organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-[2-(4-Methyl­benzyl­­idene)hydrazin­yl]pyridine

aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Chemistry, Karnatak Universitys Karnatak Science College, Dharwad 580 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 9 December 2010; accepted 14 December 2010; online 18 December 2010)

Mol­ecules of the title compound, C13H13N3, are essentially planar (r.m.s. deviation for all non-H atoms = 0.054 Å). The dihedral angle between the two aromatic rings is 6.33 (5)°. In the crystal, pairs of centrosymmetrically related mol­ecules are linked through N—H⋯N hydrogen bonds, forming N—H⋯N dimers with graph-set motif R22(8).

Related literature

For the biological activity of hydrazone derivatives, see: Savini et al. (2002[Savini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]); Silva et al. (2004[Silva, G. A., Costa, L. M. M., Brito, F. C. F., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. 12, 3149-3158.]). For a related structure, see: Yuvaraj et al. (2010[Yuvaraj, H., Sundaramoorthy, S., Velmurugan, D. & Kalkhambkar, R. G. (2010). Acta Cryst. E66, o2733.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3

  • Mr = 211.26

  • Monoclinic, P 21 /c

  • a = 5.2385 (8) Å

  • b = 10.7215 (17) Å

  • c = 20.590 (3) Å

  • β = 92.699 (5)°

  • V = 1155.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 10622 measured reflections

  • 2850 independent reflections

  • 1341 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.154

  • S = 1.00

  • 2850 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.86 2.28 3.131 (2) 170
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared as part of our continuing interest on the nitrogen based heterocycles (Yuvaraj et al., 2010).

In the title molecule, the C2—C3—C7 and C8—N1—N2 bond angles are 121.65 (2)° and 117.46 (2)°, respectively. The benzene and pyridine form a dihedral angle of 6.33 (5)°.

In the crystal structure,the molecules at (x, y, z) and (1 - x,-y,-z) are linked by N(2)—H(2 A)···N(3) hydrogen bonds, generating a centrosymmetric dimeric ring motif R22(8) (Bernstein et al., 1995). The centroid of the R22(8) motif lies at (1/2,0,0). In addition, there is a weak C—H···N interaction linking the centrosymmetric pair of molecules.

Related literature top

For the biological activity of hydrazone derivatives, see: Savini et al. (2002); Silva et al. (2004). For a related structure, see: Yuvaraj et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-hydrazinopyridine and p-tolualdehyde were refluxed in ethanol with a catalytic quantity of con. HCl or gl. AcOH. After the reaction was over, the contents were cooled down and filtered to form the product. Diffraction quality crystals were obtained upon recrystallization in ethanol.

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H or 1.2 Ueq(C,N) for other H atoms.

Structure description top

The title compound was prepared as part of our continuing interest on the nitrogen based heterocycles (Yuvaraj et al., 2010).

In the title molecule, the C2—C3—C7 and C8—N1—N2 bond angles are 121.65 (2)° and 117.46 (2)°, respectively. The benzene and pyridine form a dihedral angle of 6.33 (5)°.

In the crystal structure,the molecules at (x, y, z) and (1 - x,-y,-z) are linked by N(2)—H(2 A)···N(3) hydrogen bonds, generating a centrosymmetric dimeric ring motif R22(8) (Bernstein et al., 1995). The centroid of the R22(8) motif lies at (1/2,0,0). In addition, there is a weak C—H···N interaction linking the centrosymmetric pair of molecules.

For the biological activity of hydrazone derivatives, see: Savini et al. (2002); Silva et al. (2004). For a related structure, see: Yuvaraj et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
(Z)-2-[2-(4-Methylbenzylidene)hydrazinyl]pyridine top
Crystal data top
C13H13N3F(000) = 448
Mr = 211.26Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 715 reflections
a = 5.2385 (8) Åθ = 2.0–28.4°
b = 10.7215 (17) ŵ = 0.08 mm1
c = 20.590 (3) ÅT = 293 K
β = 92.699 (5)°Block, colourless
V = 1155.2 (3) Å30.26 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2850 independent reflections
Radiation source: fine-focus sealed tube1341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.981, Tmax = 0.984k = 1214
10622 measured reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.0987P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2850 reflectionsΔρmax = 0.14 e Å3
147 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C13H13N3V = 1155.2 (3) Å3
Mr = 211.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2385 (8) ŵ = 0.08 mm1
b = 10.7215 (17) ÅT = 293 K
c = 20.590 (3) Å0.26 × 0.23 × 0.21 mm
β = 92.699 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1341 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.027
10622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.14 e Å3
2850 reflectionsΔρmin = 0.11 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2431 (4)0.01692 (17)0.21369 (9)0.0756 (5)
H10.27500.08660.18770.091*
C20.3858 (4)0.00253 (17)0.26709 (9)0.0797 (5)
H20.51190.05480.27660.096*
C30.3465 (3)0.10558 (17)0.30708 (8)0.0712 (5)
C40.1622 (4)0.18826 (18)0.29040 (9)0.0852 (6)
H40.13410.25940.31560.102*
C50.0171 (4)0.16896 (18)0.23728 (9)0.0874 (6)
H50.10770.22690.22760.105*
C60.0525 (3)0.06569 (15)0.19808 (8)0.0674 (5)
C70.5002 (4)0.1260 (2)0.36606 (9)0.0936 (6)
H7A0.48230.21100.38010.140*
H7B0.67700.10860.35530.140*
H7C0.43950.07140.40030.140*
C80.1072 (3)0.04777 (17)0.14289 (8)0.0731 (5)
H80.23280.10630.13470.088*
C90.1978 (3)0.15130 (15)0.01140 (8)0.0662 (5)
C100.0022 (4)0.23520 (18)0.01634 (9)0.0813 (5)
H100.11540.22810.04960.098*
C110.0290 (4)0.32800 (19)0.02841 (10)0.0907 (6)
H110.16070.38570.02580.109*
C120.1387 (4)0.33637 (19)0.07751 (11)0.0951 (6)
H120.12310.39900.10870.114*
C130.3290 (4)0.2497 (2)0.07891 (10)0.0895 (6)
H130.44300.25540.11210.107*
N10.0784 (3)0.04629 (14)0.10557 (6)0.0720 (4)
N20.2388 (3)0.05650 (13)0.05528 (6)0.0749 (4)
H2A0.36230.00460.05130.090*
N30.3633 (3)0.15655 (13)0.03568 (7)0.0742 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0777 (12)0.0642 (10)0.0860 (12)0.0007 (9)0.0162 (9)0.0076 (9)
C20.0744 (12)0.0739 (12)0.0927 (12)0.0054 (10)0.0244 (10)0.0042 (10)
C30.0665 (11)0.0751 (11)0.0727 (10)0.0031 (9)0.0112 (8)0.0009 (9)
C40.0932 (14)0.0836 (13)0.0798 (12)0.0151 (11)0.0158 (10)0.0178 (10)
C50.0928 (14)0.0874 (13)0.0837 (12)0.0246 (11)0.0219 (11)0.0115 (10)
C60.0682 (11)0.0661 (10)0.0687 (10)0.0004 (9)0.0094 (8)0.0022 (8)
C70.0926 (14)0.1023 (15)0.0878 (13)0.0005 (12)0.0244 (11)0.0100 (11)
C80.0754 (12)0.0720 (11)0.0729 (10)0.0023 (9)0.0137 (9)0.0022 (9)
C90.0638 (11)0.0657 (11)0.0693 (10)0.0110 (9)0.0067 (8)0.0058 (8)
C100.0767 (12)0.0795 (12)0.0884 (12)0.0016 (11)0.0117 (10)0.0051 (11)
C110.0797 (14)0.0773 (13)0.1152 (16)0.0026 (10)0.0057 (12)0.0009 (12)
C120.0857 (15)0.0804 (13)0.1190 (16)0.0064 (12)0.0035 (13)0.0221 (12)
C130.0778 (13)0.0941 (14)0.0976 (14)0.0129 (12)0.0151 (10)0.0157 (12)
N10.0709 (9)0.0764 (10)0.0699 (8)0.0061 (7)0.0162 (7)0.0064 (8)
N20.0737 (10)0.0783 (10)0.0741 (9)0.0027 (8)0.0191 (7)0.0002 (8)
N30.0671 (9)0.0762 (10)0.0801 (9)0.0092 (7)0.0115 (8)0.0036 (8)
Geometric parameters (Å, º) top
C1—C21.374 (2)C8—N11.273 (2)
C1—C61.383 (2)C8—H80.9300
C1—H10.9300C9—N31.332 (2)
C2—C31.387 (2)C9—N21.370 (2)
C2—H20.9300C9—C101.388 (2)
C3—C41.366 (2)C10—C111.359 (2)
C3—C71.504 (2)C10—H100.9300
C4—C51.377 (3)C11—C121.373 (3)
C4—H40.9300C11—H110.9300
C5—C61.378 (2)C12—C131.364 (3)
C5—H50.9300C12—H120.9300
C6—C81.455 (2)C13—N31.344 (2)
C7—H7A0.9600C13—H130.9300
C7—H7B0.9600N1—N21.3680 (17)
C7—H7C0.9600N2—H2A0.8600
C2—C1—C6120.95 (17)N1—C8—C6121.34 (17)
C2—C1—H1119.5N1—C8—H8119.3
C6—C1—H1119.5C6—C8—H8119.3
C1—C2—C3121.63 (17)N3—C9—N2115.09 (16)
C1—C2—H2119.2N3—C9—C10123.05 (17)
C3—C2—H2119.2N2—C9—C10121.86 (17)
C4—C3—C2117.02 (16)C11—C10—C9118.63 (18)
C4—C3—C7121.33 (17)C11—C10—H10120.7
C2—C3—C7121.65 (17)C9—C10—H10120.7
C3—C4—C5121.69 (18)C10—C11—C12119.8 (2)
C3—C4—H4119.2C10—C11—H11120.1
C5—C4—H4119.2C12—C11—H11120.1
C4—C5—C6121.46 (18)C13—C12—C11117.68 (19)
C4—C5—H5119.3C13—C12—H12121.2
C6—C5—H5119.3C11—C12—H12121.2
C5—C6—C1117.22 (16)N3—C13—C12124.55 (19)
C5—C6—C8119.79 (16)N3—C13—H13117.7
C1—C6—C8122.99 (16)C12—C13—H13117.7
C3—C7—H7A109.5C8—N1—N2117.46 (15)
C3—C7—H7B109.5N1—N2—C9118.41 (15)
H7A—C7—H7B109.5N1—N2—H2A120.8
C3—C7—H7C109.5C9—N2—H2A120.8
H7A—C7—H7C109.5C9—N3—C13116.24 (17)
H7B—C7—H7C109.5
C6—C1—C2—C30.5 (3)N3—C9—C10—C110.8 (3)
C1—C2—C3—C41.1 (3)N2—C9—C10—C11179.07 (15)
C1—C2—C3—C7179.13 (16)C9—C10—C11—C120.6 (3)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.3 (3)
C7—C3—C4—C5178.62 (18)C11—C12—C13—N30.2 (3)
C3—C4—C5—C60.6 (3)C6—C8—N1—N2179.29 (13)
C4—C5—C6—C11.0 (3)C8—N1—N2—C9174.71 (14)
C4—C5—C6—C8179.16 (17)N3—C9—N2—N1179.08 (13)
C2—C1—C6—C51.5 (3)C10—C9—N2—N10.8 (2)
C2—C1—C6—C8178.67 (16)N2—C9—N3—C13179.22 (14)
C5—C6—C8—N1179.65 (16)C10—C9—N3—C130.7 (2)
C1—C6—C8—N10.2 (3)C12—C13—N3—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.283.131 (2)170
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H13N3
Mr211.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.2385 (8), 10.7215 (17), 20.590 (3)
β (°) 92.699 (5)
V3)1155.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10622, 2850, 1341
Rint0.027
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.154, 1.00
No. of reflections2850
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.11

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.283.131 (2)170
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

HY gratefully acknowledges Yeungnam University for the opportunity to work as a Full-Time Foreign Instructor. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSavini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, G. A., Costa, L. M. M., Brito, F. C. F., Miranda, A. L. P., Barreiro, E. J. & Fraga, C. A. M. (2004). Bioorg. Med. Chem. 12, 3149–3158.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuvaraj, H., Sundaramoorthy, S., Velmurugan, D. & Kalkhambkar, R. G. (2010). Acta Cryst. E66, o2733.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds