metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Decane­dioato-bis­­[aqua­bis­­(1,10-phenanthroline-κ2N,N′)manganese(II)] dinitrate–sebacic acid–water (1/1/2)

aKey Laboratory for Information Systems of Mountainous Areas and Protection of the Economical Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, People's Republic of China, and bCollege of Geographical and Environmental Sciences, Guizhou Normal University, Guiyang 550001, People's Republic of China
*Correspondence e-mail: fengyeqiang6699@126.com

(Received 15 November 2010; accepted 9 December 2010; online 15 December 2010)

In the title complex, [Mn2(C10H16O4)(C12H8N2)4(H2O)2](NO3)2·C10H18O4·2H2O, the asymmetric unit contains one-half of the centrosymmetric dinuclear complex cation, one uncoordinated water molecule, one-half of a free sebaic acid (decanedioic acid) molecule that is also completed by inversion symmetry, and one disordered nitrate anion [occupancy ratio 0.454 (4):0.544 (6)]. The MnII atoms are each octa­hedrally surrounded by four N atoms from two 1,10-phenanthroline (phen) ligands, one O atom from one carbonyl group of the bridging sebacate ligand and one O atom of a water mol­ecule. The crystal structure is stabilized by intermolecular O—H⋯O hydrogen bonds.

Related literature

For applications of carb­oxy­lic metalorganic complexes, see: Lehn (2007[Lehn, J.-M. (2007). Chem. Soc. Rev. 36, 151-160.]); Wang et al. (2010[Wang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10 4060-4067.]); Fang & Zhang (2006[Fang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801-4810.]). For related structures, see: Wei et al. (2002[Wei, D.-Y., Kong, Z.-P. & Zheng, Y.-Q. (2002). Polyhedron, 21, 1621-1628.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C10H16O4)(C12H8N2)4(H2O)2](NO3)2·C10H18O4·2H2O

  • Mr = 1429.00

  • Triclinic, [P \overline 1]

  • a = 11.6712 (3) Å

  • b = 12.5316 (3) Å

  • c = 12.8561 (3) Å

  • α = 76.678 (1)°

  • β = 66.845 (1)°

  • γ = 81.971 (1)°

  • V = 1679.79 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.58 × 0.33 × 0.13 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.943

  • 25302 measured reflections

  • 7666 independent reflections

  • 6144 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.03

  • 7666 reflections

  • 449 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.85 1.83 2.6680 (16) 170
O2W—H2D⋯O6Aii 0.85 2.24 2.991 (6) 148
O2W—H2D⋯O7ii 0.85 2.22 3.020 (2) 157
O1W—H1B⋯O6B 0.89 1.87 2.710 (4) 156
O1W—H1B⋯O5A 0.89 1.99 2.830 (5) 156
O2W—H2C⋯O2 0.85 1.90 2.7396 (19) 170
O4—H4C⋯O2W 0.85 1.78 2.622 (2) 172
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of carboxylic metal-organic complexes have been an increasing interest for many years owing to their potential practical applications, such as fluorescence, magnetism (Wang, et al., 2010; Fang, et al., 2006; Lehn, et al., 2007). Interested in this field, herein, we report the crystal structure of a new manganeseII complex with the sebacic acid ligand. The asymmetric unit contains a centrosymmetric dinuclear complex cation, one water molecule, a free sebacic acid and one nitrato anion. The Mn atoms are each octahedrally surrounded by four N atoms from two phen ligands, one O atom from one carbonyl group of the bridging sebacato ligand and one O atom of water molecule. The basal Mn—O and Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.2596 (13)–2.3027 (14) Å. The sebasic acid molecule is linear and all C—C and C—O bond lengths are of normal values. The sebacate anion acts as monodentate ligand . The crystal structures is stabilized by three and four intermolecular and intramolecular O—H···O hydrogen bonds respectively, Fig.1. The phen ligands make a dihedral angle of 77.4 (3)°.

Related literature top

For applications of carboxylic metalorganic complexes, see: Lehn (2007); Wang et al. (2010); Fang & Zhang (2006). For related structures, see: Wei et al. (2002).

Experimental top

All reagents were used as received without purified. The title compound was obtained by adding sebacic acid (1 mmol) and 1,10-phenanthroline(phen) (2 mmol) in fifty percent ethanol solution (20 ml), then Mn(NO3)2 (1 mmol) dissolved in distilled water (10 ml) is slowly dripped into above solution, mixed round for five hours, filtrated, and single crystals were obtained after one week.

Refinement top

All H atoms attached to C atoms and O(hydroxyl) atom were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and O—H = 0.85 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O). H atoms of water molecule were located in a difference Fourier map and included in the subsequent refinement using restraints (O—H= 0.82 (1) Å and H···H= 1.30 (2) Å) with Uiso(H) = 1.5Ueq(O). The atom O5A and O6A are disordered. They were modelled using a split model with refined population parameters [O5A/O5B=0.456 (4)/0.544 (4); O6A/O6B=0.456 (4)/0.544 (4)].

Structure description top

The design and synthesis of carboxylic metal-organic complexes have been an increasing interest for many years owing to their potential practical applications, such as fluorescence, magnetism (Wang, et al., 2010; Fang, et al., 2006; Lehn, et al., 2007). Interested in this field, herein, we report the crystal structure of a new manganeseII complex with the sebacic acid ligand. The asymmetric unit contains a centrosymmetric dinuclear complex cation, one water molecule, a free sebacic acid and one nitrato anion. The Mn atoms are each octahedrally surrounded by four N atoms from two phen ligands, one O atom from one carbonyl group of the bridging sebacato ligand and one O atom of water molecule. The basal Mn—O and Mn—N bond lengths fall in the range 2.0934 (11)–2.1466 (11); 2.2821 (13)–2.3480 (13)Å respectively. The axial Mn—N bond lengths fall in the range 2.2596 (13)–2.3027 (14) Å. The sebasic acid molecule is linear and all C—C and C—O bond lengths are of normal values. The sebacate anion acts as monodentate ligand . The crystal structures is stabilized by three and four intermolecular and intramolecular O—H···O hydrogen bonds respectively, Fig.1. The phen ligands make a dihedral angle of 77.4 (3)°.

For applications of carboxylic metalorganic complexes, see: Lehn (2007); Wang et al. (2010); Fang & Zhang (2006). For related structures, see: Wei et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms were omitted for clarity.
µ-Decanedioato-bis[aquabis(1,10-phenanthroline- κ2N,N')manganese(II)] dinitrate–sebacic acid–water (1/1/2) top
Crystal data top
[Mn2(C10H16O4)(C12H8N2)4(H2O)2](NO3)2·C10H18O4·2H2OZ = 1
Mr = 1429.00F(000) = 746
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.6712 (3) ÅCell parameters from 9906 reflections
b = 12.5316 (3) Åθ = 1.7–27.6°
c = 12.8561 (3) ŵ = 0.46 mm1
α = 76.678 (1)°T = 296 K
β = 66.845 (1)°Block, colorless
γ = 81.971 (1)°0.58 × 0.33 × 0.13 mm
V = 1679.79 (7) Å3
Data collection top
Bruker APEXII
diffractometer
7666 independent reflections
Radiation source: fine-focus sealed tube6144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1514
Tmin = 0.837, Tmax = 0.943k = 1516
25302 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.030P)2 + 0.580P]
where P = (Fo2 + 2Fc2)/3
7666 reflections(Δ/σ)max < 0.001
449 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mn2(C10H16O4)(C12H8N2)4(H2O)2](NO3)2·C10H18O4·2H2Oγ = 81.971 (1)°
Mr = 1429.00V = 1679.79 (7) Å3
Triclinic, P1Z = 1
a = 11.6712 (3) ÅMo Kα radiation
b = 12.5316 (3) ŵ = 0.46 mm1
c = 12.8561 (3) ÅT = 296 K
α = 76.678 (1)°0.58 × 0.33 × 0.13 mm
β = 66.845 (1)°
Data collection top
Bruker APEXII
diffractometer
7666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
6144 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.943Rint = 0.025
25302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.50 e Å3
7666 reflectionsΔρmin = 0.38 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.70121 (2)0.230330 (18)0.31787 (2)0.03465 (8)
O10.53707 (11)0.15166 (9)0.36166 (10)0.0456 (3)
O20.38982 (10)0.03550 (9)0.41943 (10)0.0441 (3)
O1W0.68822 (11)0.16789 (10)0.49202 (10)0.0474 (3)
H1A0.65740.10600.52750.071*
H1B0.74410.17500.52120.071*
N10.88153 (13)0.12483 (11)0.24456 (12)0.0423 (3)
N20.74524 (13)0.24656 (11)0.12571 (12)0.0407 (3)
N30.58719 (12)0.39148 (10)0.33027 (11)0.0370 (3)
N40.82861 (12)0.36202 (10)0.31342 (11)0.0381 (3)
C10.50113 (15)0.05984 (12)0.36745 (13)0.0339 (3)
C20.59493 (16)0.02534 (14)0.31001 (15)0.0413 (4)
H2A0.60800.08400.36900.050*
H2B0.67400.00810.26410.050*
C30.55376 (16)0.07434 (13)0.23259 (14)0.0409 (4)
H3A0.61460.13190.20300.049*
H3B0.47460.10760.27850.049*
C40.53961 (18)0.00960 (14)0.13196 (14)0.0453 (4)
H4A0.61670.04700.08940.054*
H4B0.47400.06400.16150.054*
C50.50857 (18)0.04110 (14)0.05008 (15)0.0478 (4)
H5A0.57500.09470.01990.057*
H5B0.43250.07990.09330.057*
C60.67555 (19)0.30097 (15)0.06869 (16)0.0524 (4)
H6A0.59800.33110.11030.063*
C70.7121 (2)0.31556 (18)0.05024 (18)0.0651 (6)
H7A0.65960.35370.08670.078*
C80.8255 (2)0.27326 (18)0.11219 (17)0.0654 (6)
H8A0.85160.28280.19190.078*
C91.0253 (2)0.1706 (2)0.11490 (19)0.0692 (6)
H9A1.05610.17890.19470.083*
C101.0960 (2)0.1170 (2)0.0567 (2)0.0711 (7)
H10A1.17590.09030.09740.085*
C111.1218 (2)0.04253 (18)0.1314 (2)0.0700 (6)
H11A1.20280.01570.09430.084*
C121.0713 (2)0.02624 (17)0.2480 (2)0.0679 (6)
H12A1.11710.01160.29140.081*
C130.94950 (19)0.06706 (14)0.30215 (18)0.0543 (5)
H13A0.91450.05310.38230.065*
C140.90359 (19)0.21517 (16)0.05620 (16)0.0539 (5)
C150.85812 (16)0.20248 (13)0.06474 (14)0.0412 (4)
C161.05239 (17)0.09953 (16)0.06647 (19)0.0556 (5)
C170.93227 (15)0.14120 (13)0.12730 (15)0.0418 (4)
C180.94555 (16)0.34774 (14)0.30703 (16)0.0472 (4)
H18A0.98950.28230.28910.057*
C191.00663 (18)0.42543 (16)0.32574 (18)0.0558 (5)
H19A1.08880.41140.32080.067*
C200.94419 (19)0.52166 (16)0.35118 (17)0.0550 (5)
H20A0.98290.57380.36520.066*
C210.7496 (2)0.64238 (14)0.38036 (16)0.0539 (5)
H21A0.78490.69690.39450.065*
C220.6327 (2)0.65874 (14)0.38290 (15)0.0522 (5)
H22A0.58870.72490.39790.063*
C230.45241 (18)0.59084 (15)0.36366 (15)0.0508 (4)
H23A0.40650.65690.37510.061*
C240.40184 (18)0.50752 (16)0.34740 (16)0.0524 (5)
H24A0.32220.51670.34550.063*
C250.47149 (16)0.40809 (14)0.33364 (15)0.0444 (4)
H25A0.43450.35050.32650.053*
C260.82112 (17)0.54230 (13)0.35622 (14)0.0449 (4)
C270.76600 (15)0.45891 (12)0.33745 (13)0.0368 (3)
C280.57400 (17)0.57670 (13)0.36306 (14)0.0431 (4)
C290.63978 (15)0.47586 (12)0.34317 (13)0.0359 (3)
O30.36732 (19)0.40660 (15)0.14822 (16)0.0929 (6)
O40.28810 (17)0.24951 (13)0.16774 (15)0.0837 (5)
H4C0.27290.24450.23890.126*
C300.3445 (2)0.34024 (18)0.1066 (2)0.0613 (5)
C310.3730 (2)0.35127 (18)0.01941 (19)0.0663 (6)
H31A0.42930.29050.04740.080*
H31B0.41470.41880.06100.080*
C320.2553 (2)0.35228 (17)0.04290 (18)0.0630 (5)
H32A0.27790.35040.12360.076*
H32B0.21110.28680.00260.076*
C330.1694 (2)0.45277 (16)0.01428 (18)0.0585 (5)
H33A0.16030.46180.06160.070*
H33B0.20890.51680.06920.070*
C340.0418 (2)0.44959 (16)0.01543 (17)0.0586 (5)
H34A0.00220.38520.03870.070*
H34B0.05030.44220.09170.070*
N50.91636 (17)0.22595 (15)0.58128 (14)0.0582 (4)
O5A0.8094 (5)0.2322 (5)0.6183 (5)0.0960 (12)0.456 (4)
O6A0.9670 (4)0.1569 (6)0.5070 (6)0.0749 (10)0.456 (4)
O5B0.8208 (4)0.2931 (4)0.6291 (4)0.0960 (12)0.544 (4)
O6B0.9028 (4)0.1683 (5)0.5265 (5)0.0749 (10)0.544 (4)
O71.00394 (16)0.24493 (15)0.60047 (16)0.0858 (5)
O2W0.23404 (16)0.21497 (15)0.39055 (14)0.0915 (6)
H2C0.28070.16100.40720.137*
H2D0.16310.20730.44530.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03696 (14)0.03139 (12)0.03438 (13)0.00389 (9)0.01003 (10)0.00884 (10)
O10.0437 (7)0.0372 (6)0.0569 (7)0.0086 (5)0.0166 (6)0.0115 (5)
O20.0378 (6)0.0412 (6)0.0486 (7)0.0086 (5)0.0098 (5)0.0078 (5)
O1W0.0556 (7)0.0497 (7)0.0394 (6)0.0212 (6)0.0201 (6)0.0020 (5)
N10.0450 (8)0.0367 (7)0.0458 (8)0.0011 (6)0.0159 (7)0.0119 (6)
N20.0434 (8)0.0408 (7)0.0376 (7)0.0067 (6)0.0122 (6)0.0098 (6)
N30.0390 (7)0.0347 (7)0.0356 (7)0.0025 (6)0.0115 (6)0.0080 (6)
N40.0399 (7)0.0329 (7)0.0387 (7)0.0045 (6)0.0112 (6)0.0062 (6)
C10.0390 (9)0.0367 (8)0.0284 (7)0.0053 (7)0.0160 (7)0.0031 (6)
C20.0416 (9)0.0411 (9)0.0445 (9)0.0006 (7)0.0184 (8)0.0115 (7)
C30.0465 (9)0.0394 (8)0.0372 (9)0.0020 (7)0.0138 (7)0.0115 (7)
C40.0561 (11)0.0425 (9)0.0383 (9)0.0007 (8)0.0173 (8)0.0116 (7)
C50.0605 (11)0.0458 (9)0.0404 (9)0.0028 (8)0.0208 (8)0.0113 (8)
C60.0587 (12)0.0532 (11)0.0496 (11)0.0059 (9)0.0248 (9)0.0084 (9)
C70.0830 (16)0.0672 (13)0.0547 (12)0.0159 (12)0.0371 (12)0.0025 (11)
C80.0900 (17)0.0706 (14)0.0373 (10)0.0302 (13)0.0197 (11)0.0062 (10)
C90.0680 (14)0.0784 (15)0.0474 (12)0.0259 (12)0.0078 (11)0.0262 (11)
C100.0484 (12)0.0748 (15)0.0726 (15)0.0157 (11)0.0129 (11)0.0374 (13)
C110.0425 (11)0.0557 (12)0.105 (2)0.0026 (9)0.0155 (12)0.0288 (13)
C120.0599 (13)0.0488 (11)0.1039 (19)0.0065 (10)0.0423 (14)0.0164 (12)
C130.0625 (12)0.0409 (9)0.0649 (12)0.0035 (9)0.0297 (10)0.0137 (9)
C140.0610 (12)0.0556 (11)0.0406 (10)0.0240 (9)0.0041 (9)0.0155 (9)
C150.0445 (9)0.0391 (8)0.0377 (9)0.0137 (7)0.0064 (7)0.0124 (7)
C160.0410 (10)0.0479 (10)0.0722 (13)0.0077 (8)0.0057 (9)0.0252 (10)
C170.0391 (9)0.0365 (8)0.0476 (10)0.0092 (7)0.0068 (7)0.0165 (7)
C180.0418 (10)0.0426 (9)0.0553 (11)0.0039 (8)0.0160 (8)0.0087 (8)
C190.0467 (11)0.0579 (11)0.0655 (13)0.0139 (9)0.0218 (9)0.0092 (10)
C200.0591 (12)0.0529 (11)0.0585 (12)0.0211 (9)0.0220 (10)0.0105 (9)
C210.0723 (14)0.0375 (9)0.0505 (11)0.0141 (9)0.0160 (10)0.0121 (8)
C220.0748 (14)0.0297 (8)0.0444 (10)0.0015 (8)0.0135 (9)0.0095 (7)
C230.0590 (12)0.0407 (9)0.0433 (10)0.0123 (8)0.0144 (9)0.0079 (8)
C240.0473 (10)0.0580 (11)0.0489 (11)0.0091 (9)0.0194 (9)0.0092 (9)
C250.0437 (10)0.0474 (9)0.0423 (9)0.0001 (8)0.0158 (8)0.0109 (8)
C260.0565 (11)0.0373 (8)0.0386 (9)0.0133 (8)0.0127 (8)0.0057 (7)
C270.0447 (9)0.0321 (8)0.0295 (8)0.0070 (7)0.0089 (7)0.0042 (6)
C280.0558 (11)0.0340 (8)0.0320 (8)0.0018 (7)0.0105 (7)0.0052 (7)
C290.0455 (9)0.0295 (7)0.0277 (7)0.0032 (6)0.0093 (7)0.0037 (6)
O30.1232 (16)0.0853 (12)0.0995 (13)0.0169 (11)0.0701 (12)0.0161 (10)
O40.1072 (14)0.0677 (10)0.0714 (11)0.0128 (10)0.0318 (10)0.0026 (9)
C300.0545 (12)0.0572 (12)0.0760 (15)0.0069 (10)0.0327 (11)0.0111 (11)
C310.0625 (13)0.0583 (12)0.0690 (14)0.0039 (10)0.0136 (11)0.0145 (11)
C320.0810 (15)0.0592 (12)0.0493 (11)0.0185 (11)0.0212 (11)0.0086 (10)
C330.0711 (13)0.0553 (11)0.0552 (12)0.0178 (10)0.0295 (10)0.0034 (9)
C340.0749 (14)0.0588 (11)0.0511 (11)0.0239 (10)0.0311 (11)0.0017 (9)
N50.0613 (11)0.0704 (11)0.0484 (9)0.0119 (9)0.0267 (8)0.0056 (8)
O5A0.0672 (16)0.135 (4)0.1006 (19)0.035 (3)0.0375 (13)0.064 (3)
O6A0.087 (3)0.0818 (17)0.084 (2)0.006 (3)0.053 (3)0.0313 (14)
O5B0.0672 (16)0.135 (4)0.1006 (19)0.035 (3)0.0375 (13)0.064 (3)
O6B0.087 (3)0.0818 (17)0.084 (2)0.006 (3)0.053 (3)0.0313 (14)
O70.0767 (11)0.1024 (13)0.1040 (13)0.0243 (10)0.0488 (10)0.0304 (11)
O2W0.0707 (11)0.0983 (13)0.0730 (11)0.0261 (9)0.0143 (9)0.0041 (9)
Geometric parameters (Å, º) top
Mn1—O12.0934 (11)C13—H13A0.9300
Mn1—O1W2.1462 (11)C14—C151.409 (2)
Mn1—N32.2596 (13)C15—C171.436 (2)
Mn1—N22.2821 (13)C16—C171.404 (2)
Mn1—N12.3027 (14)C18—C191.397 (2)
Mn1—N42.3480 (13)C18—H18A0.9300
O1—C11.2556 (18)C19—C201.357 (3)
O2—C11.2496 (18)C19—H19A0.9300
O1W—H1A0.8516C20—C261.402 (3)
O1W—H1B0.8939C20—H20A0.9300
N1—C131.325 (2)C21—C221.340 (3)
N1—C171.362 (2)C21—C261.431 (3)
N2—C61.322 (2)C21—H21A0.9300
N2—C151.356 (2)C22—C281.430 (2)
N3—C251.322 (2)C22—H22A0.9300
N3—C291.3654 (19)C23—C241.361 (3)
N4—C181.324 (2)C23—C281.403 (3)
N4—C271.361 (2)C23—H23A0.9300
C1—C21.511 (2)C24—C251.397 (2)
C2—C31.529 (2)C24—H24A0.9300
C2—H2A0.9700C25—H25A0.9300
C2—H2B0.9700C26—C271.411 (2)
C3—C41.516 (2)C27—C291.434 (2)
C3—H3A0.9700C28—C291.405 (2)
C3—H3B0.9700O3—C301.194 (3)
C4—C51.522 (2)O4—C301.317 (3)
C4—H4A0.9700O4—H4C0.8500
C4—H4B0.9700C30—C311.497 (3)
C5—C5i1.514 (3)C31—C321.517 (3)
C5—H5A0.9700C31—H31A0.9700
C5—H5B0.9700C31—H31B0.9700
C6—C71.390 (3)C32—C331.515 (3)
C6—H6A0.9300C32—H32A0.9700
C7—C81.355 (3)C32—H32B0.9700
C7—H7A0.9300C33—C341.502 (3)
C8—C141.403 (3)C33—H33A0.9700
C8—H8A0.9300C33—H33B0.9700
C9—C101.339 (3)C34—C34ii1.512 (4)
C9—C141.424 (3)C34—H34A0.9700
C9—H9A0.9300C34—H34B0.9700
C10—C161.432 (3)N5—O5A1.147 (6)
C10—H10A0.9300N5—O6B1.182 (5)
C11—C121.354 (3)N5—O71.206 (2)
C11—C161.399 (3)N5—O5B1.329 (4)
C11—H11A0.9300N5—O6A1.344 (7)
C12—C131.396 (3)O2W—H2C0.8500
C12—H12A0.9300O2W—H2D0.8500
O1—Mn1—O1W87.16 (5)N2—C15—C14122.20 (17)
O1—Mn1—N388.76 (5)N2—C15—C17117.93 (14)
O1W—Mn1—N3102.95 (5)C14—C15—C17119.87 (16)
O1—Mn1—N291.66 (5)C11—C16—C17117.1 (2)
O1W—Mn1—N2162.78 (5)C11—C16—C10124.2 (2)
N3—Mn1—N294.19 (5)C17—C16—C10118.7 (2)
O1—Mn1—N1114.20 (5)N1—C17—C16122.60 (17)
O1W—Mn1—N192.32 (5)N1—C17—C15117.97 (15)
N3—Mn1—N1153.19 (5)C16—C17—C15119.43 (17)
N2—Mn1—N172.51 (5)N4—C18—C19123.66 (17)
O1—Mn1—N4157.92 (5)N4—C18—H18A118.2
O1W—Mn1—N486.23 (4)C19—C18—H18A118.2
N3—Mn1—N472.28 (5)C20—C19—C18118.94 (18)
N2—Mn1—N4100.72 (5)C20—C19—H19A120.5
N1—Mn1—N487.11 (5)C18—C19—H19A120.5
C1—O1—Mn1140.58 (11)C19—C20—C26119.83 (17)
Mn1—O1W—H1A120.0C19—C20—H20A120.1
Mn1—O1W—H1B126.1C26—C20—H20A120.1
H1A—O1W—H1B105.3C22—C21—C26121.07 (17)
C13—N1—C17117.86 (16)C22—C21—H21A119.5
C13—N1—Mn1126.61 (13)C26—C21—H21A119.5
C17—N1—Mn1114.38 (11)C21—C22—C28121.46 (16)
C6—N2—C15118.10 (15)C21—C22—H22A119.3
C6—N2—Mn1126.09 (12)C28—C22—H22A119.3
C15—N2—Mn1115.62 (11)C24—C23—C28119.77 (16)
C25—N3—C29117.81 (14)C24—C23—H23A120.1
C25—N3—Mn1125.27 (11)C28—C23—H23A120.1
C29—N3—Mn1116.76 (10)C23—C24—C25118.93 (17)
C18—N4—C27117.69 (14)C23—C24—H24A120.5
C18—N4—Mn1127.89 (11)C25—C24—H24A120.5
C27—N4—Mn1113.65 (10)N3—C25—C24123.50 (17)
O2—C1—O1122.44 (15)N3—C25—H25A118.3
O2—C1—C2118.14 (14)C24—C25—H25A118.3
O1—C1—C2119.42 (14)C20—C26—C27117.54 (16)
C1—C2—C3112.98 (13)C20—C26—C21123.32 (16)
C1—C2—H2A109.0C27—C26—C21119.14 (17)
C3—C2—H2A109.0N4—C27—C26122.33 (15)
C1—C2—H2B109.0N4—C27—C29118.19 (14)
C3—C2—H2B109.0C26—C27—C29119.49 (15)
H2A—C2—H2B107.8C23—C28—C29117.61 (16)
C4—C3—C2113.25 (14)C23—C28—C22123.34 (16)
C4—C3—H3A108.9C29—C28—C22119.05 (17)
C2—C3—H3A108.9N3—C29—C28122.27 (15)
C4—C3—H3B108.9N3—C29—C27118.00 (13)
C2—C3—H3B108.9C28—C29—C27119.72 (15)
H3A—C3—H3B107.7C30—O4—H4C110.9
C3—C4—C5113.00 (14)O3—C30—O4123.4 (2)
C3—C4—H4A109.0O3—C30—C31124.5 (2)
C5—C4—H4A109.0O4—C30—C31112.14 (19)
C3—C4—H4B109.0C30—C31—C32111.44 (18)
C5—C4—H4B109.0C30—C31—H31A109.3
H4A—C4—H4B107.8C32—C31—H31A109.3
C5i—C5—C4114.19 (18)C30—C31—H31B109.3
C5i—C5—H5A108.7C32—C31—H31B109.3
C4—C5—H5A108.7H31A—C31—H31B108.0
C5i—C5—H5B108.7C33—C32—C31112.29 (17)
C4—C5—H5B108.7C33—C32—H32A109.1
H5A—C5—H5B107.6C31—C32—H32A109.1
N2—C6—C7123.5 (2)C33—C32—H32B109.1
N2—C6—H6A118.3C31—C32—H32B109.1
C7—C6—H6A118.3H32A—C32—H32B107.9
C8—C7—C6118.9 (2)C34—C33—C32115.04 (17)
C8—C7—H7A120.5C34—C33—H33A108.5
C6—C7—H7A120.5C32—C33—H33A108.5
C7—C8—C14120.04 (18)C34—C33—H33B108.5
C7—C8—H8A120.0C32—C33—H33B108.5
C14—C8—H8A120.0H33A—C33—H33B107.5
C10—C9—C14120.9 (2)C33—C34—C34ii113.5 (2)
C10—C9—H9A119.6C33—C34—H34A108.9
C14—C9—H9A119.6C34ii—C34—H34A108.9
C9—C10—C16122.0 (2)C33—C34—H34B108.9
C9—C10—H10A119.0C34ii—C34—H34B108.9
C16—C10—H10A119.0H34A—C34—H34B107.7
C12—C11—C16120.2 (2)O5A—N5—O6B83.5 (3)
C12—C11—H11A119.9O5A—N5—O7140.7 (3)
C16—C11—H11A119.9O6B—N5—O7134.2 (3)
C11—C12—C13119.1 (2)O5A—N5—O5B39.0 (3)
C11—C12—H12A120.4O6B—N5—O5B118.1 (3)
C13—C12—H12A120.4O7—N5—O5B107.6 (2)
N1—C13—C12123.0 (2)O5A—N5—O6A114.4 (3)
N1—C13—H13A118.5O6B—N5—O6A31.1 (2)
C12—C13—H13A118.5O7—N5—O6A103.2 (3)
C8—C14—C15117.25 (19)O5B—N5—O6A148.1 (3)
C8—C14—C9123.68 (19)H2C—O2W—H2D105.9
C15—C14—C9119.1 (2)
O1W—Mn1—O1—C186.07 (17)Mn1—N2—C15—C14173.76 (12)
N3—Mn1—O1—C1170.90 (17)C6—N2—C15—C17178.53 (14)
N2—Mn1—O1—C176.74 (17)Mn1—N2—C15—C176.19 (18)
N1—Mn1—O1—C15.20 (18)C8—C14—C15—N21.8 (2)
N4—Mn1—O1—C1158.77 (15)C9—C14—C15—N2177.29 (16)
O1—Mn1—N1—C1397.67 (15)C8—C14—C15—C17178.28 (16)
O1W—Mn1—N1—C139.73 (15)C9—C14—C15—C172.7 (2)
N3—Mn1—N1—C13115.53 (16)C12—C11—C16—C172.2 (3)
N2—Mn1—N1—C13178.56 (15)C12—C11—C16—C10177.49 (19)
N4—Mn1—N1—C1376.37 (15)C9—C10—C16—C11178.9 (2)
O1—Mn1—N1—C1794.93 (11)C9—C10—C16—C170.8 (3)
O1W—Mn1—N1—C17177.14 (11)C13—N1—C17—C160.0 (2)
N3—Mn1—N1—C1751.88 (17)Mn1—N1—C17—C16168.56 (13)
N2—Mn1—N1—C1711.15 (10)C13—N1—C17—C15179.16 (15)
N4—Mn1—N1—C1791.04 (11)Mn1—N1—C17—C1512.26 (17)
O1—Mn1—N2—C661.19 (14)C11—C16—C17—N12.2 (3)
O1W—Mn1—N2—C6146.96 (16)C10—C16—C17—N1177.46 (16)
N3—Mn1—N2—C627.69 (14)C11—C16—C17—C15178.62 (16)
N1—Mn1—N2—C6176.08 (15)C10—C16—C17—C151.7 (2)
N4—Mn1—N2—C6100.43 (14)N2—C15—C17—N14.2 (2)
O1—Mn1—N2—C15123.98 (11)C14—C15—C17—N1175.80 (14)
O1W—Mn1—N2—C1538.2 (2)N2—C15—C17—C16176.55 (14)
N3—Mn1—N2—C15147.14 (11)C14—C15—C17—C163.4 (2)
N1—Mn1—N2—C159.09 (11)C27—N4—C18—C191.3 (3)
N4—Mn1—N2—C1574.40 (11)Mn1—N4—C18—C19167.94 (14)
O1—Mn1—N3—C2514.49 (13)N4—C18—C19—C200.5 (3)
O1W—Mn1—N3—C25101.30 (13)C18—C19—C20—C261.1 (3)
N2—Mn1—N3—C2577.08 (13)C26—C21—C22—C280.8 (3)
N1—Mn1—N3—C25135.54 (14)C28—C23—C24—C251.8 (3)
N4—Mn1—N3—C25177.00 (14)C29—N3—C25—C241.3 (2)
O1—Mn1—N3—C29160.80 (11)Mn1—N3—C25—C24176.52 (13)
O1W—Mn1—N3—C2973.99 (11)C23—C24—C25—N33.2 (3)
N2—Mn1—N3—C29107.63 (11)C19—C20—C26—C271.8 (3)
N1—Mn1—N3—C2949.17 (17)C19—C20—C26—C21178.82 (18)
N4—Mn1—N3—C297.71 (10)C22—C21—C26—C20179.20 (18)
O1—Mn1—N4—C18146.84 (15)C22—C21—C26—C271.4 (3)
O1W—Mn1—N4—C1873.97 (14)C18—N4—C27—C260.5 (2)
N3—Mn1—N4—C18178.85 (15)Mn1—N4—C27—C26170.22 (12)
N2—Mn1—N4—C1890.14 (15)C18—N4—C27—C29179.24 (14)
N1—Mn1—N4—C1818.55 (14)Mn1—N4—C27—C2910.02 (17)
O1—Mn1—N4—C2722.76 (19)C20—C26—C27—N41.0 (2)
O1W—Mn1—N4—C2795.63 (11)C21—C26—C27—N4179.60 (15)
N3—Mn1—N4—C279.26 (10)C20—C26—C27—C29179.24 (15)
N2—Mn1—N4—C27100.26 (11)C21—C26—C27—C290.1 (2)
N1—Mn1—N4—C27171.85 (11)C24—C23—C28—C291.2 (3)
Mn1—O1—C1—O2165.93 (12)C24—C23—C28—C22178.06 (17)
Mn1—O1—C1—C214.0 (2)C21—C22—C28—C23179.27 (18)
O2—C1—C2—C350.5 (2)C21—C22—C28—C291.5 (3)
O1—C1—C2—C3129.64 (15)C25—N3—C29—C282.0 (2)
C1—C2—C3—C462.81 (19)Mn1—N3—C29—C28173.70 (11)
C2—C3—C4—C5175.50 (15)C25—N3—C29—C27178.87 (14)
C3—C4—C5—C5i178.9 (2)Mn1—N3—C29—C275.47 (18)
C15—N2—C6—C70.2 (3)C23—C28—C29—N33.2 (2)
Mn1—N2—C6—C7174.50 (14)C22—C28—C29—N3176.11 (15)
N2—C6—C7—C80.8 (3)C23—C28—C29—C27177.68 (14)
C6—C7—C8—C140.4 (3)C22—C28—C29—C273.1 (2)
C14—C9—C10—C161.5 (3)N4—C27—C29—N33.4 (2)
C16—C11—C12—C130.0 (3)C26—C27—C29—N3176.81 (14)
C17—N1—C13—C122.4 (3)N4—C27—C29—C28177.37 (14)
Mn1—N1—C13—C12164.64 (14)C26—C27—C29—C282.4 (2)
C11—C12—C13—N12.4 (3)O3—C30—C31—C32119.2 (2)
C7—C8—C14—C150.7 (3)O4—C30—C31—C3259.2 (2)
C7—C8—C14—C9178.27 (19)C30—C31—C32—C3365.7 (2)
C10—C9—C14—C8179.2 (2)C31—C32—C33—C34169.68 (17)
C10—C9—C14—C150.2 (3)C32—C33—C34—C34ii179.1 (2)
C6—N2—C15—C141.5 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.851.832.6680 (16)170
O2W—H2D···O6Aiv0.852.242.991 (6)148
O2W—H2D···O7iv0.852.223.020 (2)157
O1W—H1B···O6B0.891.872.710 (4)156
O1W—H1B···O5A0.891.992.830 (5)156
O2W—H2C···O20.851.902.7396 (19)170
O4—H4C···O2W0.851.782.622 (2)172
Symmetry codes: (iii) x+1, y, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C10H16O4)(C12H8N2)4(H2O)2](NO3)2·C10H18O4·2H2O
Mr1429.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.6712 (3), 12.5316 (3), 12.8561 (3)
α, β, γ (°)76.678 (1), 66.845 (1), 81.971 (1)
V3)1679.79 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.58 × 0.33 × 0.13
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.837, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
25302, 7666, 6144
Rint0.025
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.03
No. of reflections7666
No. of parameters449
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.851.832.6680 (16)169.8
O2W—H2D···O6Aii0.852.242.991 (6)147.5
O2W—H2D···O7ii0.852.223.020 (2)156.9
O1W—H1B···O6B0.891.872.710 (4)156.0
O1W—H1B···O5A0.891.992.830 (5)155.9
O2W—H2C···O20.851.902.7396 (19)170.3
O4—H4C···O2W0.851.782.622 (2)171.8
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

References

First citationBruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R.-Q. & Zhang, X.-M. (2006). Inorg. Chem. 45, 4801–4810.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLehn, J.-M. (2007). Chem. Soc. Rev. 36, 151–160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Lei, Y.-Q. & Wang, N. (2010). Cryst. Growth Des. 10 4060–4067.  Google Scholar
First citationWei, D.-Y., Kong, Z.-P. & Zheng, Y.-Q. (2002). Polyhedron, 21, 1621–1628.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds