organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpiperidinium 5-nitro­salicylate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 29 November 2010; accepted 30 November 2010; online 15 December 2010)

In the crystal structure of the title compound, C6H13N2O+·C7H4NO5, the isonipecotamide cations and the 5-nitro­salicylate anions form hydrogen-bonded chain substructures through head-to-tail piperidinium–carboxyl­ate N—H⋯O hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R22(8)]. These chains are cross-linked by amide–carboxyl­ate N—H⋯O and piperidinium–nitro N—H⋯O associations, giving a sheet structure.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010[Smith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160-o3161.]); Smith & Wermuth (2010a[Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609-o613.],b[Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614-o618.],c[Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162.],d[Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260.]). For structures of 5-nitro­salicylates, see: Smith et al. (2005[Smith, G., Hartono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47-52.]). For hydrogen-bonding graph-set and motif classification, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun., pp. 1043-1044.]).

[Scheme 1]

Experimental

Crystal data
  • C6H13N2O+·C7H4NO5

  • Mr = 311.30

  • Monoclinic, P 21 /n

  • a = 15.0442 (10) Å

  • b = 5.5851 (3) Å

  • c = 17.1939 (10) Å

  • β = 91.466 (6)°

  • V = 1444.22 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.40 × 0.25 × 0.16 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.912, Tmax = 0.980

  • 9191 measured reflections

  • 2833 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 0.95

  • 2833 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11A⋯O12i 1.00 (2) 1.71 (2) 2.688 (2) 164.2 (18)
N1A—H12A⋯O11 0.95 (2) 1.80 (2) 2.747 (2) 173.9 (17)
N41A—H41A⋯O52ii 0.83 (2) 2.39 (2) 3.216 (2) 170.8 (19)
N41A—H42A⋯O41Aiii 0.99 (2) 1.91 (2) 2.873 (2) 164.8 (18)
O2—H2⋯O12 0.96 (2) 1.58 (2) 2.4897 (18) 156 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of a number of salts of the amide piperidine-4-carboxamide (isonipecotamide, INIPA) with a range of carboxylic acids, mainly aromatic, are now known (Smith & Wermuth, 2010a, 2010b, 2010c, Smith & Wermuth, 2010d,; Smith et al., 2010). The title compound C6H13N2O+ C7H4NO5- (I) was obtained from the 1:1 stoichiometric reaction of 5-nitrosalicylic acid with INIPA in methanol and the structure is reported here.

In (I) (Fig. 1) the cations and anions form hydrogn-bonded chain substructures through head-to-tail piperidinium NH···Ocarboxyl hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R22(8) (Etter et al., 1990)]. These chains are cross linked by amide NH···Ocarboxyl and piperidinium NH···Onitro associations to giving a two-dimensional sheet structure (Fig. 2). The amide-amide dimer association [the 'amide motif' (Allen et al., 1998)] is relatively common among the INIPA salts (Smith & Wermuth, 2010b; Smith et al., 2010).

The 5-nitrosalicylate anions are essentially planar [torsion angles for the carboxyl group (C2–C1–C11–O11), 178.30 (16)° and the nitro group (C4–C5–N5–O52), -175.57 (16)°], which is the usual conformation for this anion in its proton-transfer compounds (Smith et al., 2005).

Related literature top

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a,b,c,d). For structures of 5-nitrosalicylates, see: Smith et al. (2005). For hydrogen-bonding graph-set and motif classification, see: Etter et al. (1990); Allen et al. (1998).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of piperidine-4-carboxamide (isonipecotamide) and 5-nitrosalicylic acid in 50 ml of methanol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale yellow prisms of the title compound from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions using a riding-model approximation [C—H = 0.93–0.98 Å] and with Uiso(H) = 1.2Ueq(C).

Structure description top

The structures of a number of salts of the amide piperidine-4-carboxamide (isonipecotamide, INIPA) with a range of carboxylic acids, mainly aromatic, are now known (Smith & Wermuth, 2010a, 2010b, 2010c, Smith & Wermuth, 2010d,; Smith et al., 2010). The title compound C6H13N2O+ C7H4NO5- (I) was obtained from the 1:1 stoichiometric reaction of 5-nitrosalicylic acid with INIPA in methanol and the structure is reported here.

In (I) (Fig. 1) the cations and anions form hydrogn-bonded chain substructures through head-to-tail piperidinium NH···Ocarboxyl hydrogen bonds and through centrosymmetric cyclic head-to-head amide–amide hydrogen-bonding associations [graph set R22(8) (Etter et al., 1990)]. These chains are cross linked by amide NH···Ocarboxyl and piperidinium NH···Onitro associations to giving a two-dimensional sheet structure (Fig. 2). The amide-amide dimer association [the 'amide motif' (Allen et al., 1998)] is relatively common among the INIPA salts (Smith & Wermuth, 2010b; Smith et al., 2010).

The 5-nitrosalicylate anions are essentially planar [torsion angles for the carboxyl group (C2–C1–C11–O11), 178.30 (16)° and the nitro group (C4–C5–N5–O52), -175.57 (16)°], which is the usual conformation for this anion in its proton-transfer compounds (Smith et al., 2005).

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith & Wermuth (2010a,b,c,d). For structures of 5-nitrosalicylates, see: Smith et al. (2005). For hydrogen-bonding graph-set and motif classification, see: Etter et al. (1990); Allen et al. (1998).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the INIPA cation and the 5-nitrosalicylate anion in (I). The inter-species hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded chain substructures in (I) showing the cyclic R22(8) amide–amide and cation–anion associations. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.
4-carbamoylpiperidine 2-hydroxy-5-nitrobenzoate top
Crystal data top
C6H13N2O+·C7H4NO5F(000) = 656
Mr = 311.30Dx = 1.432 Mg m3
Monoclinic, P21/nMelting point: 463 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.0442 (10) ÅCell parameters from 3270 reflections
b = 5.5851 (3) Åθ = 3.6–28.7°
c = 17.1939 (10) ŵ = 0.12 mm1
β = 91.466 (6)°T = 200 K
V = 1444.22 (15) Å3Prism, pale yellow
Z = 40.40 × 0.25 × 0.16 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2833 independent reflections
Radiation source: Enhance (Mo)X-ray source1850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.912, Tmax = 0.980l = 1221
9191 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
2833 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H13N2O+·C7H4NO5V = 1444.22 (15) Å3
Mr = 311.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0442 (10) ŵ = 0.12 mm1
b = 5.5851 (3) ÅT = 200 K
c = 17.1939 (10) Å0.40 × 0.25 × 0.16 mm
β = 91.466 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1850 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.980Rint = 0.031
9191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.11 e Å3
2833 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41A0.44900 (9)0.0250 (2)0.90133 (7)0.0575 (5)
N1A0.39663 (10)0.5656 (3)0.69549 (9)0.0452 (6)
N41A0.54984 (11)0.2658 (4)0.96084 (10)0.0480 (6)
C2A0.49383 (12)0.5253 (3)0.70538 (12)0.0545 (7)
C3A0.51390 (12)0.3391 (3)0.76686 (10)0.0516 (7)
C4A0.47324 (11)0.4101 (3)0.84420 (9)0.0423 (6)
C5A0.37359 (11)0.4529 (3)0.83207 (10)0.0451 (6)
C6A0.35478 (11)0.6369 (3)0.76956 (10)0.0463 (6)
C41A0.48930 (12)0.2177 (3)0.90488 (10)0.0435 (6)
O20.40541 (10)0.1530 (2)0.42604 (8)0.0605 (5)
O110.32739 (8)0.1529 (2)0.63160 (7)0.0507 (4)
O120.39253 (9)0.1469 (3)0.57010 (7)0.0600 (5)
O510.16400 (10)0.7176 (3)0.34253 (8)0.0729 (6)
O520.17024 (9)0.7584 (2)0.46713 (8)0.0562 (5)
N50.19077 (10)0.6528 (3)0.40756 (9)0.0510 (6)
C10.32654 (11)0.1565 (3)0.49283 (9)0.0388 (6)
C20.35489 (12)0.0445 (3)0.42422 (10)0.0460 (6)
C30.32936 (13)0.1368 (4)0.35198 (10)0.0550 (7)
C40.27649 (13)0.3354 (4)0.34625 (10)0.0529 (7)
C50.24816 (11)0.4452 (3)0.41392 (9)0.0423 (6)
C60.27300 (11)0.3580 (3)0.48665 (9)0.0396 (6)
C110.35061 (12)0.0510 (3)0.57113 (10)0.0443 (6)
H4A0.501100.559000.862500.0510*
H11A0.3874 (12)0.689 (4)0.6540 (12)0.065 (6)*
H12A0.3699 (12)0.422 (4)0.6763 (11)0.063 (6)*
H21A0.522600.674600.720000.0650*
H22A0.517700.473300.656300.0650*
H31A0.577800.322300.773900.0620*
H32A0.490000.185800.750100.0620*
H41A0.5753 (13)0.398 (4)0.9620 (11)0.054 (7)*
H42A0.5568 (13)0.147 (4)1.0029 (12)0.075 (7)*
H51A0.344800.303400.817700.0540*
H52A0.348700.507100.880500.0540*
H61A0.291000.652500.761100.0560*
H62A0.377900.791100.786300.0560*
H20.4119 (15)0.184 (4)0.4809 (14)0.109 (9)*
H30.348500.062600.307000.0660*
H40.259700.396400.297700.0630*
H60.253800.434500.531300.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O41A0.0736 (9)0.0473 (8)0.0500 (8)0.0056 (7)0.0280 (7)0.0127 (6)
N1A0.0518 (10)0.0467 (10)0.0368 (9)0.0015 (8)0.0070 (7)0.0078 (8)
N41A0.0472 (10)0.0463 (10)0.0495 (10)0.0124 (9)0.0208 (8)0.0123 (9)
C2A0.0482 (12)0.0624 (13)0.0531 (12)0.0009 (10)0.0056 (9)0.0120 (10)
C3A0.0439 (11)0.0576 (12)0.0530 (12)0.0122 (9)0.0014 (9)0.0134 (10)
C4A0.0421 (10)0.0420 (10)0.0420 (10)0.0090 (8)0.0125 (8)0.0149 (8)
C5A0.0422 (10)0.0580 (11)0.0348 (10)0.0155 (9)0.0066 (8)0.0066 (9)
C6A0.0429 (10)0.0561 (11)0.0396 (10)0.0127 (9)0.0066 (8)0.0080 (9)
C41A0.0418 (10)0.0454 (11)0.0426 (10)0.0189 (9)0.0139 (8)0.0195 (9)
O20.0834 (10)0.0489 (8)0.0501 (8)0.0077 (8)0.0216 (8)0.0104 (7)
O110.0597 (8)0.0621 (8)0.0303 (7)0.0163 (7)0.0002 (6)0.0097 (6)
O120.0762 (10)0.0563 (8)0.0474 (8)0.0017 (8)0.0024 (7)0.0007 (7)
O510.0929 (11)0.0800 (11)0.0455 (8)0.0009 (8)0.0025 (8)0.0174 (7)
O520.0630 (9)0.0544 (8)0.0516 (9)0.0081 (7)0.0075 (7)0.0025 (7)
N50.0580 (10)0.0546 (10)0.0406 (10)0.0209 (9)0.0067 (8)0.0033 (8)
C10.0423 (10)0.0414 (10)0.0331 (10)0.0211 (9)0.0064 (7)0.0067 (8)
C20.0590 (12)0.0407 (10)0.0390 (11)0.0221 (9)0.0148 (9)0.0066 (9)
C30.0810 (15)0.0528 (12)0.0322 (11)0.0223 (11)0.0224 (10)0.0069 (9)
C40.0715 (14)0.0585 (12)0.0291 (10)0.0264 (11)0.0099 (9)0.0020 (9)
C50.0483 (11)0.0438 (11)0.0352 (10)0.0184 (9)0.0073 (8)0.0017 (8)
C60.0430 (10)0.0457 (10)0.0302 (9)0.0230 (9)0.0056 (7)0.0079 (8)
C110.0453 (11)0.0505 (11)0.0369 (11)0.0208 (9)0.0001 (8)0.0070 (9)
Geometric parameters (Å, º) top
O41A—C41A1.236 (2)C2A—H22A0.9700
O2—C21.340 (2)C2A—H21A0.9700
O11—C111.243 (2)C3A—H31A0.9700
O12—C111.273 (2)C3A—H32A0.9700
O51—N51.233 (2)C4A—H4A0.9800
O52—N51.228 (2)C5A—H51A0.9700
O2—H20.96 (2)C5A—H52A0.9700
N1A—C6A1.489 (2)C6A—H62A0.9700
N1A—C2A1.485 (2)C6A—H61A0.9700
N41A—C41A1.335 (2)C1—C61.386 (2)
N1A—H12A0.95 (2)C1—C111.505 (2)
N1A—H11A1.00 (2)C1—C21.411 (2)
N41A—H41A0.83 (2)C2—C31.390 (3)
N41A—H42A0.99 (2)C3—C41.367 (3)
N5—C51.448 (2)C4—C51.392 (2)
C2A—C3A1.508 (3)C5—C61.385 (2)
C3A—C4A1.530 (2)C3—H30.9300
C4A—C5A1.527 (2)C4—H40.9300
C4A—C41A1.513 (2)C6—H60.9300
C5A—C6A1.509 (2)
C2—O2—H2102.4 (13)C5A—C4A—H4A109.00
C2A—N1A—C6A112.29 (14)C3A—C4A—H4A109.00
C2A—N1A—H12A108.5 (12)C4A—C5A—H52A109.00
C6A—N1A—H11A111.8 (12)C6A—C5A—H51A109.00
H11A—N1A—H12A106.5 (17)C4A—C5A—H51A109.00
C6A—N1A—H12A109.7 (11)C6A—C5A—H52A109.00
C2A—N1A—H11A107.8 (11)H51A—C5A—H52A108.00
H41A—N41A—H42A122.7 (18)H61A—C6A—H62A108.00
C41A—N41A—H42A116.8 (12)C5A—C6A—H61A110.00
C41A—N41A—H41A120.1 (13)C5A—C6A—H62A110.00
O51—N5—O52122.14 (16)N1A—C6A—H61A109.00
O51—N5—C5118.93 (15)N1A—C6A—H62A110.00
O52—N5—C5118.93 (14)C2—C1—C11120.22 (15)
N1A—C2A—C3A111.33 (15)C6—C1—C11120.82 (14)
C2A—C3A—C4A110.68 (14)C2—C1—C6118.90 (15)
C3A—C4A—C41A110.79 (14)O2—C2—C1121.94 (15)
C5A—C4A—C41A110.14 (14)O2—C2—C3118.03 (16)
C3A—C4A—C5A109.56 (13)C1—C2—C3120.02 (16)
C4A—C5A—C6A111.69 (14)C2—C3—C4120.82 (17)
N1A—C6A—C5A110.57 (14)C3—C4—C5119.17 (16)
O41A—C41A—N41A122.38 (17)N5—C5—C6119.77 (14)
N41A—C41A—C4A116.62 (16)C4—C5—C6121.25 (16)
O41A—C41A—C4A120.99 (15)N5—C5—C4118.98 (15)
N1A—C2A—H21A109.00C1—C6—C5119.84 (15)
N1A—C2A—H22A109.00O11—C11—C1120.16 (15)
C3A—C2A—H21A109.00O12—C11—C1115.81 (15)
C3A—C2A—H22A109.00O11—C11—O12123.99 (16)
H21A—C2A—H22A108.00C2—C3—H3120.00
C2A—C3A—H32A110.00C4—C3—H3120.00
C4A—C3A—H31A109.00C3—C4—H4120.00
C2A—C3A—H31A110.00C5—C4—H4120.00
C4A—C3A—H32A109.00C1—C6—H6120.00
H31A—C3A—H32A108.00C5—C6—H6120.00
C41A—C4A—H4A109.00
C6A—N1A—C2A—C3A56.83 (19)C6—C1—C2—C30.2 (3)
C2A—N1A—C6A—C5A56.01 (18)C11—C1—C2—O21.8 (3)
O51—N5—C5—C44.5 (2)C11—C1—C2—C3177.28 (17)
O51—N5—C5—C6174.74 (16)C2—C1—C6—C50.2 (2)
O52—N5—C5—C4175.57 (16)C11—C1—C6—C5176.88 (16)
O52—N5—C5—C65.2 (2)C2—C1—C11—O11178.30 (16)
N1A—C2A—C3A—C4A56.37 (19)C2—C1—C11—O123.8 (2)
C2A—C3A—C4A—C5A55.43 (18)C6—C1—C11—O114.7 (3)
C2A—C3A—C4A—C41A177.15 (14)C6—C1—C11—O12173.26 (16)
C5A—C4A—C41A—O41A49.2 (2)O2—C2—C3—C4178.81 (18)
C5A—C4A—C41A—N41A132.02 (17)C1—C2—C3—C40.3 (3)
C3A—C4A—C41A—O41A72.2 (2)C2—C3—C4—C50.0 (3)
C3A—C4A—C5A—C6A55.62 (18)C3—C4—C5—N5178.83 (17)
C41A—C4A—C5A—C6A177.72 (14)C3—C4—C5—C60.4 (3)
C3A—C4A—C41A—N41A106.61 (18)N5—C5—C6—C1178.76 (15)
C4A—C5A—C6A—N1A55.72 (18)C4—C5—C6—C10.5 (3)
C6—C1—C2—O2178.84 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O12i1.00 (2)1.71 (2)2.688 (2)164.2 (18)
N1A—H12A···O110.95 (2)1.80 (2)2.747 (2)173.9 (17)
N41A—H41A···O52ii0.83 (2)2.39 (2)3.216 (2)170.8 (19)
N41A—H42A···O41Aiii0.99 (2)1.91 (2)2.873 (2)164.8 (18)
O2—H2···O120.96 (2)1.58 (2)2.4897 (18)156 (2)
C2A—H22A···O2iv0.972.573.450 (2)150
C6A—H61A···O11v0.972.603.263 (2)126
C6A—H62A···O41Ai0.972.583.417 (2)145
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H13N2O+·C7H4NO5
Mr311.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)15.0442 (10), 5.5851 (3), 17.1939 (10)
β (°) 91.466 (6)
V3)1444.22 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.25 × 0.16
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.912, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9191, 2833, 1850
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 0.95
No. of reflections2833
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11A···O12i1.00 (2)1.71 (2)2.688 (2)164.2 (18)
N1A—H12A···O110.95 (2)1.80 (2)2.747 (2)173.9 (17)
N41A—H41A···O52ii0.83 (2)2.39 (2)3.216 (2)170.8 (19)
N41A—H42A···O41Aiii0.99 (2)1.91 (2)2.873 (2)164.8 (18)
O2—H2···O120.96 (2)1.58 (2)2.4897 (18)156 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun., pp. 1043–1044.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Hartono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, o609–o613.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, o614–o618.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010c). Acta Cryst. E66, o3162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010d). Acta Cryst. E66, o3260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Young, D. J. (2010). Acta Cryst. E66, o3160–o3161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds