organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Imi­niumyl-1,3-diazepane-4-carboxyl­ate

aSchool of Chemistry and Chemical Engneering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: jxyangfeng@gmail.com

(Received 20 October 2010; accepted 28 November 2010; online 4 December 2010)

The title compound, C6H11N3O2, is a cyclized derivative of L-arginine and the mol­ecule is a zwitterion with the positive and negative charge residing in the guanidinium and carboxyl­ate groups, respectively. The conformation of 1,3-diazepane ring is close to a twisted chair. One intra­molecular and three inter­molecular N—H⋯O hydrogen bonds stabilize the mol­ecular conformation and the crystal structure, respectively.

Related literature

For related structures, see: Karapetyan (2008a[Karapetyan, H. A. (2008a). Acta Cryst. E64, o1222.],b[Karapetyan, H. A. (2008b). Acta Cryst. E64, o943.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N3O2

  • Mr = 157.18

  • Orthorhombic, P 21 21 21

  • a = 6.1740 (3) Å

  • b = 8.7979 (5) Å

  • c = 14.2036 (7) Å

  • V = 771.51 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.23 × 0.15 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 1.000

  • 3426 measured reflections

  • 834 independent reflections

  • 694 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.08

  • 834 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.17 2.918 (3) 146
N3—H3A⋯O2i 0.86 2.06 2.870 (4) 157
N3—H3B⋯O2ii 0.86 1.95 2.788 (4) 163
N2—H2A⋯O1 0.86 2.19 2.601 (3) 109
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: XPREP (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was hydrothermally synthesized from L-Arginine via an unusual annulation reaction. We report here a new annulation product derived from the linear arginine molecule. The title compound is the cyclic form of L-Arginine and this molecule is a zwitterion with the positive and negative charge residing in the guanidinium and carboxylate groups respectively.The conformation of 1,3-diazepane ring is close to twisted chair.One intramolecular and three intermolecular N—H···O hydrogen bonds stabilize the molecular conformation and the crystal structure respectively (Fig. 2). The C—N distances in the guanidinium group are obviously shorter than that of the normal C—N single bond, indicating delocalized bond of the guanidinium group.

Related literature top

For related structures, see: Karapetyan (2008a,b).

Experimental top

A mixture of Cu(ClO4)2.6H2O (0.186 g, 0.5 mmol), L-Arginine (0.087 g, 0.5 mmol) and water (10 ml) was sealed in a 15 ml teflon-lined stainless steel reactor and heated to 423 K for 60 h. Colorless crystals of (I) suitable for X-ray analysis were obtained.

Refinement top

All H atoms were placed at calculated positions, and refined with isotropic displacement parameters, using a riding model [C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N)].

Structure description top

The title compound (I) was hydrothermally synthesized from L-Arginine via an unusual annulation reaction. We report here a new annulation product derived from the linear arginine molecule. The title compound is the cyclic form of L-Arginine and this molecule is a zwitterion with the positive and negative charge residing in the guanidinium and carboxylate groups respectively.The conformation of 1,3-diazepane ring is close to twisted chair.One intramolecular and three intermolecular N—H···O hydrogen bonds stabilize the molecular conformation and the crystal structure respectively (Fig. 2). The C—N distances in the guanidinium group are obviously shorter than that of the normal C—N single bond, indicating delocalized bond of the guanidinium group.

For related structures, see: Karapetyan (2008a,b).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP (Siemens, 1994); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with 50% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding interactions between the molecules. The H- atoms not involved in hydrogen bond are omitted for charity
2-iminiumyl-1,3-diazepane-4-carboxylate top
Crystal data top
C6H11N3O2F(000) = 336
Mr = 157.18Dx = 1.353 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1112 reflections
a = 6.1740 (3) Åθ = 2.7–20.9°
b = 8.7979 (5) ŵ = 0.10 mm1
c = 14.2036 (7) ÅT = 293 K
V = 771.51 (7) Å3Prism, colorless
Z = 40.23 × 0.15 × 0.10 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
834 independent reflections
Radiation source: fine-focus sealed tube694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.773, Tmax = 1.000k = 910
3426 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2708P]
where P = (Fo2 + 2Fc2)/3
834 reflections(Δ/σ)max = 0.002
100 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H11N3O2V = 771.51 (7) Å3
Mr = 157.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1740 (3) ŵ = 0.10 mm1
b = 8.7979 (5) ÅT = 293 K
c = 14.2036 (7) Å0.23 × 0.15 × 0.10 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
834 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
694 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 1.000Rint = 0.026
3426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
834 reflectionsΔρmin = 0.23 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9643 (4)0.4869 (3)0.67888 (15)0.0471 (7)
O20.8529 (4)0.2509 (2)0.64723 (15)0.0463 (7)
N10.5689 (4)0.4568 (3)0.97693 (19)0.0413 (8)
H1A0.58740.43651.03560.050*
N20.7752 (5)0.5024 (3)0.84226 (17)0.0383 (7)
H2A0.83170.57570.81050.046*
N30.8387 (5)0.6355 (3)0.9771 (2)0.0492 (8)
H3A0.81060.65591.03500.059*
H3B0.94040.68350.94830.059*
C10.7420 (6)0.3583 (4)0.7926 (2)0.0352 (8)
H1B0.80590.27650.83030.042*
C20.5046 (7)0.3203 (4)0.7748 (2)0.0486 (10)
H2B0.43460.40710.74570.058*
H2C0.49620.23590.73100.058*
C30.3829 (7)0.2787 (4)0.8645 (3)0.0558 (11)
H3C0.23810.24550.84790.067*
H3D0.45600.19400.89460.067*
C40.3667 (6)0.4072 (4)0.9331 (3)0.0510 (10)
H4A0.30330.49360.90080.061*
H4B0.26710.37750.98260.061*
C50.7260 (5)0.5309 (4)0.9325 (2)0.0348 (8)
C60.8659 (6)0.3684 (4)0.6983 (2)0.0372 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (16)0.0522 (14)0.0306 (12)0.0038 (14)0.0092 (11)0.0005 (11)
O20.0625 (17)0.0467 (13)0.0299 (11)0.0092 (13)0.0014 (13)0.0071 (10)
N10.0450 (18)0.0527 (17)0.0261 (13)0.0089 (15)0.0052 (13)0.0025 (13)
N20.0500 (18)0.0391 (14)0.0257 (13)0.0051 (14)0.0053 (12)0.0024 (12)
N30.057 (2)0.0567 (18)0.0343 (14)0.0191 (17)0.0114 (15)0.0135 (14)
C10.043 (2)0.0356 (15)0.0264 (16)0.0019 (16)0.0015 (15)0.0009 (14)
C20.051 (2)0.057 (2)0.038 (2)0.008 (2)0.0000 (19)0.0098 (17)
C30.049 (2)0.061 (2)0.057 (2)0.017 (2)0.005 (2)0.005 (2)
C40.042 (2)0.063 (2)0.047 (2)0.0080 (19)0.009 (2)0.0011 (18)
C50.0395 (19)0.0370 (16)0.0279 (15)0.0017 (17)0.0017 (15)0.0010 (14)
C60.040 (2)0.046 (2)0.0256 (16)0.0110 (18)0.0035 (16)0.0018 (15)
Geometric parameters (Å, º) top
O1—C61.238 (4)C1—C21.524 (6)
O2—C61.265 (4)C1—C61.545 (4)
N1—C51.329 (4)C1—H1B0.9800
N1—C41.462 (4)C2—C31.523 (5)
N1—H1A0.8600C2—H2B0.9700
N2—C51.340 (4)C2—H2C0.9700
N2—C11.465 (4)C3—C41.496 (5)
N2—H2A0.8600C3—H3C0.9700
N3—C51.317 (4)C3—H3D0.9700
N3—H3A0.8600C4—H4A0.9700
N3—H3B0.8600C4—H4B0.9700
C5—N1—C4124.6 (3)H2B—C2—H2C107.8
C5—N1—H1A117.7C4—C3—C2113.3 (3)
C4—N1—H1A117.7C4—C3—H3C108.9
C5—N2—C1126.1 (3)C2—C3—H3C108.9
C5—N2—H2A116.9C4—C3—H3D108.9
C1—N2—H2A116.9C2—C3—H3D108.9
C5—N3—H3A120.0H3C—C3—H3D107.7
C5—N3—H3B120.0N1—C4—C3116.5 (3)
H3A—N3—H3B120.0N1—C4—H4A108.2
N2—C1—C2113.9 (3)C3—C4—H4A108.2
N2—C1—C6107.3 (3)N1—C4—H4B108.2
C2—C1—C6110.2 (3)C3—C4—H4B108.2
N2—C1—H1B108.4H4A—C4—H4B107.3
C2—C1—H1B108.4N3—C5—N1120.0 (3)
C6—C1—H1B108.4N3—C5—N2118.1 (3)
C3—C2—C1112.8 (3)N1—C5—N2121.9 (3)
C3—C2—H2B109.0O1—C6—O2126.2 (3)
C1—C2—H2B109.0O1—C6—C1119.0 (3)
C3—C2—H2C109.0O2—C6—C1114.8 (3)
C1—C2—H2C109.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.172.918 (3)146
N3—H3A···O2i0.862.062.870 (4)157
N3—H3B···O2ii0.861.952.788 (4)163
N2—H2A···O10.862.192.601 (3)109
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H11N3O2
Mr157.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.1740 (3), 8.7979 (5), 14.2036 (7)
V3)771.51 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.15 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.773, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3426, 834, 694
Rint0.026
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.08
No. of reflections834
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), XPREP (Siemens, 1994), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.172.918 (3)146
N3—H3A···O2i0.862.062.870 (4)157
N3—H3B···O2ii0.861.952.788 (4)163
N2—H2A···O10.862.192.601 (3)109
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

This study was supported by the National Science Foundation of China (C050102).

References

First citationKarapetyan, H. A. (2008a). Acta Cryst. E64, o1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarapetyan, H. A. (2008b). Acta Cryst. E64, o943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds