organic compounds
5-Pentyl-1H-tetrazole
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound C6H12N4, is one of a few known tetrazoles with an alkyl chain in the 5-position. The contains two independent molecules. The molecules are linked by N—H⋯N interactions into chains with graph-set notation D(2) and C22(8) along [010]. The two independent molecules form a layered structure, the layers being composed of interdigitating strands of alternatingly oriented and nearly identical molecules.
Related literature
For synthetic methods see: Mihina & Herbst (1950); Steven et al. (1993); Detert & Schollmeyer (1999); Sugiono & Detert (2001); Glang et al. (2008); Borchmann et al. (2010). For the properties of tetrazole, see: Huisgen et al. (1960a,b, 1961); Singh (1980); Pernice et al. (1988); Huff et al. (1996). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536810052244/bx2337sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052244/bx2337Isup2.hkl
The title compound was prepared as follows: Triethyl ammonium chloride (8.95 g, 0.06 mol) and sodium azide (3.90 g, 0.06 mol) were added to a solution of hexanoic acid nitrile (4.36 g, 0.045 mol) in toluene (35 ml) and the mixture was stirred under reflux for 72 h. The mixture was filtered, the solvent evaporated and the residue dissolved in water. Hydrochloric acid (6M, 15 ml) was added and the product was extracted with ether/petroleum ether (1/1, 3*30 ml). The cooled organic solutions were dried with sodium sulfate. The solvents were evaporated and the residue crystallized upon standing at ambient temperature within 5 days. Recrystallization from toluene yielded 5-pentyltetrazole in 78% yield as colorless needles.
Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The Hydrogen atoms attached to N1A and N1B were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).
The title compound (I), is formed by the addition of triethylammonium azide to capronitrile in refluxing toluene and acidic work-up. In the crystal, molecules are linked by N— H··· N interactions into chains with graph-set notation D(2) a C22(8) along [010] (Bernstein et al., 1995), Table 1. Both molecules of the title compound have very similar geometries. The heterocycles and alkyl chains are coplanar with the molecules A oriented to the opposite site of the molecules B. These strands form layers via interdigitation of the alkyl chains.
For synthetic methods see: Mihina & Herbst (1950); Steven et al. (1993); Detert & Schollmeyer (1999); Sugiono & Detert (2001); Glang et al. (2008); Borchmann et al. (2010). For the properties of tetrazole, see: Huisgen et al. (1960a,b, 1961); Singh (1980); Pernice et al. (1988);Huff et al. (1996). For graph-set notation, see: Bernstein et al. (1995).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. |
C6H12N4 | Z = 4 |
Mr = 140.20 | F(000) = 304 |
Triclinic, P1 | Dx = 1.179 Mg m−3 |
Hall symbol: -P 1 | Melting point: 315 K |
a = 8.7812 (14) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.6770 (12) Å | Cell parameters from 25 reflections |
c = 11.614 (2) Å | θ = 65–69° |
α = 93.136 (10)° | µ = 0.63 mm−1 |
β = 112.059 (9)° | T = 193 K |
γ = 116.389 (7)° | Block, colourless |
V = 789.6 (2) Å3 | 0.50 × 0.40 × 0.30 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.070 |
Radiation source: rotating anode | θmax = 70.0°, θmin = 4.3° |
Graphite monochromator | h = −10→9 |
ω/2θ scans | k = 0→11 |
3182 measured reflections | l = −14→14 |
2991 independent reflections | 3 standard reflections every 60 min |
2764 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0611P)2 + 0.1618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2991 reflections | Δρmax = 0.24 e Å−3 |
184 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0088 (12) |
C6H12N4 | γ = 116.389 (7)° |
Mr = 140.20 | V = 789.6 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.7812 (14) Å | Cu Kα radiation |
b = 9.6770 (12) Å | µ = 0.63 mm−1 |
c = 11.614 (2) Å | T = 193 K |
α = 93.136 (10)° | 0.50 × 0.40 × 0.30 mm |
β = 112.059 (9)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.070 |
3182 measured reflections | 3 standard reflections every 60 min |
2991 independent reflections | intensity decay: 2% |
2764 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.24 e Å−3 |
2991 reflections | Δρmin = −0.20 e Å−3 |
184 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.76292 (14) | 0.44445 (11) | 0.33040 (10) | 0.0321 (2) | |
H1A | 0.7628 | 0.5432 | 0.3397 | 0.038* | |
N2A | 0.77322 (17) | 0.38035 (13) | 0.22933 (10) | 0.0392 (3) | |
N3A | 0.77338 (17) | 0.25012 (13) | 0.24908 (11) | 0.0413 (3) | |
N4A | 0.76329 (16) | 0.22891 (12) | 0.36157 (10) | 0.0358 (3) | |
C5A | 0.75588 (16) | 0.35102 (13) | 0.41070 (11) | 0.0286 (3) | |
C6A | 0.74035 (18) | 0.38071 (13) | 0.53191 (11) | 0.0321 (3) | |
H6A | 0.6195 | 0.3797 | 0.5105 | 0.039* | |
H6B | 0.8458 | 0.4884 | 0.5875 | 0.039* | |
C7A | 0.74667 (18) | 0.25697 (14) | 0.60683 (12) | 0.0336 (3) | |
H7A | 0.6359 | 0.1501 | 0.5540 | 0.040* | |
H7B | 0.8633 | 0.2525 | 0.6233 | 0.040* | |
C8A | 0.74449 (18) | 0.29643 (15) | 0.73469 (12) | 0.0360 (3) | |
H8A | 0.6351 | 0.3123 | 0.7186 | 0.043* | |
H8B | 0.8619 | 0.3983 | 0.7905 | 0.043* | |
C9A | 0.7308 (2) | 0.16675 (18) | 0.80548 (14) | 0.0441 (3) | |
H9A | 0.6116 | 0.0655 | 0.7507 | 0.053* | |
H9B | 0.8383 | 0.1489 | 0.8197 | 0.053* | |
C10A | 0.7338 (3) | 0.2091 (2) | 0.93461 (16) | 0.0607 (4) | |
H10A | 0.7183 | 0.1198 | 0.9740 | 0.091* | |
H10B | 0.6298 | 0.2299 | 0.9215 | 0.091* | |
H10C | 0.8555 | 0.3050 | 0.9916 | 0.091* | |
N1B | 0.77122 (14) | 0.95284 (11) | 0.40731 (9) | 0.0305 (2) | |
H1B | 0.7639 | 1.0469 | 0.3995 | 0.037* | |
N2B | 0.74619 (15) | 0.88499 (12) | 0.50153 (10) | 0.0350 (3) | |
N3B | 0.74529 (16) | 0.75189 (12) | 0.47932 (10) | 0.0364 (3) | |
N4B | 0.76875 (15) | 0.73261 (12) | 0.37130 (10) | 0.0336 (2) | |
C5B | 0.78464 (16) | 0.85919 (13) | 0.32751 (11) | 0.0288 (3) | |
C6B | 0.81748 (19) | 0.89627 (13) | 0.21354 (12) | 0.0359 (3) | |
H6C | 0.9558 | 0.9640 | 0.2423 | 0.043* | |
H6D | 0.7569 | 0.9590 | 0.1766 | 0.043* | |
C7B | 0.74053 (18) | 0.74860 (13) | 0.10847 (11) | 0.0326 (3) | |
H7C | 0.8051 | 0.6880 | 0.1436 | 0.039* | |
H7D | 0.6030 | 0.6784 | 0.0813 | 0.039* | |
C8B | 0.77032 (18) | 0.79245 (14) | −0.00809 (11) | 0.0341 (3) | |
H8C | 0.7002 | 0.8484 | −0.0453 | 0.041* | |
H8D | 0.9071 | 0.8678 | 0.0205 | 0.041* | |
C9B | 0.70495 (19) | 0.64908 (15) | −0.11205 (12) | 0.0380 (3) | |
H9C | 0.5680 | 0.5737 | −0.1411 | 0.046* | |
H9D | 0.7749 | 0.5930 | −0.0751 | 0.046* | |
C10B | 0.7361 (2) | 0.69521 (18) | −0.22777 (13) | 0.0501 (4) | |
H10D | 0.6736 | 0.5983 | −0.2974 | 0.075* | |
H10E | 0.8727 | 0.7536 | −0.2030 | 0.075* | |
H10F | 0.6822 | 0.7635 | −0.2575 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0489 (6) | 0.0245 (5) | 0.0357 (5) | 0.0239 (4) | 0.0240 (5) | 0.0118 (4) |
N2A | 0.0627 (7) | 0.0336 (6) | 0.0384 (6) | 0.0314 (5) | 0.0295 (5) | 0.0145 (4) |
N3A | 0.0686 (7) | 0.0333 (6) | 0.0397 (6) | 0.0336 (5) | 0.0308 (6) | 0.0135 (5) |
N4A | 0.0564 (6) | 0.0268 (5) | 0.0379 (6) | 0.0269 (5) | 0.0264 (5) | 0.0118 (4) |
C5A | 0.0357 (6) | 0.0209 (5) | 0.0337 (6) | 0.0163 (5) | 0.0171 (5) | 0.0077 (4) |
C6A | 0.0446 (6) | 0.0263 (6) | 0.0350 (6) | 0.0218 (5) | 0.0219 (5) | 0.0094 (5) |
C7A | 0.0440 (7) | 0.0288 (6) | 0.0360 (6) | 0.0214 (5) | 0.0214 (5) | 0.0112 (5) |
C8A | 0.0426 (7) | 0.0348 (6) | 0.0348 (6) | 0.0211 (5) | 0.0193 (5) | 0.0100 (5) |
C9A | 0.0566 (8) | 0.0519 (8) | 0.0428 (7) | 0.0358 (7) | 0.0283 (6) | 0.0228 (6) |
C10A | 0.0868 (12) | 0.0807 (12) | 0.0495 (9) | 0.0573 (10) | 0.0426 (9) | 0.0353 (8) |
N1B | 0.0454 (6) | 0.0229 (5) | 0.0326 (5) | 0.0217 (4) | 0.0203 (4) | 0.0098 (4) |
N2B | 0.0511 (6) | 0.0294 (5) | 0.0353 (5) | 0.0242 (5) | 0.0242 (5) | 0.0116 (4) |
N3B | 0.0544 (6) | 0.0303 (5) | 0.0370 (5) | 0.0255 (5) | 0.0263 (5) | 0.0151 (4) |
N4B | 0.0520 (6) | 0.0262 (5) | 0.0362 (5) | 0.0250 (5) | 0.0256 (5) | 0.0133 (4) |
C5B | 0.0386 (6) | 0.0206 (5) | 0.0312 (6) | 0.0168 (5) | 0.0169 (5) | 0.0074 (4) |
C6B | 0.0554 (7) | 0.0235 (6) | 0.0359 (6) | 0.0205 (5) | 0.0260 (6) | 0.0118 (5) |
C7B | 0.0440 (7) | 0.0240 (6) | 0.0350 (6) | 0.0174 (5) | 0.0220 (5) | 0.0094 (5) |
C8B | 0.0457 (7) | 0.0276 (6) | 0.0339 (6) | 0.0194 (5) | 0.0206 (5) | 0.0117 (5) |
C9B | 0.0507 (7) | 0.0322 (6) | 0.0347 (6) | 0.0208 (6) | 0.0224 (6) | 0.0097 (5) |
C10B | 0.0734 (10) | 0.0466 (8) | 0.0388 (7) | 0.0305 (7) | 0.0324 (7) | 0.0150 (6) |
N1A—C5A | 1.3330 (15) | N1B—C5B | 1.3339 (15) |
N1A—N2A | 1.3494 (14) | N1B—N2B | 1.3446 (14) |
N1A—H1A | 0.9564 | N1B—H1B | 0.9474 |
N2A—N3A | 1.2937 (14) | N2B—N3B | 1.2956 (14) |
N3A—N4A | 1.3628 (15) | N3B—N4B | 1.3616 (14) |
N4A—C5A | 1.3223 (14) | N4B—C5B | 1.3222 (14) |
C5A—C6A | 1.4892 (16) | C5B—C6B | 1.4868 (16) |
C6A—C7A | 1.5267 (16) | C6B—C7B | 1.5228 (16) |
C6A—H6A | 0.9900 | C6B—H6C | 0.9900 |
C6A—H6B | 0.9900 | C6B—H6D | 0.9900 |
C7A—C8A | 1.5222 (16) | C7B—C8B | 1.5203 (16) |
C7A—H7A | 0.9900 | C7B—H7C | 0.9900 |
C7A—H7B | 0.9900 | C7B—H7D | 0.9900 |
C8A—C9A | 1.5226 (18) | C8B—C9B | 1.5167 (17) |
C8A—H8A | 0.9900 | C8B—H8C | 0.9900 |
C8A—H8B | 0.9900 | C8B—H8D | 0.9900 |
C9A—C10A | 1.520 (2) | C9B—C10B | 1.5212 (17) |
C9A—H9A | 0.9900 | C9B—H9C | 0.9900 |
C9A—H9B | 0.9900 | C9B—H9D | 0.9900 |
C10A—H10A | 0.9800 | C10B—H10D | 0.9800 |
C10A—H10B | 0.9800 | C10B—H10E | 0.9800 |
C10A—H10C | 0.9800 | C10B—H10F | 0.9800 |
C5A—N1A—N2A | 109.67 (9) | C5B—N1B—N2B | 109.65 (9) |
C5A—N1A—H1A | 127.6 | C5B—N1B—H1B | 129.2 |
N2A—N1A—H1A | 122.7 | N2B—N1B—H1B | 120.8 |
N3A—N2A—N1A | 106.07 (10) | N3B—N2B—N1B | 106.22 (9) |
N2A—N3A—N4A | 110.18 (10) | N2B—N3B—N4B | 110.06 (9) |
C5A—N4A—N3A | 106.84 (9) | C5B—N4B—N3B | 106.84 (9) |
N4A—C5A—N1A | 107.23 (10) | N4B—C5B—N1B | 107.23 (10) |
N4A—C5A—C6A | 127.37 (10) | N4B—C5B—C6B | 127.50 (10) |
N1A—C5A—C6A | 125.40 (10) | N1B—C5B—C6B | 125.25 (10) |
C5A—C6A—C7A | 112.98 (9) | C5B—C6B—C7B | 113.84 (9) |
C5A—C6A—H6A | 109.0 | C5B—C6B—H6C | 108.8 |
C7A—C6A—H6A | 109.0 | C7B—C6B—H6C | 108.8 |
C5A—C6A—H6B | 109.0 | C5B—C6B—H6D | 108.8 |
C7A—C6A—H6B | 109.0 | C7B—C6B—H6D | 108.8 |
H6A—C6A—H6B | 107.8 | H6C—C6B—H6D | 107.7 |
C8A—C7A—C6A | 111.95 (10) | C8B—C7B—C6B | 111.84 (10) |
C8A—C7A—H7A | 109.2 | C8B—C7B—H7C | 109.2 |
C6A—C7A—H7A | 109.2 | C6B—C7B—H7C | 109.2 |
C8A—C7A—H7B | 109.2 | C8B—C7B—H7D | 109.2 |
C6A—C7A—H7B | 109.2 | C6B—C7B—H7D | 109.2 |
H7A—C7A—H7B | 107.9 | H7C—C7B—H7D | 107.9 |
C7A—C8A—C9A | 113.17 (11) | C9B—C8B—C7B | 113.44 (10) |
C7A—C8A—H8A | 108.9 | C9B—C8B—H8C | 108.9 |
C9A—C8A—H8A | 108.9 | C7B—C8B—H8C | 108.9 |
C7A—C8A—H8B | 108.9 | C9B—C8B—H8D | 108.9 |
C9A—C8A—H8B | 108.9 | C7B—C8B—H8D | 108.9 |
H8A—C8A—H8B | 107.8 | H8C—C8B—H8D | 107.7 |
C10A—C9A—C8A | 112.79 (12) | C8B—C9B—C10B | 112.71 (11) |
C10A—C9A—H9A | 109.0 | C8B—C9B—H9C | 109.0 |
C8A—C9A—H9A | 109.0 | C10B—C9B—H9C | 109.0 |
C10A—C9A—H9B | 109.0 | C8B—C9B—H9D | 109.0 |
C8A—C9A—H9B | 109.0 | C10B—C9B—H9D | 109.0 |
H9A—C9A—H9B | 107.8 | H9C—C9B—H9D | 107.8 |
C9A—C10A—H10A | 109.5 | C9B—C10B—H10D | 109.5 |
C9A—C10A—H10B | 109.5 | C9B—C10B—H10E | 109.5 |
H10A—C10A—H10B | 109.5 | H10D—C10B—H10E | 109.5 |
C9A—C10A—H10C | 109.5 | C9B—C10B—H10F | 109.5 |
H10A—C10A—H10C | 109.5 | H10D—C10B—H10F | 109.5 |
H10B—C10A—H10C | 109.5 | H10E—C10B—H10F | 109.5 |
C5A—N1A—N2A—N3A | −0.33 (14) | C5B—N1B—N2B—N3B | 0.27 (13) |
N1A—N2A—N3A—N4A | 0.02 (14) | N1B—N2B—N3B—N4B | −0.24 (13) |
N2A—N3A—N4A—C5A | 0.30 (15) | N2B—N3B—N4B—C5B | 0.13 (14) |
N3A—N4A—C5A—N1A | −0.49 (13) | N3B—N4B—C5B—N1B | 0.04 (13) |
N3A—N4A—C5A—C6A | 178.87 (11) | N3B—N4B—C5B—C6B | 178.27 (11) |
N2A—N1A—C5A—N4A | 0.52 (14) | N2B—N1B—C5B—N4B | −0.19 (13) |
N2A—N1A—C5A—C6A | −178.86 (11) | N2B—N1B—C5B—C6B | −178.47 (11) |
N4A—C5A—C6A—C7A | 3.98 (18) | N4B—C5B—C6B—C7B | 28.32 (18) |
N1A—C5A—C6A—C7A | −176.77 (11) | N1B—C5B—C6B—C7B | −153.76 (12) |
C5A—C6A—C7A—C8A | 176.01 (10) | C5B—C6B—C7B—C8B | 177.66 (10) |
C6A—C7A—C8A—C9A | 174.26 (11) | C6B—C7B—C8B—C9B | 176.94 (11) |
C7A—C8A—C9A—C10A | 178.51 (12) | C7B—C8B—C9B—C10B | −179.91 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···N4B | 0.96 | 1.82 | 2.7773 (14) | 175 |
N1B—H1B···N4Ai | 0.95 | 1.84 | 2.7779 (14) | 170 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C6H12N4 |
Mr | 140.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 193 |
a, b, c (Å) | 8.7812 (14), 9.6770 (12), 11.614 (2) |
α, β, γ (°) | 93.136 (10), 112.059 (9), 116.389 (7) |
V (Å3) | 789.6 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.50 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3182, 2991, 2764 |
Rint | 0.070 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.04 |
No. of reflections | 2991 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.20 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···N4B | 0.96 | 1.82 | 2.7773 (14) | 175 |
N1B—H1B···N4Ai | 0.95 | 1.84 | 2.7779 (14) | 170 |
Symmetry code: (i) x, y+1, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Borchmann, D., Kratochwil, M., Glang, S. & Detert, H. (2010). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 133–138. Google Scholar
Detert, H. & Schollmeyer, D. (1999). Synthesis, pp. 999–1004. CSD CrossRef Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Glang, S., Schmitt, V. & Detert, H. (2008). Proceedings of the 36th German Topical Meeting on Liquid Crystals, pp. 125–128. Google Scholar
Huff, B. E., LeTourneau, M. E., Staszak, M. A. & Ward, J. A. (1996). Tetrahedron Lett. 37, 3655–3658. CrossRef CAS Web of Science Google Scholar
Huisgen, R., Sauer, J. & Seidel, M. (1960a). Chem. Ber. 93, 2885–2891. CrossRef CAS Web of Science Google Scholar
Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960b). Chem. Ber. 93, 2106–2124. CrossRef CAS Web of Science Google Scholar
Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562. CrossRef CAS Web of Science Google Scholar
Mihina, J. S. & Herbst, R. M. (1950). J. Org. Chem. 15, 1082–1092. CrossRef CAS Google Scholar
Pernice, P., Castaing, M., Menassa, P. & Kraus, J. L. (1988). Biophys. Chem. 32, 15–20. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, H. (1980). Progress in Medicinal Chemistry, edited by G. P. Ellis & G. B. West Vol. 17, pp. 151–184. Amsterdam: Elsevier/North Holland Biomedical Press. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steven, J., Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141. Google Scholar
Sugiono, E. & Detert, H. (2001). Synthesis, pp. 893–896. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I), is formed by the addition of triethylammonium azide to capronitrile in refluxing toluene and acidic work-up. In the crystal, molecules are linked by N— H··· N interactions into chains with graph-set notation D(2) a C22(8) along [010] (Bernstein et al., 1995), Table 1. Both molecules of the title compound have very similar geometries. The heterocycles and alkyl chains are coplanar with the molecules A oriented to the opposite site of the molecules B. These strands form layers via interdigitation of the alkyl chains.