained in two different temperatures by Baeyer-Villiger oxidation reaction (Fig. 1) of N-aryl-3-(arylimino)-3H-indol-2-amines (1) (Mehrdad et al., 2011). In this paper, we report the structure of (2Z)-2-(4-methoxyphenylimino)-N-(4-methoxyphenyl)- 2H-benzo[b][1,4]oxazin-3-amine (2a). The molecular structure of the title compound is shown in Fig. 2.

The methoxy phenyl rings, A (C2—C7) and B (C16—C21) and benzooxazine ring C (C9—C14/C8/O2/N2/C15) enclose the dihedral angles: A/B = 32.38 (7)°, A/C = 10.66 (8)° and B/C = 24.17 (7)°. Intermolecular C—H···O interactions (Table 1) stabilize the crystal structure.

For the Baeyer–Villiger oxidation of 1-alkyl-3-arylimino-2-indolinone with m-chloroperbenzoic acid to afford 1-alkyl-4-(arylimino)-1H benzo[d][1,3]oxazin-2(4H)-one, see: Mehrdad et al. (2011); Azizian et al. (2000); Jadidi et al. (2008). For a related structure, see: Asgari et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Unit-cell packing diagram for (I).
(2Z)-N-(4-Methoxyphenyl)-2-(4-methoxyphenylimino)-2H- 1,4-benzoxazin-3-amine top
Crystal data top
C22H19N3O3F(000) = 784
Mr = 373.40Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21467 reflections
a = 14.4225 (14) Åθ = 1.7–29.3°
b = 8.0836 (5) ŵ = 0.09 mm1
c = 16.2749 (14) ÅT = 298 K
β = 107.263 (7)°Needle, yellow
V = 1811.9 (3) Å30.60 × 0.13 × 0.04 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3190 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.111
Graphite monochromatorθmax = 29.3°, θmin = 1.7°
Detector resolution: 0.15 mm pixels mm-1h = 1819
rotation method scansk = 1011
21467 measured reflectionsl = 2222
4893 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.8502P]
where P = (Fo2 + 2Fc2)/3
4893 reflections(Δ/σ)max = 0.002
253 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H19N3O3V = 1811.9 (3) Å3
Mr = 373.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4225 (14) ŵ = 0.09 mm1
b = 8.0836 (5) ÅT = 298 K
c = 16.2749 (14) Å0.60 × 0.13 × 0.04 mm
β = 107.263 (7)°
Data collection top
Stoe IPDS II
diffractometer
3190 reflections with I > 2σ(I)
21467 measured reflectionsRint = 0.111
4893 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.195H-atom parameters constrained
S = 1.15Δρmax = 0.24 e Å3
4893 reflectionsΔρmin = 0.28 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0070 (3)0.2134 (5)0.0453 (2)0.0719 (9)
H1A0.02080.31420.07070.086*
H1B0.04350.15420.08660.086*
H1C0.06450.14640.02810.086*
C20.1045 (2)0.3483 (3)0.01638 (17)0.0497 (6)
C30.1271 (2)0.3897 (3)0.09054 (17)0.0521 (7)
H30.08700.35510.14370.063*
C40.2088 (2)0.4820 (3)0.08625 (16)0.0476 (6)
H40.22240.51090.13680.057*
C50.27136 (19)0.5328 (3)0.00716 (16)0.0459 (6)
C60.2465 (2)0.4957 (4)0.06647 (17)0.0557 (7)
H60.28610.53190.11960.067*
C70.1629 (2)0.4047 (4)0.06239 (18)0.0570 (7)
H70.14650.38220.11240.068*
C80.43609 (19)0.6338 (3)0.05119 (16)0.0446 (6)
C90.54000 (18)0.5791 (3)0.18936 (16)0.0436 (6)
C100.5543 (2)0.5004 (4)0.26776 (18)0.0518 (6)
H100.50580.43420.27730.062*
C110.6412 (2)0.5210 (4)0.33167 (17)0.0536 (7)
H110.65140.46850.38440.064*
C120.7131 (2)0.6199 (4)0.31721 (18)0.0554 (7)
H120.77130.63400.36060.066*
C130.6990 (2)0.6979 (4)0.23896 (17)0.0525 (7)
H130.74760.76440.22980.063*
C140.61137 (18)0.6767 (3)0.17343 (15)0.0428 (6)
C150.5157 (2)0.7295 (3)0.03396 (16)0.0447 (6)
C160.55436 (18)0.8817 (3)0.08379 (15)0.0435 (6)
C170.6539 (2)0.9088 (4)0.04862 (17)0.0536 (7)
H170.68620.86600.00530.064*
C180.7048 (2)0.9990 (4)0.09332 (18)0.0578 (7)
H180.77131.01500.06930.069*
C190.6583 (2)1.0656 (3)0.17326 (17)0.0487 (6)
C200.5592 (2)1.0388 (4)0.20832 (17)0.0548 (7)
H200.52681.08270.26200.066*
C210.5087 (2)0.9484 (4)0.16457 (16)0.0505 (6)
H210.44250.93120.18940.061*
C220.8046 (2)1.1618 (5)0.1983 (2)0.0777 (10)
H22A0.82891.05170.19970.093*
H22B0.82961.20600.14120.093*
H22C0.82501.23050.23790.093*
N10.35461 (16)0.6221 (3)0.01063 (14)0.0499 (5)
N20.59911 (15)0.7521 (3)0.09392 (12)0.0413 (5)
N30.49602 (16)0.7909 (3)0.04487 (13)0.0494 (5)
H3A0.43810.77200.07740.059*
O10.02353 (17)0.2511 (3)0.02758 (14)0.0700 (6)
O20.45078 (13)0.5596 (3)0.12731 (12)0.0556 (5)
O30.70194 (16)1.1580 (3)0.22196 (13)0.0655 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (2)0.077 (2)0.076 (2)0.0097 (17)0.0262 (17)0.0031 (18)
C20.0490 (15)0.0481 (15)0.0498 (14)0.0023 (12)0.0114 (12)0.0024 (12)
C30.0606 (17)0.0492 (15)0.0416 (13)0.0021 (13)0.0074 (12)0.0070 (12)
C40.0567 (16)0.0476 (15)0.0367 (12)0.0030 (12)0.0111 (11)0.0008 (11)
C50.0479 (14)0.0464 (14)0.0405 (12)0.0063 (11)0.0088 (11)0.0015 (11)
C60.0488 (15)0.075 (2)0.0393 (13)0.0014 (14)0.0072 (11)0.0043 (13)
C70.0549 (17)0.075 (2)0.0414 (13)0.0001 (15)0.0143 (12)0.0018 (13)
C80.0438 (13)0.0448 (14)0.0420 (13)0.0052 (11)0.0077 (11)0.0031 (11)
C90.0378 (13)0.0457 (14)0.0445 (13)0.0027 (10)0.0079 (10)0.0008 (11)
C100.0464 (14)0.0535 (16)0.0554 (15)0.0022 (12)0.0147 (12)0.0093 (13)
C110.0533 (16)0.0587 (17)0.0434 (13)0.0080 (13)0.0061 (12)0.0054 (13)
C120.0479 (15)0.0627 (18)0.0486 (14)0.0022 (13)0.0035 (12)0.0079 (13)
C130.0467 (15)0.0584 (17)0.0499 (15)0.0085 (12)0.0104 (12)0.0057 (13)
C140.0438 (13)0.0431 (13)0.0414 (12)0.0015 (11)0.0125 (10)0.0020 (10)
C150.0531 (15)0.0393 (13)0.0443 (13)0.0065 (11)0.0186 (11)0.0017 (10)
C160.0440 (13)0.0461 (14)0.0400 (12)0.0054 (11)0.0119 (11)0.0026 (10)
C170.0440 (14)0.0676 (18)0.0433 (14)0.0022 (13)0.0036 (12)0.0082 (13)
C180.0421 (14)0.075 (2)0.0497 (14)0.0037 (14)0.0041 (12)0.0031 (15)
C190.0533 (15)0.0501 (15)0.0423 (13)0.0014 (12)0.0136 (12)0.0018 (11)
C200.0530 (16)0.0699 (19)0.0372 (12)0.0059 (14)0.0068 (12)0.0054 (13)
C210.0422 (13)0.0640 (18)0.0408 (13)0.0028 (12)0.0052 (11)0.0016 (12)
C220.0560 (19)0.095 (3)0.084 (2)0.0101 (18)0.0233 (18)0.012 (2)
N10.0459 (12)0.0551 (14)0.0447 (11)0.0003 (10)0.0071 (10)0.0023 (10)
N20.0417 (11)0.0446 (12)0.0361 (10)0.0024 (9)0.0095 (8)0.0002 (9)
N30.0446 (12)0.0576 (14)0.0431 (11)0.0033 (10)0.0087 (9)0.0008 (10)
O10.0668 (14)0.0815 (15)0.0617 (13)0.0229 (12)0.0193 (11)0.0067 (11)
O20.0446 (10)0.0604 (12)0.0558 (11)0.0025 (9)0.0058 (9)0.0078 (9)
O30.0595 (13)0.0817 (15)0.0544 (11)0.0078 (11)0.0157 (10)0.0101 (11)
Geometric parameters (Å, º) top
C1—O11.416 (4)C11—H110.9300
C1—H1A0.9600C12—C131.381 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.402 (4)
C2—O11.374 (3)C13—H130.9300
C2—C31.382 (4)C14—N21.393 (3)
C2—C71.386 (4)C15—N21.318 (3)
C3—C41.378 (4)C15—N31.325 (3)
C3—H30.9300C16—C211.393 (4)
C4—C51.397 (3)C16—C171.396 (4)
C4—H40.9300C16—N31.401 (3)
C5—C61.382 (4)C17—C181.385 (4)
C5—N11.417 (4)C17—H170.9300
C6—C71.397 (4)C18—C191.384 (4)
C6—H60.9300C18—H180.9300
C7—H70.9300C19—O31.370 (3)
C8—N11.304 (3)C19—C201.390 (4)
C8—O21.336 (3)C20—C211.371 (4)
C8—C151.479 (4)C20—H200.9300
C9—C141.381 (4)C21—H210.9300
C9—C101.385 (4)C22—O31.415 (4)
C9—O21.389 (3)C22—H22A0.9600
C10—C111.381 (4)C22—H22B0.9600
C10—H100.9300C22—H22C0.9600
C11—C121.384 (4)N3—H3A0.8600
O1—C1—H1A109.5C12—C13—H13120.1
O1—C1—H1B109.5C14—C13—H13120.1
H1A—C1—H1B109.5C9—C14—N2121.9 (2)
O1—C1—H1C109.5C9—C14—C13118.8 (2)
H1A—C1—H1C109.5N2—C14—C13119.4 (2)
H1B—C1—H1C109.5N2—C15—N3123.5 (2)
O1—C2—C3115.8 (2)N2—C15—C8121.4 (2)
O1—C2—C7124.8 (3)N3—C15—C8115.1 (2)
C3—C2—C7119.5 (3)C21—C16—C17117.8 (2)
C4—C3—C2120.5 (2)C21—C16—N3116.8 (2)
C4—C3—H3119.8C17—C16—N3125.4 (2)
C2—C3—H3119.8C18—C17—C16120.6 (2)
C3—C4—C5121.0 (2)C18—C17—H17119.7
C3—C4—H4119.5C16—C17—H17119.7
C5—C4—H4119.5C19—C18—C17120.9 (3)
C6—C5—C4118.2 (3)C19—C18—H18119.5
C6—C5—N1125.9 (2)C17—C18—H18119.5
C4—C5—N1115.9 (2)O3—C19—C18125.3 (3)
C5—C6—C7121.0 (3)O3—C19—C20116.1 (2)
C5—C6—H6119.5C18—C19—C20118.5 (3)
C7—C6—H6119.5C21—C20—C19120.7 (2)
C2—C7—C6119.8 (3)C21—C20—H20119.7
C2—C7—H7120.1C19—C20—H20119.7
C6—C7—H7120.1C20—C21—C16121.4 (2)
N1—C8—O2122.8 (2)C20—C21—H21119.3
N1—C8—C15117.7 (2)C16—C21—H21119.3
O2—C8—C15119.5 (2)O3—C22—H22A109.5
C14—C9—C10121.3 (2)O3—C22—H22B109.5
C14—C9—O2120.6 (2)H22A—C22—H22B109.5
C10—C9—O2118.1 (2)O3—C22—H22C109.5
C11—C10—C9119.5 (3)H22A—C22—H22C109.5
C11—C10—H10120.3H22B—C22—H22C109.5
C9—C10—H10120.3C8—N1—C5125.9 (2)
C10—C11—C12120.0 (3)C15—N2—C14117.6 (2)
C10—C11—H11120.0C15—N3—C16130.4 (2)
C12—C11—H11120.0C15—N3—H3A114.8
C13—C12—C11120.6 (3)C16—N3—H3A114.8
C13—C12—H12119.7C2—O1—C1118.4 (2)
C11—C12—H12119.7C8—O2—C9118.8 (2)
C12—C13—C14119.9 (3)C19—O3—C22118.5 (2)
O1—C2—C3—C4177.7 (3)C17—C18—C19—O3179.2 (3)
C7—C2—C3—C42.0 (4)C17—C18—C19—C200.6 (5)
C2—C3—C4—C51.3 (4)O3—C19—C20—C21179.8 (3)
C3—C4—C5—C63.4 (4)C18—C19—C20—C210.0 (4)
C3—C4—C5—N1177.9 (2)C19—C20—C21—C160.5 (5)
C4—C5—C6—C72.3 (4)C17—C16—C21—C200.4 (4)
N1—C5—C6—C7179.3 (3)N3—C16—C21—C20179.8 (3)
O1—C2—C7—C6176.6 (3)O2—C8—N1—C50.2 (4)
C3—C2—C7—C63.2 (4)C15—C8—N1—C5178.3 (2)
C5—C6—C7—C21.0 (5)C6—C5—N1—C825.8 (4)
C14—C9—C10—C110.6 (4)C4—C5—N1—C8155.7 (3)
O2—C9—C10—C11178.2 (3)N3—C15—N2—C14178.2 (2)
C9—C10—C11—C120.1 (4)C8—C15—N2—C142.6 (3)
C10—C11—C12—C130.4 (5)C9—C14—N2—C151.1 (4)
C11—C12—C13—C140.1 (4)C13—C14—N2—C15179.9 (2)
C10—C9—C14—N2177.9 (2)N2—C15—N3—C163.1 (4)
O2—C9—C14—N23.4 (4)C8—C15—N3—C16177.7 (2)
C10—C9—C14—C131.1 (4)C21—C16—N3—C15171.6 (3)
O2—C9—C14—C13177.7 (2)C17—C16—N3—C159.0 (5)
C12—C13—C14—C90.9 (4)C3—C2—O1—C1176.0 (3)
C12—C13—C14—N2178.1 (3)C7—C2—O1—C14.3 (5)
N1—C8—C15—N2177.6 (2)N1—C8—O2—C9180.0 (2)
O2—C8—C15—N24.3 (4)C15—C8—O2—C92.0 (3)
N1—C8—C15—N31.7 (3)C14—C9—O2—C81.6 (4)
O2—C8—C15—N3176.5 (2)C10—C9—O2—C8179.6 (2)
C21—C16—C17—C180.2 (4)C18—C19—O3—C2212.6 (5)
N3—C16—C17—C18179.2 (3)C20—C19—O3—C22167.6 (3)
C16—C17—C18—C190.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.593.423 (3)149
Symmetry code: (i) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19N3O3
Mr373.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.4225 (14), 8.0836 (5), 16.2749 (14)
β (°) 107.263 (7)
V3)1811.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.13 × 0.04
Data collection
DiffractometerStoe IPDS II
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21467, 4893, 3190
Rint0.111
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.195, 1.15
No. of reflections4893
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.593.423 (3)149
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Vice President of Research Affairs at Shahid Beheshti University, General Campus, for financial support.

References

First citationAsgari, D., Mehrdad, M., Ghanbari, M., Jadidi, K., Behzad, S. K. & Khavasi, H. R. (2011). Acta Cryst. E67. Submitted [BT5429]  Google Scholar
First citationAzizian, J., Mehrdad, M., Jadidi, K. & Sarrafi, Y. (2000). Tetrahedron Lett. 41, 5265–5268.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJadidi, K., Ghahremanzadeh, R., Mehrdad, M., Ghanbari, M. & Arvin-Nezhad, H. (2008). Monatsh. Chem. 139, 277–280.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrdad, M., Ghanbari, M., Jadidi, K., Asgari, D. & Khavasi, H. R. (2011). In preparation.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds