metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(3-cyano­benz­yl)pyridinium] bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato)nickelate(II)

aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: duanhaibao4660@163.com

(Received 14 November 2010; accepted 6 December 2010; online 11 December 2010)

In the ionic title complex, (C13H11N2)2[Ni(C4N2S2)2], the NiII ion is located on an inversion centre so the asymmetric unit contains one-half [Ni(mnt)2]2− dianion (mnt2− is maleonitrile­dithiolate) and one 1-(3-cyano­benz­yl)pyridinium cation ([CNBzPy]+). The NiII ion in the [Ni(mnt)2]2− anion is coordinated by four S atoms of two mnt2− ligands, and exhibits square-planar coordination geometry. In the [CNBzPy]+ cation, the benzene and pyridine rings are twisted with respect to the C/C/N plane incorporating the methyl­ene C atom that links them. The crystal structure is stabilized by Coulombic inter­actions.

Related literature

For background to the development of new functional mol­ecule-based materials, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]). For the applications of mol­ecular solids based on M[dithiol­ene]2 complexes in mol­ecular-based materials showing magnetic, superconducting and optical properties, see: Ni et al. (2004[Ni, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett. 396, 353-358.], 2005[Ni, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Nishijo et al. (2000[Nishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun. 116, 661-664.]). For bond lengths and angles in related structures, see: Ren et al. (2004[Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem. 43, 2569-2576.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Ni(C4N2S2)2]

  • Mr = 729.57

  • Monoclinic, P 21 /c

  • a = 11.633 (3) Å

  • b = 8.709 (2) Å

  • c = 16.692 (4) Å

  • β = 91.278 (5)°

  • V = 1690.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.702, Tmax = 0.741

  • 13953 measured reflections

  • 3068 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.130

  • S = 1.18

  • 3068 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1710 (13)
Ni1—S2 2.1713 (14)
S1—Ni1—S2 87.64 (5)
S1i—Ni1—S2 92.36 (5)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin, 2002), Much work has been performed in molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting, and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1.The asymmetric unit is formed by with one half anion and one cation.The Ni II ion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. The crystal structure is stabilized by coulombic interactions. The bond lengths and angles are in good agreement with related compounds [Ni(mnt)2]2- Table 1, (Ni et al., 2004; Ren et al., 2004).

Related literature top

For background to the development of new functional molecule-based materials, see: Robertson & Cronin (2002). For the applications of molecular solids based on M[dithiolene]2 complexes in molecular-based materials showing magnetic, superconducting and optical properties, see: Ni et al. (2004, 2005); Nishijo et al. (2000). For bond lengths and angles in related structures, see: Ren et al. (2004).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-(3-cyanobenzyl)pyridinium iodide (488 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture, and the red precipitate that was immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block crystals. Anal. Calcd. for C34H22N8NiS4: C, 55.98; H, 3.04; N, 15.36%. Found: C, 56.00; H, 3.08; N, 15.33%.

Refinement top

The H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, or 0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin, 2002), Much work has been performed in molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting, and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1.The asymmetric unit is formed by with one half anion and one cation.The Ni II ion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. The crystal structure is stabilized by coulombic interactions. The bond lengths and angles are in good agreement with related compounds [Ni(mnt)2]2- Table 1, (Ni et al., 2004; Ren et al., 2004).

For background to the development of new functional molecule-based materials, see: Robertson & Cronin (2002). For the applications of molecular solids based on M[dithiolene]2 complexes in molecular-based materials showing magnetic, superconducting and optical properties, see: Ni et al. (2004, 2005); Nishijo et al. (2000). For bond lengths and angles in related structures, see: Ren et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
Bis[1-(3-cyanobenzyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II) top
Crystal data top
(C13H11N2)2[Ni(C4N2S2)2]Z = 2
Mr = 729.57F(000) = 748
Monoclinic, P21/cDx = 1.433 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 11.633 (3) Åθ = 3.0–25.4°
b = 8.709 (2) ŵ = 0.86 mm1
c = 16.692 (4) ÅT = 293 K
β = 91.278 (5)°Block, red
V = 1690.7 (7) Å30.4 × 0.3 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3068 independent reflections
Radiation source: fine-focus sealed tube2154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
phi and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.702, Tmax = 0.741k = 910
13953 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.4994P]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
(C13H11N2)2[Ni(C4N2S2)2]V = 1690.7 (7) Å3
Mr = 729.57Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.633 (3) ŵ = 0.86 mm1
b = 8.709 (2) ÅT = 293 K
c = 16.692 (4) Å0.4 × 0.3 × 0.2 mm
β = 91.278 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2154 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.741Rint = 0.092
13953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.18Δρmax = 0.32 e Å3
3068 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00001.00000.0420 (3)
S10.08308 (11)0.02743 (15)0.88570 (8)0.0527 (4)
S20.06667 (12)0.23125 (15)0.98459 (8)0.0543 (4)
N10.2335 (5)0.2035 (6)0.7340 (3)0.0840 (16)
N20.2202 (5)0.5312 (6)1.0989 (3)0.0818 (16)
N30.5244 (5)1.6046 (6)0.9022 (4)0.0906 (17)
N40.7437 (3)0.8647 (4)0.9068 (2)0.0440 (10)
C10.1400 (4)0.1530 (6)0.8694 (3)0.0460 (12)
C20.1931 (5)0.1824 (6)0.7942 (3)0.0557 (14)
C30.1341 (4)0.2636 (6)1.0743 (3)0.0477 (13)
C40.1819 (4)0.4130 (6)1.0888 (3)0.0522 (13)
C50.5193 (5)1.4752 (6)0.8943 (3)0.0636 (15)
C60.5134 (4)1.3103 (5)0.8838 (3)0.0476 (12)
C70.4315 (4)1.2492 (6)0.8324 (3)0.0560 (14)
H11A0.37941.31250.80530.067*
C80.4284 (4)1.0918 (6)0.8219 (3)0.0567 (14)
H10A0.37411.04890.78680.068*
C90.5040 (4)0.9987 (6)0.8625 (3)0.0502 (12)
H9A0.49940.89280.85590.060*
C100.5869 (4)1.0600 (5)0.9132 (3)0.0425 (12)
C110.5915 (4)1.2165 (5)0.9241 (3)0.0481 (13)
H13A0.64681.25920.95840.058*
C120.6706 (4)0.9595 (6)0.9596 (3)0.0561 (14)
H7A0.71971.02390.99320.067*
H7B0.62790.89210.99450.067*
C130.7754 (4)0.7251 (6)0.9321 (3)0.0587 (14)
H4A0.75100.69000.98150.070*
C140.8426 (5)0.6340 (7)0.8868 (4)0.0729 (17)
H3A0.86370.53670.90470.087*
C150.8784 (5)0.6860 (8)0.8156 (4)0.0707 (17)
H2A0.92250.62330.78330.085*
C160.8498 (5)0.8310 (8)0.7906 (3)0.0674 (16)
H1A0.87610.86860.74220.081*
C170.7823 (4)0.9196 (6)0.8379 (3)0.0568 (14)
H6A0.76321.01880.82200.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0495 (5)0.0381 (5)0.0383 (5)0.0040 (4)0.0040 (4)0.0014 (4)
S10.0691 (9)0.0437 (8)0.0457 (8)0.0070 (7)0.0132 (6)0.0017 (6)
S20.0716 (9)0.0436 (8)0.0482 (8)0.0121 (7)0.0119 (7)0.0030 (6)
N10.109 (4)0.071 (4)0.074 (4)0.005 (3)0.038 (3)0.009 (3)
N20.107 (4)0.057 (3)0.082 (4)0.028 (3)0.022 (3)0.001 (3)
N30.113 (4)0.041 (3)0.117 (5)0.000 (3)0.003 (4)0.004 (3)
N40.049 (2)0.038 (2)0.045 (3)0.005 (2)0.004 (2)0.003 (2)
C10.045 (3)0.046 (3)0.047 (3)0.005 (2)0.006 (2)0.012 (3)
C20.064 (3)0.046 (3)0.057 (4)0.003 (3)0.013 (3)0.007 (3)
C30.050 (3)0.042 (3)0.052 (3)0.006 (3)0.003 (2)0.005 (3)
C40.057 (3)0.051 (3)0.048 (3)0.008 (3)0.004 (3)0.001 (3)
C50.070 (4)0.046 (4)0.074 (4)0.005 (3)0.004 (3)0.001 (3)
C60.056 (3)0.031 (3)0.055 (3)0.001 (2)0.004 (3)0.003 (2)
C70.054 (3)0.054 (3)0.060 (4)0.014 (3)0.008 (3)0.002 (3)
C80.054 (3)0.055 (4)0.060 (4)0.003 (3)0.011 (3)0.009 (3)
C90.056 (3)0.035 (3)0.060 (3)0.003 (3)0.002 (3)0.005 (3)
C100.044 (3)0.037 (3)0.046 (3)0.006 (2)0.006 (2)0.002 (2)
C110.049 (3)0.043 (3)0.051 (3)0.003 (3)0.000 (2)0.007 (2)
C120.069 (3)0.052 (3)0.048 (3)0.018 (3)0.008 (3)0.000 (3)
C130.068 (4)0.046 (3)0.063 (4)0.010 (3)0.004 (3)0.010 (3)
C140.092 (4)0.049 (4)0.078 (5)0.021 (3)0.003 (4)0.010 (3)
C150.065 (4)0.080 (5)0.067 (4)0.016 (3)0.006 (3)0.033 (4)
C160.061 (3)0.093 (5)0.049 (4)0.008 (4)0.005 (3)0.003 (3)
C170.058 (3)0.055 (3)0.057 (4)0.002 (3)0.001 (3)0.014 (3)
Geometric parameters (Å, º) top
Ni1—S12.1710 (13)C7—H11A0.9300
Ni1—S1i2.1710 (13)C8—C91.365 (6)
Ni1—S22.1713 (14)C8—H10A0.9300
Ni1—S2i2.1713 (13)C9—C101.377 (6)
S1—C11.729 (5)C9—H9A0.9300
S2—C31.729 (5)C10—C111.376 (6)
N1—C21.134 (6)C10—C121.510 (6)
N2—C41.135 (6)C11—H13A0.9300
N3—C51.136 (6)C12—H7A0.9700
N4—C171.332 (6)C12—H7B0.9700
N4—C131.336 (6)C13—C141.356 (7)
N4—C121.489 (6)C13—H4A0.9300
C1—C3i1.348 (6)C14—C151.347 (8)
C1—C21.435 (7)C14—H3A0.9300
C3—C1i1.348 (6)C15—C161.368 (8)
C3—C41.438 (7)C15—H2A0.9300
C5—C61.449 (7)C16—C171.365 (7)
C6—C71.374 (7)C16—H1A0.9300
C6—C111.385 (6)C17—H6A0.9300
C7—C81.382 (7)
S1—Ni1—S1i180.0C8—C9—H9A119.7
S1—Ni1—S287.64 (5)C10—C9—H9A119.7
S1i—Ni1—S292.36 (5)C11—C10—C9119.3 (5)
S1—Ni1—S2i92.36 (5)C11—C10—C12119.0 (5)
S1i—Ni1—S2i87.64 (5)C9—C10—C12121.7 (4)
S2—Ni1—S2i180.0C10—C11—C6119.8 (5)
C1—S1—Ni1102.59 (18)C10—C11—H13A120.1
C3—S2—Ni1102.48 (17)C6—C11—H13A120.1
C17—N4—C13120.3 (4)N4—C12—C10112.8 (4)
C17—N4—C12121.3 (4)N4—C12—H7A109.0
C13—N4—C12118.3 (4)C10—C12—H7A109.0
C3i—C1—C2120.8 (4)N4—C12—H7B109.0
C3i—C1—S1120.9 (4)C10—C12—H7B109.0
C2—C1—S1118.3 (4)H7A—C12—H7B107.8
N1—C2—C1178.5 (6)N4—C13—C14120.9 (5)
C1i—C3—C4120.2 (4)N4—C13—H4A119.5
C1i—C3—S2121.2 (4)C14—C13—H4A119.5
C4—C3—S2118.5 (4)C15—C14—C13119.3 (6)
N2—C4—C3178.9 (6)C15—C14—H3A120.4
N3—C5—C6179.6 (8)C13—C14—H3A120.4
C7—C6—C11120.9 (5)C14—C15—C16120.1 (6)
C7—C6—C5119.4 (5)C14—C15—H2A120.0
C11—C6—C5119.8 (5)C16—C15—H2A120.0
C6—C7—C8118.6 (5)C17—C16—C15119.0 (6)
C6—C7—H11A120.7C17—C16—H1A120.5
C8—C7—H11A120.7C15—C16—H1A120.5
C9—C8—C7120.7 (5)N4—C17—C16120.4 (5)
C9—C8—H10A119.6N4—C17—H6A119.8
C7—C8—H10A119.6C16—C17—H6A119.8
C8—C9—C10120.6 (5)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Ni(C4N2S2)2]
Mr729.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.633 (3), 8.709 (2), 16.692 (4)
β (°) 91.278 (5)
V3)1690.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.702, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
13953, 3068, 2154
Rint0.092
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.130, 1.18
No. of reflections3068
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—S12.1710 (13)Ni1—S22.1713 (14)
S1—Ni1—S287.64 (5)S1i—Ni1—S292.36 (5)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Higher Learning Institutions of Abhui Provice, China, for financial support (grant No. KJ2009B275Z).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNi, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett. 396, 353–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds