organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4-dimeth­­oxy­phen­yl)(phen­yl)phosphine selenide

aResearch Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 24 November 2010; accepted 25 November 2010; online 11 December 2010)

In the title mol­ecule, C22H23O4PSe, the P atom has a distorted tetra­hedral environment formed by the selenide atom [P=Se = 2.1219 (5) Å] and three aryl rings. The orientations of the meth­oxy groups in the two 2,4-dimeth­oxy­phenyl ligands are distinct, as seen from the torsion angles: C—C—O—C = 14.7 (3) and 175.97 (17)° in one ligand, and −9.1 (2) and 5.1 (3)° in the other. In the crystal, weak inter­molecular C—H⋯Se inter­actions link the mol­ecules into zigzag chains propagated in [010].

Related literature

For background to studies aimed at understanding the trans­ition metal–phosphorus bond, see: Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]) Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). As part of this systematic investigation we are now also studying selenium-bonded phosphorus ligands, see: Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For the synthesis of ortho-substituted aryl­alkyl­phosphanes, see: Riihimäki et al. (2003[Riihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81-94.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23O4PSe

  • Mr = 461.33

  • Monoclinic, P 21 /c

  • a = 9.3840 (13) Å

  • b = 13.3023 (14) Å

  • c = 16.667 (2) Å

  • β = 95.311 (4)°

  • V = 2071.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 150 K

  • 0.34 × 0.28 × 0.06 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.566, Tmax = 0.891

  • 24588 measured reflections

  • 5151 independent reflections

  • 4413 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.04

  • 5151 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯Sei 0.98 2.94 3.8774 (19) 160
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller et al., 2008) This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here is the first single-crystal structure of the compound PPh(2,4-OMe-C6H3)2 to date (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002).

Crystals of the title compound, (I), packs in the P21/c (Z=4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 176.9° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977) Two different orientations for the methoxy moieties are noted and is probably due to some weak interactions (Table 1) forcing it into the conformations observed.

Related literature top

For background to studies aimed at understanding the transition metal–phosphorous bond, see: Muller et al. (2006,2008); Roodt et al. (2003) Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

PPh(2,4-OMe-C6H3)2 were prepared either by direct ortho metallation of anisole with BuLi followed the addition of the appropriate chlorophosphine or by metal/halogen exchange between BuLi and 1-bromo-2,4-dimethoxybenzene followed by the addition of PPhCl2 according to established methods (Riihimäki et al. 2003).

Eqimolar amounts of KSeCN and the PPh(2,4-OMe-C6H3)2 compound (ca 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 ml). The KSeCN solution was added dropwise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Analytical data: 31P {H} NMR (CDCl3, 121.42 MHz): For PPh(2,4-OMe-C6H3)2 δ = -36.54 (s) For SePPh(2,4-OMe-C6H3)2 δ = 20.45 (t, 1JP—Se = 717.5 Hz)

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density was located 0.64 Å from H25.

Structure description top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller et al., 2008) This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here is the first single-crystal structure of the compound PPh(2,4-OMe-C6H3)2 to date (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002).

Crystals of the title compound, (I), packs in the P21/c (Z=4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 176.9° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977) Two different orientations for the methoxy moieties are noted and is probably due to some weak interactions (Table 1) forcing it into the conformations observed.

For background to studies aimed at understanding the transition metal–phosphorous bond, see: Muller et al. (2006,2008); Roodt et al. (2003) Tolman (1977). For the synthesis of ortho-substituted arylalkylphosphanes, see: Riihimäki et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.
Bis(2,4-dimethoxyphenyl)(phenyl)phosphine selenide top
Crystal data top
C22H23O4PSeF(000) = 944
Mr = 461.33Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5013 reflections
a = 9.3840 (13) Åθ = 2.7–28.3°
b = 13.3023 (14) ŵ = 1.92 mm1
c = 16.667 (2) ÅT = 150 K
β = 95.311 (4)°Plate, colourless
V = 2071.6 (4) Å30.34 × 0.28 × 0.06 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5151 independent reflections
Graphite monochromator4413 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.030
ω & φ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.566, Tmax = 0.891k = 1716
24588 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.21P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.04Δρmax = 1.41 e Å3
5151 reflectionsΔρmin = 0.20 e Å3
257 parameters
Crystal data top
C22H23O4PSeV = 2071.6 (4) Å3
Mr = 461.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3840 (13) ŵ = 1.92 mm1
b = 13.3023 (14) ÅT = 150 K
c = 16.667 (2) Å0.34 × 0.28 × 0.06 mm
β = 95.311 (4)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4413 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.891Rint = 0.030
24588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 1.41 e Å3
5151 reflectionsΔρmin = 0.20 e Å3
257 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1125 frames were collected with a frame width of 0.5° covering up to θ = 28.25° with 99.7% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.31675 (2)0.914803 (13)0.136815 (10)0.02690 (7)
P0.33832 (5)0.78342 (3)0.06676 (2)0.01886 (10)
C110.22855 (19)0.79244 (13)0.02854 (9)0.0193 (3)
C120.24045 (19)0.72308 (12)0.09174 (10)0.0207 (3)
C130.1607 (2)0.73473 (14)0.16557 (10)0.0234 (4)
H130.16990.68790.20780.028*
C140.06675 (19)0.81588 (14)0.17707 (10)0.0229 (3)
C150.05290 (19)0.88571 (14)0.11587 (11)0.0234 (3)
H150.01070.94110.12410.028*
C160.13423 (19)0.87254 (13)0.04265 (10)0.0221 (3)
H160.12510.91990.00070.027*
C10.3774 (3)0.58741 (14)0.13985 (12)0.0330 (5)
H1A0.29980.54170.15910.049*
H1B0.46270.54830.12130.049*
H1C0.39960.6320.18380.049*
O10.33407 (15)0.64596 (9)0.07480 (7)0.0271 (3)
C20.1108 (2)0.89791 (18)0.26447 (13)0.0367 (5)
H2A0.17930.89350.22370.055*
H2B0.16160.890.31820.055*
H2C0.06330.96360.26070.055*
O20.00636 (14)0.82027 (11)0.25114 (8)0.0297 (3)
C210.28849 (19)0.66839 (13)0.11441 (10)0.0206 (3)
C220.35987 (19)0.63756 (13)0.18822 (10)0.0210 (3)
C230.3213 (2)0.54914 (13)0.22579 (10)0.0229 (3)
H230.3710.52860.27530.028*
C240.2101 (2)0.49165 (13)0.19012 (11)0.0254 (4)
C250.1364 (2)0.52101 (14)0.11711 (11)0.0265 (4)
H250.06010.48120.09290.032*
C260.1761 (2)0.60867 (14)0.08048 (10)0.0241 (4)
H260.12570.62880.0310.029*
C30.5321 (2)0.67676 (15)0.29847 (11)0.0275 (4)
H3A0.45860.67980.33650.041*
H3B0.60660.72670.31360.041*
H3C0.57480.60950.29980.041*
O30.46854 (14)0.69765 (10)0.21903 (7)0.0273 (3)
C40.2265 (3)0.37696 (16)0.30097 (12)0.0376 (5)
H4A0.32690.35860.29780.056*
H4B0.17460.31940.32060.056*
H4C0.22090.43360.33810.056*
O40.16333 (17)0.40516 (10)0.22236 (9)0.0352 (3)
C310.52039 (19)0.76605 (13)0.04006 (10)0.0206 (3)
C320.5942 (2)0.84791 (14)0.01235 (11)0.0258 (4)
H320.55170.91280.0110.031*
C330.7297 (2)0.83512 (16)0.01327 (12)0.0315 (4)
H330.77950.89120.03230.038*
C350.7206 (2)0.65944 (16)0.01708 (12)0.0321 (4)
H350.76410.59490.01920.039*
C360.5850 (2)0.67188 (14)0.04235 (11)0.0276 (4)
H360.53580.61560.06140.033*
C340.7925 (2)0.74100 (17)0.01121 (12)0.0336 (4)
H3430.88490.73240.02920.04*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.04157 (12)0.02049 (10)0.01806 (10)0.00414 (7)0.00027 (7)0.00378 (6)
P0.0259 (2)0.0170 (2)0.01349 (19)0.00107 (16)0.00077 (16)0.00097 (15)
C110.0237 (8)0.0208 (8)0.0134 (7)0.0003 (6)0.0014 (6)0.0018 (6)
C120.0262 (9)0.0186 (8)0.0174 (8)0.0006 (6)0.0025 (6)0.0025 (6)
C130.0297 (9)0.0244 (9)0.0158 (7)0.0029 (7)0.0005 (7)0.0001 (6)
C140.0217 (8)0.0286 (9)0.0180 (8)0.0046 (7)0.0011 (6)0.0050 (7)
C150.0213 (8)0.0263 (9)0.0227 (8)0.0026 (7)0.0020 (7)0.0049 (7)
C160.0248 (9)0.0235 (9)0.0184 (8)0.0007 (7)0.0039 (6)0.0006 (6)
C10.0545 (13)0.0214 (9)0.0234 (9)0.0075 (8)0.0059 (9)0.0047 (7)
O10.0419 (8)0.0225 (6)0.0164 (6)0.0092 (6)0.0000 (5)0.0015 (5)
C20.0274 (10)0.0493 (13)0.0317 (10)0.0067 (9)0.0061 (8)0.0054 (9)
O20.0304 (7)0.0358 (7)0.0214 (6)0.0008 (6)0.0065 (5)0.0035 (6)
C210.0286 (9)0.0181 (8)0.0155 (7)0.0013 (7)0.0039 (6)0.0019 (6)
C220.0247 (9)0.0206 (8)0.0179 (8)0.0020 (7)0.0041 (6)0.0008 (6)
C230.0299 (9)0.0210 (8)0.0182 (8)0.0028 (7)0.0039 (7)0.0043 (6)
C240.0340 (10)0.0195 (8)0.0234 (8)0.0001 (7)0.0064 (7)0.0022 (7)
C250.0333 (10)0.0251 (9)0.0212 (8)0.0053 (7)0.0027 (7)0.0013 (7)
C260.0309 (9)0.0234 (9)0.0179 (8)0.0012 (7)0.0019 (7)0.0004 (6)
C30.0284 (9)0.0308 (10)0.0221 (8)0.0028 (8)0.0045 (7)0.0052 (7)
O30.0330 (7)0.0272 (7)0.0205 (6)0.0056 (5)0.0038 (5)0.0062 (5)
C40.0573 (14)0.0247 (10)0.0301 (10)0.0049 (9)0.0003 (9)0.0107 (8)
O40.0496 (9)0.0254 (7)0.0299 (7)0.0115 (6)0.0010 (6)0.0090 (5)
C310.0246 (8)0.0217 (8)0.0152 (7)0.0004 (6)0.0000 (6)0.0013 (6)
C320.0313 (10)0.0216 (9)0.0241 (9)0.0002 (7)0.0003 (7)0.0035 (7)
C330.0316 (10)0.0324 (10)0.0303 (10)0.0052 (8)0.0028 (8)0.0055 (8)
C350.0351 (11)0.0305 (10)0.0313 (10)0.0093 (8)0.0060 (8)0.0051 (8)
C360.0335 (10)0.0238 (9)0.0260 (9)0.0034 (7)0.0059 (7)0.0068 (7)
C340.0282 (10)0.0425 (12)0.0308 (10)0.0039 (9)0.0065 (8)0.0052 (9)
Geometric parameters (Å, º) top
Se—P2.1219 (5)C23—C241.383 (3)
P—C211.8054 (17)C23—H230.95
P—C111.8154 (17)C24—O41.359 (2)
P—C311.8196 (18)C24—C251.398 (3)
C11—C161.391 (2)C25—C261.383 (3)
C11—C121.412 (2)C25—H250.95
C12—O11.363 (2)C26—H260.95
C12—C131.389 (2)C3—O31.428 (2)
C13—C141.395 (3)C3—H3A0.98
C13—H130.95C3—H3B0.98
C14—O21.357 (2)C3—H3C0.98
C14—C151.395 (3)C4—O41.437 (2)
C15—C161.389 (2)C4—H4A0.98
C15—H150.95C4—H4B0.98
C16—H160.95C4—H4C0.98
C1—O11.425 (2)C31—C361.391 (3)
C1—H1A0.98C31—C321.392 (2)
C1—H1B0.98C32—C331.389 (3)
C1—H1C0.98C32—H320.95
C2—O21.427 (2)C33—C341.383 (3)
C2—H2A0.98C33—H330.95
C2—H2B0.98C35—C341.383 (3)
C2—H2C0.98C35—C361.387 (3)
C21—C261.397 (3)C35—H350.95
C21—C221.406 (2)C36—H360.95
C22—O31.359 (2)C34—H3430.95
C22—C231.396 (2)
C21—P—C11106.96 (8)C24—C23—C22119.33 (16)
C21—P—C31106.69 (8)C24—C23—H23120.3
C11—P—C31105.31 (8)C22—C23—H23120.3
C21—P—Se114.47 (6)O4—C24—C23123.80 (17)
C11—P—Se110.59 (6)O4—C24—C25115.40 (17)
C31—P—Se112.25 (6)C23—C24—C25120.80 (16)
C16—C11—C12117.86 (15)C26—C25—C24119.22 (17)
C16—C11—P119.94 (13)C26—C25—H25120.4
C12—C11—P122.12 (13)C24—C25—H25120.4
O1—C12—C13123.50 (15)C25—C26—C21121.63 (16)
O1—C12—C11115.53 (15)C25—C26—H26119.2
C13—C12—C11120.97 (16)C21—C26—H26119.2
C12—C13—C14119.33 (16)O3—C3—H3A109.5
C12—C13—H13120.3O3—C3—H3B109.5
C14—C13—H13120.3H3A—C3—H3B109.5
O2—C14—C15124.28 (17)O3—C3—H3C109.5
O2—C14—C13114.71 (16)H3A—C3—H3C109.5
C15—C14—C13121.01 (16)H3B—C3—H3C109.5
C16—C15—C14118.54 (17)C22—O3—C3118.07 (14)
C16—C15—H15120.7O4—C4—H4A109.5
C14—C15—H15120.7O4—C4—H4B109.5
C15—C16—C11122.29 (16)H4A—C4—H4B109.5
C15—C16—H16118.9O4—C4—H4C109.5
C11—C16—H16118.9H4A—C4—H4C109.5
O1—C1—H1A109.5H4B—C4—H4C109.5
O1—C1—H1B109.5C24—O4—C4117.42 (16)
H1A—C1—H1B109.5C36—C31—C32118.98 (17)
O1—C1—H1C109.5C36—C31—P121.64 (14)
H1A—C1—H1C109.5C32—C31—P119.29 (14)
H1B—C1—H1C109.5C33—C32—C31120.27 (18)
C12—O1—C1118.54 (14)C33—C32—H32119.9
O2—C2—H2A109.5C31—C32—H32119.9
O2—C2—H2B109.5C34—C33—C32120.24 (18)
H2A—C2—H2B109.5C34—C33—H33119.9
O2—C2—H2C109.5C32—C33—H33119.9
H2A—C2—H2C109.5C34—C35—C36120.01 (19)
H2B—C2—H2C109.5C34—C35—H35120
C14—O2—C2117.07 (15)C36—C35—H35120
C26—C21—C22117.95 (15)C35—C36—C31120.61 (18)
C26—C21—P121.36 (13)C35—C36—H36119.7
C22—C21—P120.67 (14)C31—C36—H36119.7
O3—C22—C23122.88 (15)C33—C34—C35119.89 (19)
O3—C22—C21116.05 (15)C33—C34—H343120.1
C23—C22—C21121.05 (16)C35—C34—H343120.1
C21—P—C11—C16118.16 (14)P—C21—C22—O31.7 (2)
C31—P—C11—C16128.58 (14)C26—C21—C22—C231.1 (3)
Se—P—C11—C167.10 (16)P—C21—C22—C23179.51 (13)
C21—P—C11—C1265.25 (16)O3—C22—C23—C24179.45 (16)
C31—P—C11—C1248.01 (16)C21—C22—C23—C240.7 (3)
Se—P—C11—C12169.49 (13)C22—C23—C24—O4179.15 (17)
C16—C11—C12—O1179.90 (15)C22—C23—C24—C250.1 (3)
P—C11—C12—O13.4 (2)O4—C24—C25—C26179.37 (17)
C16—C11—C12—C130.1 (3)C23—C24—C25—C260.0 (3)
P—C11—C12—C13176.53 (14)C24—C25—C26—C210.4 (3)
O1—C12—C13—C14179.58 (16)C22—C21—C26—C250.9 (3)
C11—C12—C13—C140.4 (3)P—C21—C26—C25179.33 (14)
C12—C13—C14—O2179.81 (16)C23—C22—O3—C39.1 (2)
C12—C13—C14—C150.6 (3)C21—C22—O3—C3172.14 (16)
O2—C14—C15—C16179.96 (16)C23—C24—O4—C45.1 (3)
C13—C14—C15—C160.4 (3)C25—C24—O4—C4174.23 (18)
C14—C15—C16—C110.1 (3)C21—P—C31—C3612.52 (17)
C12—C11—C16—C150.1 (3)C11—P—C31—C36100.93 (16)
P—C11—C16—C15176.81 (14)Se—P—C31—C36138.67 (14)
C13—C12—O1—C114.7 (3)C21—P—C31—C32171.12 (14)
C11—C12—O1—C1165.27 (17)C11—P—C31—C3275.43 (15)
C15—C14—O2—C24.4 (3)Se—P—C31—C3244.96 (15)
C13—C14—O2—C2175.97 (17)C36—C31—C32—C330.6 (3)
C11—P—C21—C264.58 (17)P—C31—C32—C33175.85 (14)
C31—P—C21—C26116.89 (15)C31—C32—C33—C340.2 (3)
Se—P—C21—C26118.29 (14)C34—C35—C36—C310.4 (3)
C11—P—C21—C22177.05 (14)C32—C31—C36—C350.3 (3)
C31—P—C21—C2264.74 (16)P—C31—C36—C35176.06 (15)
Se—P—C21—C2260.07 (16)C32—C33—C34—C350.5 (3)
C26—C21—C22—O3179.91 (15)C36—C35—C34—C330.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Sei0.982.943.8774 (19)160
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H23O4PSe
Mr461.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.3840 (13), 13.3023 (14), 16.667 (2)
β (°) 95.311 (4)
V3)2071.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.34 × 0.28 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.566, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
24588, 5151, 4413
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.04
No. of reflections5151
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···Sei0.982.943.8774 (19)159.9
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRiihimäki, H., Kangas, T., Suomalainen, P., Reinius, H. K., Jääskeläinen, S., Haukka, M., Krause, A. O. I., Pakkanen, T. A. & Pursiainen, J. T. (2003). J. Mol. Catal. A Chem. 200, 81–94.  Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds