organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Pentyl-1H-tetra­zole

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 9 December 2010; accepted 13 December 2010; online 18 December 2010)

The title compound C6H12N4, is one of a few known tetra­zoles with an alkyl chain in the 5-position. The asymmetric unit contains two independent mol­ecules. The mol­ecules are linked by N—H⋯N inter­actions into chains with graph-set notation D(2) and C22(8) along [010]. The two independent mol­ecules form a layered structure, the layers being composed of inter­digitating strands of alternatingly oriented and nearly identical mol­ecules.

Related literature

For synthetic methods see: Mihina & Herbst (1950[Mihina, J. S. & Herbst, R. M. (1950). J. Org. Chem. 15, 1082-1092.]); Steven et al. (1993[Steven, J., Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.]); Detert & Schollmeyer (1999[Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999-1004.]); Sugiono & Detert (2001[Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893-896.]); Glang et al. (2008[Glang, S., Schmitt, V. & Detert, H. (2008). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 125-128.]); Borchmann et al. (2010[Borchmann, D., Kratochwil, M., Glang, S. & Detert, H. (2010). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 133-138.]). For the properties of tetra­zole, see: Huisgen et al. (1960a[Huisgen, R., Sauer, J. & Seidel, M. (1960a). Chem. Ber. 93, 2885-2891.],b[Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960b). Chem. Ber. 93, 2106-2124.], 1961[Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555-1562.]); Singh (1980[Singh, H. (1980). Progress in Medicinal Chemistry, edited by G. P. Ellis & G. B. West Vol. 17, pp. 151-184. Amsterdam: Elsevier/North Holland Biomedical Press.]); Pernice et al. (1988[Pernice, P., Castaing, M., Menassa, P. & Kraus, J. L. (1988). Biophys. Chem. 32, 15-20.]); Huff et al. (1996[Huff, B. E., LeTourneau, M. E., Staszak, M. A. & Ward, J. A. (1996). Tetrahedron Lett. 37, 3655-3658.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N4

  • Mr = 140.20

  • Triclinic, [P \overline 1]

  • a = 8.7812 (14) Å

  • b = 9.6770 (12) Å

  • c = 11.614 (2) Å

  • α = 93.136 (10)°

  • β = 112.059 (9)°

  • γ = 116.389 (7)°

  • V = 789.6 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 193 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3182 measured reflections

  • 2991 independent reflections

  • 2764 reflections with I > 2σ(I)

  • Rint = 0.070

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.04

  • 2991 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N4B 0.96 1.82 2.7773 (14) 175
N1B—H1B⋯N4Ai 0.95 1.84 2.7779 (14) 170
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound (I), is formed by the addition of triethylammonium azide to capronitrile in refluxing toluene and acidic work-up. In the crystal, molecules are linked by N— H··· N interactions into chains with graph-set notation D(2) a C22(8) along [010] (Bernstein et al., 1995), Table 1. Both molecules of the title compound have very similar geometries. The heterocycles and alkyl chains are coplanar with the molecules A oriented to the opposite site of the molecules B. These strands form layers via interdigitation of the alkyl chains.

Related literature top

For synthetic methods see: Mihina & Herbst (1950); Steven et al. (1993); Detert & Schollmeyer (1999); Sugiono & Detert (2001); Glang et al. (2008); Borchmann et al. (2010). For the properties of tetrazole, see: Huisgen et al. (1960a,b, 1961); Singh (1980); Pernice et al. (1988);Huff et al. (1996). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared as follows: Triethyl ammonium chloride (8.95 g, 0.06 mol) and sodium azide (3.90 g, 0.06 mol) were added to a solution of hexanoic acid nitrile (4.36 g, 0.045 mol) in toluene (35 ml) and the mixture was stirred under reflux for 72 h. The mixture was filtered, the solvent evaporated and the residue dissolved in water. Hydrochloric acid (6M, 15 ml) was added and the product was extracted with ether/petroleum ether (1/1, 3*30 ml). The cooled organic solutions were dried with sodium sulfate. The solvents were evaporated and the residue crystallized upon standing at ambient temperature within 5 days. Recrystallization from toluene yielded 5-pentyltetrazole in 78% yield as colorless needles.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The Hydrogen atoms attached to N1A and N1B were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

The title compound (I), is formed by the addition of triethylammonium azide to capronitrile in refluxing toluene and acidic work-up. In the crystal, molecules are linked by N— H··· N interactions into chains with graph-set notation D(2) a C22(8) along [010] (Bernstein et al., 1995), Table 1. Both molecules of the title compound have very similar geometries. The heterocycles and alkyl chains are coplanar with the molecules A oriented to the opposite site of the molecules B. These strands form layers via interdigitation of the alkyl chains.

For synthetic methods see: Mihina & Herbst (1950); Steven et al. (1993); Detert & Schollmeyer (1999); Sugiono & Detert (2001); Glang et al. (2008); Borchmann et al. (2010). For the properties of tetrazole, see: Huisgen et al. (1960a,b, 1961); Singh (1980); Pernice et al. (1988);Huff et al. (1996). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
5-pentyl-1H-tetrazole top
Crystal data top
C6H12N4Z = 4
Mr = 140.20F(000) = 304
Triclinic, P1Dx = 1.179 Mg m3
Hall symbol: -P 1Melting point: 315 K
a = 8.7812 (14) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.6770 (12) ÅCell parameters from 25 reflections
c = 11.614 (2) Åθ = 65–69°
α = 93.136 (10)°µ = 0.63 mm1
β = 112.059 (9)°T = 193 K
γ = 116.389 (7)°Block, colourless
V = 789.6 (2) Å30.50 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.070
Radiation source: rotating anodeθmax = 70.0°, θmin = 4.3°
Graphite monochromatorh = 109
ω/2θ scansk = 011
3182 measured reflectionsl = 1414
2991 independent reflections3 standard reflections every 60 min
2764 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.1618P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2991 reflectionsΔρmax = 0.24 e Å3
184 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (12)
Crystal data top
C6H12N4γ = 116.389 (7)°
Mr = 140.20V = 789.6 (2) Å3
Triclinic, P1Z = 4
a = 8.7812 (14) ÅCu Kα radiation
b = 9.6770 (12) ŵ = 0.63 mm1
c = 11.614 (2) ÅT = 193 K
α = 93.136 (10)°0.50 × 0.40 × 0.30 mm
β = 112.059 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.070
3182 measured reflections3 standard reflections every 60 min
2991 independent reflections intensity decay: 2%
2764 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2991 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.76292 (14)0.44445 (11)0.33040 (10)0.0321 (2)
H1A0.76280.54320.33970.038*
N2A0.77322 (17)0.38035 (13)0.22933 (10)0.0392 (3)
N3A0.77338 (17)0.25012 (13)0.24908 (11)0.0413 (3)
N4A0.76329 (16)0.22891 (12)0.36157 (10)0.0358 (3)
C5A0.75588 (16)0.35102 (13)0.41070 (11)0.0286 (3)
C6A0.74035 (18)0.38071 (13)0.53191 (11)0.0321 (3)
H6A0.61950.37970.51050.039*
H6B0.84580.48840.58750.039*
C7A0.74667 (18)0.25697 (14)0.60683 (12)0.0336 (3)
H7A0.63590.15010.55400.040*
H7B0.86330.25250.62330.040*
C8A0.74449 (18)0.29643 (15)0.73469 (12)0.0360 (3)
H8A0.63510.31230.71860.043*
H8B0.86190.39830.79050.043*
C9A0.7308 (2)0.16675 (18)0.80548 (14)0.0441 (3)
H9A0.61160.06550.75070.053*
H9B0.83830.14890.81970.053*
C10A0.7338 (3)0.2091 (2)0.93461 (16)0.0607 (4)
H10A0.71830.11980.97400.091*
H10B0.62980.22990.92150.091*
H10C0.85550.30500.99160.091*
N1B0.77122 (14)0.95284 (11)0.40731 (9)0.0305 (2)
H1B0.76391.04690.39950.037*
N2B0.74619 (15)0.88499 (12)0.50153 (10)0.0350 (3)
N3B0.74529 (16)0.75189 (12)0.47932 (10)0.0364 (3)
N4B0.76875 (15)0.73261 (12)0.37130 (10)0.0336 (2)
C5B0.78464 (16)0.85919 (13)0.32751 (11)0.0288 (3)
C6B0.81748 (19)0.89627 (13)0.21354 (12)0.0359 (3)
H6C0.95580.96400.24230.043*
H6D0.75690.95900.17660.043*
C7B0.74053 (18)0.74860 (13)0.10847 (11)0.0326 (3)
H7C0.80510.68800.14360.039*
H7D0.60300.67840.08130.039*
C8B0.77032 (18)0.79245 (14)0.00809 (11)0.0341 (3)
H8C0.70020.84840.04530.041*
H8D0.90710.86780.02050.041*
C9B0.70495 (19)0.64908 (15)0.11205 (12)0.0380 (3)
H9C0.56800.57370.14110.046*
H9D0.77490.59300.07510.046*
C10B0.7361 (2)0.69521 (18)0.22777 (13)0.0501 (4)
H10D0.67360.59830.29740.075*
H10E0.87270.75360.20300.075*
H10F0.68220.76350.25750.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0489 (6)0.0245 (5)0.0357 (5)0.0239 (4)0.0240 (5)0.0118 (4)
N2A0.0627 (7)0.0336 (6)0.0384 (6)0.0314 (5)0.0295 (5)0.0145 (4)
N3A0.0686 (7)0.0333 (6)0.0397 (6)0.0336 (5)0.0308 (6)0.0135 (5)
N4A0.0564 (6)0.0268 (5)0.0379 (6)0.0269 (5)0.0264 (5)0.0118 (4)
C5A0.0357 (6)0.0209 (5)0.0337 (6)0.0163 (5)0.0171 (5)0.0077 (4)
C6A0.0446 (6)0.0263 (6)0.0350 (6)0.0218 (5)0.0219 (5)0.0094 (5)
C7A0.0440 (7)0.0288 (6)0.0360 (6)0.0214 (5)0.0214 (5)0.0112 (5)
C8A0.0426 (7)0.0348 (6)0.0348 (6)0.0211 (5)0.0193 (5)0.0100 (5)
C9A0.0566 (8)0.0519 (8)0.0428 (7)0.0358 (7)0.0283 (6)0.0228 (6)
C10A0.0868 (12)0.0807 (12)0.0495 (9)0.0573 (10)0.0426 (9)0.0353 (8)
N1B0.0454 (6)0.0229 (5)0.0326 (5)0.0217 (4)0.0203 (4)0.0098 (4)
N2B0.0511 (6)0.0294 (5)0.0353 (5)0.0242 (5)0.0242 (5)0.0116 (4)
N3B0.0544 (6)0.0303 (5)0.0370 (5)0.0255 (5)0.0263 (5)0.0151 (4)
N4B0.0520 (6)0.0262 (5)0.0362 (5)0.0250 (5)0.0256 (5)0.0133 (4)
C5B0.0386 (6)0.0206 (5)0.0312 (6)0.0168 (5)0.0169 (5)0.0074 (4)
C6B0.0554 (7)0.0235 (6)0.0359 (6)0.0205 (5)0.0260 (6)0.0118 (5)
C7B0.0440 (7)0.0240 (6)0.0350 (6)0.0174 (5)0.0220 (5)0.0094 (5)
C8B0.0457 (7)0.0276 (6)0.0339 (6)0.0194 (5)0.0206 (5)0.0117 (5)
C9B0.0507 (7)0.0322 (6)0.0347 (6)0.0208 (6)0.0224 (6)0.0097 (5)
C10B0.0734 (10)0.0466 (8)0.0388 (7)0.0305 (7)0.0324 (7)0.0150 (6)
Geometric parameters (Å, º) top
N1A—C5A1.3330 (15)N1B—C5B1.3339 (15)
N1A—N2A1.3494 (14)N1B—N2B1.3446 (14)
N1A—H1A0.9564N1B—H1B0.9474
N2A—N3A1.2937 (14)N2B—N3B1.2956 (14)
N3A—N4A1.3628 (15)N3B—N4B1.3616 (14)
N4A—C5A1.3223 (14)N4B—C5B1.3222 (14)
C5A—C6A1.4892 (16)C5B—C6B1.4868 (16)
C6A—C7A1.5267 (16)C6B—C7B1.5228 (16)
C6A—H6A0.9900C6B—H6C0.9900
C6A—H6B0.9900C6B—H6D0.9900
C7A—C8A1.5222 (16)C7B—C8B1.5203 (16)
C7A—H7A0.9900C7B—H7C0.9900
C7A—H7B0.9900C7B—H7D0.9900
C8A—C9A1.5226 (18)C8B—C9B1.5167 (17)
C8A—H8A0.9900C8B—H8C0.9900
C8A—H8B0.9900C8B—H8D0.9900
C9A—C10A1.520 (2)C9B—C10B1.5212 (17)
C9A—H9A0.9900C9B—H9C0.9900
C9A—H9B0.9900C9B—H9D0.9900
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
C5A—N1A—N2A109.67 (9)C5B—N1B—N2B109.65 (9)
C5A—N1A—H1A127.6C5B—N1B—H1B129.2
N2A—N1A—H1A122.7N2B—N1B—H1B120.8
N3A—N2A—N1A106.07 (10)N3B—N2B—N1B106.22 (9)
N2A—N3A—N4A110.18 (10)N2B—N3B—N4B110.06 (9)
C5A—N4A—N3A106.84 (9)C5B—N4B—N3B106.84 (9)
N4A—C5A—N1A107.23 (10)N4B—C5B—N1B107.23 (10)
N4A—C5A—C6A127.37 (10)N4B—C5B—C6B127.50 (10)
N1A—C5A—C6A125.40 (10)N1B—C5B—C6B125.25 (10)
C5A—C6A—C7A112.98 (9)C5B—C6B—C7B113.84 (9)
C5A—C6A—H6A109.0C5B—C6B—H6C108.8
C7A—C6A—H6A109.0C7B—C6B—H6C108.8
C5A—C6A—H6B109.0C5B—C6B—H6D108.8
C7A—C6A—H6B109.0C7B—C6B—H6D108.8
H6A—C6A—H6B107.8H6C—C6B—H6D107.7
C8A—C7A—C6A111.95 (10)C8B—C7B—C6B111.84 (10)
C8A—C7A—H7A109.2C8B—C7B—H7C109.2
C6A—C7A—H7A109.2C6B—C7B—H7C109.2
C8A—C7A—H7B109.2C8B—C7B—H7D109.2
C6A—C7A—H7B109.2C6B—C7B—H7D109.2
H7A—C7A—H7B107.9H7C—C7B—H7D107.9
C7A—C8A—C9A113.17 (11)C9B—C8B—C7B113.44 (10)
C7A—C8A—H8A108.9C9B—C8B—H8C108.9
C9A—C8A—H8A108.9C7B—C8B—H8C108.9
C7A—C8A—H8B108.9C9B—C8B—H8D108.9
C9A—C8A—H8B108.9C7B—C8B—H8D108.9
H8A—C8A—H8B107.8H8C—C8B—H8D107.7
C10A—C9A—C8A112.79 (12)C8B—C9B—C10B112.71 (11)
C10A—C9A—H9A109.0C8B—C9B—H9C109.0
C8A—C9A—H9A109.0C10B—C9B—H9C109.0
C10A—C9A—H9B109.0C8B—C9B—H9D109.0
C8A—C9A—H9B109.0C10B—C9B—H9D109.0
H9A—C9A—H9B107.8H9C—C9B—H9D107.8
C9A—C10A—H10A109.5C9B—C10B—H10D109.5
C9A—C10A—H10B109.5C9B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C9A—C10A—H10C109.5C9B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C5A—N1A—N2A—N3A0.33 (14)C5B—N1B—N2B—N3B0.27 (13)
N1A—N2A—N3A—N4A0.02 (14)N1B—N2B—N3B—N4B0.24 (13)
N2A—N3A—N4A—C5A0.30 (15)N2B—N3B—N4B—C5B0.13 (14)
N3A—N4A—C5A—N1A0.49 (13)N3B—N4B—C5B—N1B0.04 (13)
N3A—N4A—C5A—C6A178.87 (11)N3B—N4B—C5B—C6B178.27 (11)
N2A—N1A—C5A—N4A0.52 (14)N2B—N1B—C5B—N4B0.19 (13)
N2A—N1A—C5A—C6A178.86 (11)N2B—N1B—C5B—C6B178.47 (11)
N4A—C5A—C6A—C7A3.98 (18)N4B—C5B—C6B—C7B28.32 (18)
N1A—C5A—C6A—C7A176.77 (11)N1B—C5B—C6B—C7B153.76 (12)
C5A—C6A—C7A—C8A176.01 (10)C5B—C6B—C7B—C8B177.66 (10)
C6A—C7A—C8A—C9A174.26 (11)C6B—C7B—C8B—C9B176.94 (11)
C7A—C8A—C9A—C10A178.51 (12)C7B—C8B—C9B—C10B179.91 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N4B0.961.822.7773 (14)175
N1B—H1B···N4Ai0.951.842.7779 (14)170
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H12N4
Mr140.20
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.7812 (14), 9.6770 (12), 11.614 (2)
α, β, γ (°)93.136 (10), 112.059 (9), 116.389 (7)
V3)789.6 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3182, 2991, 2764
Rint0.070
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections2991
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···N4B0.961.822.7773 (14)175
N1B—H1B···N4Ai0.951.842.7779 (14)170
Symmetry code: (i) x, y+1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorchmann, D., Kratochwil, M., Glang, S. & Detert, H. (2010). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 133–138.  Google Scholar
First citationDetert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999–1004.  CSD CrossRef Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGlang, S., Schmitt, V. & Detert, H. (2008). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 125–128.  Google Scholar
First citationHuff, B. E., LeTourneau, M. E., Staszak, M. A. & Ward, J. A. (1996). Tetrahedron Lett. 37, 3655–3658.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sauer, J. & Seidel, M. (1960a). Chem. Ber. 93, 2885–2891.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Markgraf, J. H. (1960b). Chem. Ber. 93, 2106–2124.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.  CrossRef CAS Web of Science Google Scholar
First citationMihina, J. S. & Herbst, R. M. (1950). J. Org. Chem. 15, 1082–1092.  CrossRef CAS Google Scholar
First citationPernice, P., Castaing, M., Menassa, P. & Kraus, J. L. (1988). Biophys. Chem. 32, 15–20.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H. (1980). Progress in Medicinal Chemistry, edited by G. P. Ellis & G. B. West Vol. 17, pp. 151–184. Amsterdam: Elsevier/North Holland Biomedical Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteven, J., Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.  Google Scholar
First citationSugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds