organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-chloro­benzo­yl)benzene­sulfonamide toluene hemisolvate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 5 December 2010; accepted 13 December 2010; online 18 December 2010)

The unit cell of the title compound, C13H9Cl2NO3S·0.5C7H8, contains two mol­ecules of 2-chloro-N-(4-chloro­benzo­yl)benzene­sulfonamide and one toluene mol­ecule, which is disordered about a centre of inversion. The dihedral angle between the two aromatic rings is 85.7 (1)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O(S) hydrogen bonds, forming centrosymmetric dimers.

Related literature

For background to our study of the effect of ring and side-chain substitutions on the crystal structures of N-aryl sulfon­amides and for similar structures, see: Gowda et al. (2010a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o1343.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1040.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO3S·0.5C7H8

  • Mr = 376.24

  • Triclinic, [P \overline 1]

  • a = 7.5992 (9) Å

  • b = 10.876 (1) Å

  • c = 11.346 (1) Å

  • α = 73.868 (8)°

  • β = 75.927 (9)°

  • γ = 70.994 (8)°

  • V = 839.58 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 299 K

  • 0.44 × 0.44 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.802, Tmax = 0.834

  • 5654 measured reflections

  • 3405 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.06

  • 3405 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.13 (2) 2.951 (2) 176 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as a part of studying the effect of ring and the side chain substitutions on the crystal structures of N-aryl sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010), the structure of 2-chloro-N-(4-chlorobenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains also half a molecule of toluene which is disordered about a centre of inversion. The conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the SO bonds. In these segments, the N—H bond is anti to the C=O bond (Fig. 1), similar to those observed in 2-chloro-N-(2-chlorobenzoyl)-benzenesulfonamide (II) (Suchetan et al., 2010), 2-chloro-N-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda et al., 2010b)), 2-methyl-N- (4-methylbenzoyl)benzenesulfonamide (IV) (Gowda et al., 2010a).

The molecule in (I) is twisted at the S atom with the C—SO2—NH—C(O) torsional angle of -62.7 (2)°, compared to those of -66.5 (2)° in (II), -62.6 (3)° and -62.6 (2)° in the two molecules of (III), and -53.1 (2)° and 61.2 (2)° in the two independent molecules of (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 88.5 (1)°, compared to the values of 86.9 (1) in (II), 89.9 (1)° and 86.4 (1)° in the two molecules of (III), and 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2) in (IV).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 85.7 (1)°, compared to the values of 76.9 (1) in (II), 77.8 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (III), and 88.1 (1)° and 83.5 (1)° in the two independent molecules of (IV).

The packing of molecules linked by N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and side-chain substitutions on the crystal structures of N-aryl sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of 4-chlorobenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). The solvent toluene molecule is disordered about a centre of inversion. The components of the displacement parameters of C15 C16 C17 were restrained to be equal within an effective standard deviation 0.01.

Structure description top

In the present work, as a part of studying the effect of ring and the side chain substitutions on the crystal structures of N-aryl sulfonamides (Gowda et al., 2010a,b; Suchetan et al., 2010), the structure of 2-chloro-N-(4-chlorobenzoyl)benzenesulfonamide (I) has been determined. The asymmetric unit of (I) contains also half a molecule of toluene which is disordered about a centre of inversion. The conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the SO bonds. In these segments, the N—H bond is anti to the C=O bond (Fig. 1), similar to those observed in 2-chloro-N-(2-chlorobenzoyl)-benzenesulfonamide (II) (Suchetan et al., 2010), 2-chloro-N-(3-chlorobenzoyl)benzenesulfonamide (III) (Gowda et al., 2010b)), 2-methyl-N- (4-methylbenzoyl)benzenesulfonamide (IV) (Gowda et al., 2010a).

The molecule in (I) is twisted at the S atom with the C—SO2—NH—C(O) torsional angle of -62.7 (2)°, compared to those of -66.5 (2)° in (II), -62.6 (3)° and -62.6 (2)° in the two molecules of (III), and -53.1 (2)° and 61.2 (2)° in the two independent molecules of (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 88.5 (1)°, compared to the values of 86.9 (1) in (II), 89.9 (1)° and 86.4 (1)° in the two molecules of (III), and 86.0 (1)° (molecule 1) and 87.9 (1)° (molecule 2) in (IV).

Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 85.7 (1)°, compared to the values of 76.9 (1) in (II), 77.8 (1)° (molecule 1) and 83.5 (1)° (molecule 2) in (III), and 88.1 (1)° and 83.5 (1)° in the two independent molecules of (IV).

The packing of molecules linked by N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

For background to our study of the effect of ring and side-chain substitutions on the crystal structures of N-aryl sulfonamides and for similar structures, see: Gowda et al. (2010a,b); Suchetan et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloro-N-(4-chlorobenzoyl)benzenesulfonamide toluene hemisolvate top
Crystal data top
C13H9Cl2NO3S·0.5C7H8Z = 2
Mr = 376.24F(000) = 386
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5992 (9) ÅCell parameters from 3881 reflections
b = 10.876 (1) Åθ = 2.9–27.8°
c = 11.346 (1) ŵ = 0.53 mm1
α = 73.868 (8)°T = 299 K
β = 75.927 (9)°Prism, colourless
γ = 70.994 (8)°0.44 × 0.44 × 0.36 mm
V = 839.58 (15) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3405 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 99
Tmin = 0.802, Tmax = 0.834k = 1313
5654 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.4443P]
where P = (Fo2 + 2Fc2)/3
3405 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.43 e Å3
Crystal data top
C13H9Cl2NO3S·0.5C7H8γ = 70.994 (8)°
Mr = 376.24V = 839.58 (15) Å3
Triclinic, P1Z = 2
a = 7.5992 (9) ÅMo Kα radiation
b = 10.876 (1) ŵ = 0.53 mm1
c = 11.346 (1) ÅT = 299 K
α = 73.868 (8)°0.44 × 0.44 × 0.36 mm
β = 75.927 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3405 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2941 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.834Rint = 0.009
5654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
3405 reflectionsΔρmin = 0.43 e Å3
229 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.82406 (9)0.59662 (6)0.34975 (6)0.06376 (18)
Cl20.89482 (11)0.27177 (6)0.59894 (6)0.0726 (2)
S10.46063 (7)0.54050 (5)0.28910 (4)0.04093 (14)
O10.4019 (2)0.61891 (14)0.38181 (13)0.0523 (4)
O20.3219 (2)0.53244 (17)0.22960 (15)0.0594 (4)
O30.6558 (3)0.30065 (15)0.19122 (13)0.0597 (4)
N10.5639 (2)0.38940 (16)0.36235 (15)0.0428 (4)
H1N0.579 (3)0.386 (2)0.433 (2)0.051*
C10.6378 (3)0.59331 (18)0.17244 (17)0.0395 (4)
C20.7921 (3)0.61655 (19)0.19841 (19)0.0456 (4)
C30.9255 (3)0.6578 (2)0.1010 (3)0.0635 (6)
H31.03050.67220.11730.076*
C40.9015 (4)0.6773 (3)0.0197 (3)0.0745 (8)
H40.99110.70500.08480.089*
C50.7480 (4)0.6567 (3)0.0455 (2)0.0682 (7)
H50.73250.67190.12770.082*
C60.6166 (3)0.6134 (2)0.04986 (19)0.0523 (5)
H60.51360.59770.03230.063*
C70.6431 (3)0.28362 (19)0.30279 (18)0.0421 (4)
C80.7089 (3)0.14941 (18)0.38331 (18)0.0404 (4)
C90.6374 (3)0.1159 (2)0.50887 (19)0.0485 (5)
H90.55010.18070.54850.058*
C100.6955 (3)0.0136 (2)0.5754 (2)0.0536 (5)
H100.64680.03620.65950.064*
C110.8254 (3)0.1085 (2)0.5167 (2)0.0478 (5)
C120.9002 (3)0.0773 (2)0.3927 (2)0.0581 (6)
H120.98930.14210.35410.070*
C130.8411 (3)0.0512 (2)0.3268 (2)0.0549 (5)
H130.89060.07290.24270.066*
C140.4143 (9)0.0335 (6)1.0155 (6)0.0821 (17)0.50
C150.4774 (7)0.0445 (4)0.8986 (3)0.0963 (11)
H15A0.40310.07150.83690.116*0.50
H15B0.51920.08310.81350.116*0.50
C160.6245 (14)0.0797 (6)0.8707 (7)0.1058 (17)0.50
H16A0.66440.11270.78700.127*0.50
C170.7412 (8)0.0691 (6)0.9649 (7)0.1470 (19)
H17A0.83900.10820.94920.176*0.50
H17B0.75700.11930.88080.176*0.50
H17C0.84860.00730.97580.176*0.50
H17D0.73030.12391.02100.176*0.50
C180.6696 (18)0.0094 (9)1.0854 (11)0.126 (4)0.50
H18A0.73980.03581.14930.151*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0641 (4)0.0659 (4)0.0699 (4)0.0150 (3)0.0330 (3)0.0130 (3)
Cl20.1049 (5)0.0385 (3)0.0687 (4)0.0145 (3)0.0255 (3)0.0005 (3)
S10.0408 (2)0.0379 (2)0.0415 (3)0.00830 (18)0.00962 (19)0.00531 (19)
O10.0585 (9)0.0427 (8)0.0456 (8)0.0038 (6)0.0031 (6)0.0105 (6)
O20.0473 (8)0.0649 (10)0.0689 (10)0.0177 (7)0.0222 (7)0.0057 (8)
O30.0875 (12)0.0494 (9)0.0409 (8)0.0161 (8)0.0134 (7)0.0091 (6)
N10.0553 (10)0.0353 (8)0.0373 (8)0.0109 (7)0.0111 (7)0.0061 (7)
C10.0434 (10)0.0313 (9)0.0408 (9)0.0071 (7)0.0082 (8)0.0061 (7)
C20.0445 (10)0.0347 (9)0.0534 (11)0.0061 (8)0.0116 (9)0.0057 (8)
C30.0464 (12)0.0493 (13)0.0864 (18)0.0130 (10)0.0034 (11)0.0085 (12)
C40.0755 (17)0.0581 (15)0.0659 (16)0.0184 (13)0.0197 (13)0.0034 (12)
C50.0890 (19)0.0590 (15)0.0431 (12)0.0150 (13)0.0013 (12)0.0073 (10)
C60.0681 (14)0.0454 (11)0.0419 (11)0.0128 (10)0.0128 (10)0.0076 (9)
C70.0469 (10)0.0404 (10)0.0419 (10)0.0162 (8)0.0067 (8)0.0093 (8)
C80.0457 (10)0.0373 (9)0.0419 (10)0.0161 (8)0.0070 (8)0.0092 (8)
C90.0587 (12)0.0393 (10)0.0455 (11)0.0127 (9)0.0030 (9)0.0119 (8)
C100.0746 (15)0.0443 (11)0.0410 (11)0.0202 (10)0.0058 (10)0.0071 (9)
C110.0595 (12)0.0348 (10)0.0518 (11)0.0156 (9)0.0158 (9)0.0049 (8)
C120.0641 (14)0.0410 (11)0.0603 (13)0.0096 (10)0.0025 (11)0.0143 (10)
C130.0694 (14)0.0432 (11)0.0449 (11)0.0159 (10)0.0041 (10)0.0097 (9)
C140.078 (4)0.068 (4)0.085 (4)0.015 (3)0.007 (3)0.041 (3)
C150.125 (3)0.082 (2)0.0583 (18)0.014 (2)0.021 (2)0.0238 (17)
C160.146 (5)0.051 (3)0.079 (4)0.001 (4)0.022 (3)0.016 (3)
C170.113 (4)0.114 (4)0.198 (6)0.002 (3)0.018 (3)0.057 (4)
C180.164 (9)0.088 (5)0.154 (9)0.001 (6)0.108 (8)0.042 (5)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C12—H120.9300
Cl2—C111.735 (2)C13—H130.9300
S1—O21.4191 (15)C14—C16i1.248 (10)
S1—O11.4336 (15)C14—C17i1.311 (8)
S1—N11.6508 (17)C14—C18i1.342 (10)
S1—C11.763 (2)C14—C15i1.379 (8)
O3—C71.212 (2)C14—C151.428 (8)
N1—C71.388 (2)C14—C14i1.613 (16)
N1—H1N0.82 (2)C15—C161.239 (10)
C1—C61.387 (3)C15—C18i1.252 (11)
C1—C21.389 (3)C15—C14i1.379 (8)
C2—C31.388 (3)C15—H15A0.9300
C3—C41.374 (4)C15—H15B0.9601
C3—H30.9300C16—C14i1.248 (10)
C4—C51.368 (4)C16—C171.506 (11)
C4—H40.9300C16—H15B1.1326
C5—C61.373 (3)C16—H16A0.9300
C5—H50.9300C16—H17B1.2556
C6—H60.9300C17—C14i1.311 (8)
C7—C81.490 (3)C17—C181.478 (13)
C8—C91.386 (3)C17—H17A0.9299
C8—C131.389 (3)C17—H17B0.9600
C9—C101.384 (3)C17—H17C0.9600
C9—H90.9300C17—H17D0.9599
C10—C111.371 (3)C18—C15i1.252 (11)
C10—H100.9300C18—C14i1.342 (10)
C11—C121.375 (3)C18—H18A0.9300
C12—C131.374 (3)
O2—S1—O1118.68 (10)C18i—C14—C14i106.8 (10)
O2—S1—N1108.83 (9)C15i—C14—C14i56.4 (5)
O1—S1—N1104.52 (9)C15—C14—C14i53.5 (5)
O2—S1—C1107.90 (9)C16—C15—C18i173.8 (7)
O1—S1—C1110.14 (9)C16—C15—C14i56.6 (5)
N1—S1—C1106.05 (9)C18i—C15—C14i129.3 (7)
C7—N1—S1122.20 (14)C16—C15—C14125.8 (6)
C7—N1—H1N123.3 (17)C18i—C15—C1459.7 (6)
S1—N1—H1N113.9 (17)C14i—C15—C1470.1 (6)
C6—C1—C2119.90 (19)C16—C15—H15A116.1
C6—C1—S1116.98 (16)C18i—C15—H15A58.4
C2—C1—S1123.11 (15)C14i—C15—H15A167.6
C3—C2—C1119.4 (2)C14—C15—H15A118.0
C3—C2—Cl1118.42 (18)C16—C15—H15B60.4
C1—C2—Cl1122.13 (16)C18i—C15—H15B113.7
C4—C3—C2119.7 (2)C14i—C15—H15B117.0
C4—C3—H3120.2C14—C15—H15B168.8
C2—C3—H3120.2H15A—C15—H15B56.6
C5—C4—C3121.0 (2)C15—C16—C14i67.3 (6)
C5—C4—H4119.5C15—C16—C17123.2 (6)
C3—C4—H4119.5C14i—C16—C1755.9 (5)
C4—C5—C6120.0 (2)C15—C16—H15B47.5
C4—C5—H5120.0C14i—C16—H15B114.8
C6—C5—H5120.0C17—C16—H15B170.6
C5—C6—C1120.0 (2)C15—C16—H16A117.5
C5—C6—H6120.0C14i—C16—H16A174.9
C1—C6—H6120.0C17—C16—H16A119.3
O3—C7—N1121.13 (18)H15B—C16—H16A70.1
O3—C7—C8122.36 (18)C15—C16—H17B160.2
N1—C7—C8116.50 (16)C14i—C16—H17B94.6
C9—C8—C13118.74 (18)C17—C16—H17B39.4
C9—C8—C7123.58 (18)H15B—C16—H17B149.2
C13—C8—C7117.56 (17)H16A—C16—H17B80.9
C10—C9—C8120.19 (19)C14i—C17—C1857.1 (5)
C10—C9—H9119.9C14i—C17—C1652.0 (5)
C8—C9—H9119.9C18—C17—C16108.5 (6)
C11—C10—C9119.68 (19)C14i—C17—H17A170.8
C11—C10—H10120.2C18—C17—H17A126.6
C9—C10—H10120.2C16—C17—H17A124.9
C10—C11—C12121.18 (19)C14i—C17—H17B107.2
C10—C11—Cl2119.84 (17)C18—C17—H17B164.3
C12—C11—Cl2118.97 (17)C16—C17—H17B56.1
C11—C12—C13119.0 (2)H17A—C17—H17B68.8
C11—C12—H12120.5C14i—C17—H17C111.2
C13—C12—H12120.5C18—C17—H17C79.3
C12—C13—C8121.2 (2)C16—C17—H17C117.5
C12—C13—H13119.4H17A—C17—H17C78.0
C8—C13—H13119.4H17B—C17—H17C109.5
C16i—C14—C17i72.1 (7)C14i—C17—H17D110.0
C16i—C14—C18i138.6 (10)C18—C17—H17D78.3
C17i—C14—C18i67.7 (7)C16—C17—H17D133.0
C16i—C14—C15i56.1 (6)H17A—C17—H17D65.1
C17i—C14—C15i128.1 (7)H17B—C17—H17D109.5
C18i—C14—C15i162.3 (9)H17C—C17—H17D109.5
C16i—C14—C15163.1 (8)C15i—C18—C14i66.7 (6)
C17i—C14—C15121.3 (6)C15i—C18—C17121.8 (7)
C18i—C14—C1553.6 (6)C14i—C18—C1755.2 (6)
C15i—C14—C15109.9 (6)C15i—C18—H18A120.0
C16i—C14—C14i111.7 (9)C14i—C18—H18A173.2
C17i—C14—C14i171.1 (7)C17—C18—H18A118.2
O2—S1—N1—C753.15 (18)C9—C10—C11—Cl2178.61 (17)
O1—S1—N1—C7179.10 (15)C10—C11—C12—C130.8 (4)
C1—S1—N1—C762.70 (17)Cl2—C11—C12—C13178.16 (19)
O2—S1—C1—C61.61 (18)C11—C12—C13—C80.4 (4)
O1—S1—C1—C6132.58 (15)C9—C8—C13—C120.5 (3)
N1—S1—C1—C6114.87 (16)C7—C8—C13—C12175.8 (2)
O2—S1—C1—C2177.49 (16)C16i—C14—C15—C1642 (2)
O1—S1—C1—C246.52 (18)C17i—C14—C15—C16178.0 (6)
N1—S1—C1—C266.03 (18)C18i—C14—C15—C16176.6 (7)
C6—C1—C2—C31.0 (3)C15i—C14—C15—C1610.8 (6)
S1—C1—C2—C3179.91 (16)C14i—C14—C15—C1610.8 (6)
C6—C1—C2—Cl1178.61 (15)C16i—C14—C15—C18i141 (2)
S1—C1—C2—Cl10.5 (2)C17i—C14—C15—C18i1.4 (7)
C1—C2—C3—C41.1 (3)C15i—C14—C15—C18i172.6 (6)
Cl1—C2—C3—C4178.52 (19)C14i—C14—C15—C18i172.6 (6)
C2—C3—C4—C50.0 (4)C16i—C14—C15—C14i31 (2)
C3—C4—C5—C61.2 (4)C17i—C14—C15—C14i171.2 (7)
C4—C5—C6—C11.3 (4)C18i—C14—C15—C14i172.6 (6)
C2—C1—C6—C50.2 (3)C15i—C14—C15—C14i0.0
S1—C1—C6—C5178.95 (18)C18i—C15—C16—C14i164 (5)
S1—N1—C7—O37.2 (3)C14—C15—C16—C14i12.2 (7)
S1—N1—C7—C8172.21 (14)C18i—C15—C16—C17164 (5)
O3—C7—C8—C9154.7 (2)C14i—C15—C16—C170.8 (5)
N1—C7—C8—C924.7 (3)C14—C15—C16—C1712.9 (9)
O3—C7—C8—C1321.4 (3)C15—C16—C17—C14i0.9 (5)
N1—C7—C8—C13159.19 (19)C15—C16—C17—C189.8 (8)
C13—C8—C9—C100.9 (3)C14i—C16—C17—C188.9 (6)
C7—C8—C9—C10175.12 (19)C14i—C17—C18—C15i1.4 (7)
C8—C9—C10—C110.5 (3)C16—C17—C18—C15i7.0 (10)
C9—C10—C11—C120.4 (3)C16—C17—C18—C14i8.4 (5)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.82 (2)2.13 (2)2.951 (2)176 (2)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO3S·0.5C7H8
Mr376.24
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.5992 (9), 10.876 (1), 11.346 (1)
α, β, γ (°)73.868 (8), 75.927 (9), 70.994 (8)
V3)839.58 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.44 × 0.44 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.802, 0.834
No. of measured, independent and
observed [I > 2σ(I)] reflections
5654, 3405, 2941
Rint0.009
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.06
No. of reflections3405
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.13 (2)2.951 (2)176 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o1343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds