organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Fluoro-N′-(2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aThe Second Hospital of Jilin University, Changchun Jilin 130041, People's Republic of China, bTraditional Chinese Medicine College of Ningxia Medical University, Yinchuan Ningxia 750004, People's Republic of China, cPharmacy College of Ningxia Medical University, Yinchuan Ningxia 750004, People's Republic of China, dMinority Traditional Medical Center of Minzu University of China, Beijing 100081, People's Republic of China, and eAffiliated Hospital of Ningxia Medical University, Yinchuan Ningxia 750004, People's Republic of China
*Correspondence e-mail: nanyiailing10@yeah.net

(Received 2 December 2010; accepted 4 December 2010; online 11 December 2010)

In the title compound, C14H11FN2O2, an intra­molecular O—H⋯N hydrogen bond influences the mol­ecular conformation; the two benzene rings form a dihedral angle of 18.4 (3)°. The F atom is disordered over two positions in a 0.717 (5):0.283 (5) ratio. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extending along the c axis.

Related literature

For the reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For structural studies of hydrazone compounds, see: Han & Zhao (2010[Han, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o752.]); Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For a related structure, see: Xu et al. (2011[Xu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011). Acta Cryst. E67, o70.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FN2O2

  • Mr = 258.25

  • Monoclinic, P 21 /c

  • a = 10.661 (3) Å

  • b = 13.515 (3) Å

  • c = 8.998 (3) Å

  • β = 98.150 (3)°

  • V = 1283.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 6829 measured reflections

  • 2675 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.198

  • S = 0.97

  • 2675 reflections

  • 180 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.637 (3) 146
N2—H2⋯O2i 0.86 2.02 2.841 (3) 158
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to a structural study of hydrazone compounds (Han & Zhao, 2010; Zhou & Yang, 2010; Huang & Wu, 2010; Shalash et al., 2010), we present here the crystal structure of the title compound.

There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule of the title compound (Fig. 1). The molecule exists in a trans configuration with respect to the methylidene unit. The molecule is twisted, with the dihedral angle between the two benzene rings of 18.4 (3)°. The torsion angle C7—N1—N2—C8 is 8.1 (3)°. The bond lengths are within normal ranges (Allen et al., 1987) and are comparable with those observed in the similar compounds (Xu et al., 2011).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form chains down the c axis (Fig. 2).

Related literature top

For the reference bond lengths, see: Allen et al. (1987). For structural studies of hydrazone compounds, see: Han & Zhao (2010); Zhou & Yang (2010); Huang & Wu (2010); Shalash et al. (2010). For a related structure, see: Xu et al. (2011).

Experimental top

Salicylaldehyde (0.1 mmol, 12.2 mg) and 2-fluorobenzohydrazide (0.1 mmol, 15.4 mg) were mixed in ethanol (20 ml). The mixture was stirred at room temperature to give a clear colorless solution. Colorless well shaped crystals of the title compound were formed by gradual evaporation of the solvent over a period of three days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, O—H = 0.82 Å, N—H = 0.86 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). Atom F1 has been refined as disordered between two positions in a ratio 0.717 (5):0.283 (5) being attached either to C10 or C14, respectively.

Structure description top

As a contribution to a structural study of hydrazone compounds (Han & Zhao, 2010; Zhou & Yang, 2010; Huang & Wu, 2010; Shalash et al., 2010), we present here the crystal structure of the title compound.

There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule of the title compound (Fig. 1). The molecule exists in a trans configuration with respect to the methylidene unit. The molecule is twisted, with the dihedral angle between the two benzene rings of 18.4 (3)°. The torsion angle C7—N1—N2—C8 is 8.1 (3)°. The bond lengths are within normal ranges (Allen et al., 1987) and are comparable with those observed in the similar compounds (Xu et al., 2011).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), to form chains down the c axis (Fig. 2).

For the reference bond lengths, see: Allen et al. (1987). For structural studies of hydrazone compounds, see: Han & Zhao (2010); Zhou & Yang (2010); Huang & Wu (2010); Shalash et al. (2010). For a related structure, see: Xu et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The disordered fluorine atom F1 is shown in the major position. Dashed line denotes hydrogen bond.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) one-dimensional chain of the molecules. H atoms not involved in hydrogen-bonding omitted for clarity.
2-Fluoro-N'-(2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H11FN2O2F(000) = 536
Mr = 258.25Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 620 reflections
a = 10.661 (3) Åθ = 2.4–24.3°
b = 13.515 (3) ŵ = 0.10 mm1
c = 8.998 (3) ÅT = 298 K
β = 98.150 (3)°Block, colourless
V = 1283.4 (6) Å30.20 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2675 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.980, Tmax = 0.983k = 1715
6829 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
2675 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C14H11FN2O2V = 1283.4 (6) Å3
Mr = 258.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.661 (3) ŵ = 0.10 mm1
b = 13.515 (3) ÅT = 298 K
c = 8.998 (3) Å0.20 × 0.20 × 0.17 mm
β = 98.150 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1093 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.066
6829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.198H-atom parameters constrained
S = 0.97Δρmax = 0.37 e Å3
2675 reflectionsΔρmin = 0.18 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7863 (3)0.15833 (19)1.0481 (3)0.0527 (8)
N20.7326 (3)0.23495 (19)0.9579 (3)0.0576 (8)
H20.71790.22800.86200.069*
O10.9198 (3)0.08661 (17)1.2936 (2)0.0711 (8)
H10.88030.12891.24080.107*
O20.7248 (2)0.33336 (17)1.1581 (2)0.0712 (8)
C10.8526 (3)0.0093 (2)1.0701 (3)0.0506 (9)
C20.9105 (3)0.0011 (2)1.2207 (4)0.0527 (9)
C30.9606 (3)0.0842 (3)1.2979 (4)0.0717 (11)
H31.00040.07821.39640.086*
C40.9518 (4)0.1747 (3)1.2298 (5)0.0804 (12)
H40.98410.23001.28350.096*
C50.8961 (4)0.1856 (3)1.0833 (5)0.0809 (12)
H50.89110.24771.03820.097*
C60.8476 (3)0.1033 (3)1.0036 (4)0.0692 (11)
H60.81110.11040.90400.083*
C70.7984 (3)0.0748 (2)0.9849 (3)0.0554 (9)
H70.77200.06810.88240.067*
C80.7038 (3)0.3200 (2)1.0222 (3)0.0499 (9)
C90.6465 (3)0.3994 (2)0.9199 (3)0.0511 (9)
C110.5089 (4)0.4606 (4)0.7014 (4)0.0849 (13)
H110.45220.44760.61520.102*
C120.5415 (4)0.5549 (4)0.7403 (5)0.0922 (14)
H120.50640.60680.68050.111*
C130.6252 (3)0.5749 (2)0.8661 (3)0.0853 (13)
H130.64840.63970.89120.102*
C100.5613 (3)0.3835 (2)0.7917 (3)0.0668 (10)
H100.53810.31880.76490.080*0.283 (5)
F1'0.7513 (8)0.5218 (5)1.0737 (9)0.100 (4)0.283 (5)
C140.6747 (4)0.4973 (3)0.9556 (4)0.0670 (10)
H14A0.72910.51141.04320.080*0.717 (5)
F10.5221 (3)0.2946 (2)0.7509 (3)0.0909 (14)0.717 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0652 (19)0.0501 (16)0.0403 (15)0.0014 (14)0.0004 (13)0.0089 (14)
N20.081 (2)0.0543 (17)0.0348 (14)0.0059 (15)0.0007 (14)0.0064 (13)
O10.092 (2)0.0656 (16)0.0514 (14)0.0041 (14)0.0058 (13)0.0005 (12)
O20.098 (2)0.0753 (17)0.0376 (13)0.0060 (13)0.0017 (12)0.0036 (12)
C10.056 (2)0.051 (2)0.0455 (19)0.0016 (16)0.0106 (16)0.0028 (16)
C20.054 (2)0.055 (2)0.050 (2)0.0039 (17)0.0106 (17)0.0028 (17)
C30.074 (3)0.078 (3)0.060 (2)0.022 (2)0.0000 (19)0.012 (2)
C40.097 (3)0.066 (3)0.081 (3)0.027 (2)0.023 (3)0.020 (2)
C50.105 (3)0.055 (2)0.085 (3)0.010 (2)0.022 (3)0.003 (2)
C60.086 (3)0.062 (2)0.059 (2)0.001 (2)0.006 (2)0.0040 (19)
C70.067 (2)0.059 (2)0.0388 (18)0.0080 (18)0.0002 (16)0.0029 (17)
C80.063 (2)0.050 (2)0.0355 (18)0.0019 (16)0.0023 (16)0.0002 (15)
C90.059 (2)0.058 (2)0.0383 (17)0.0054 (17)0.0115 (16)0.0036 (15)
C110.089 (3)0.104 (4)0.059 (2)0.041 (3)0.001 (2)0.011 (2)
C120.105 (4)0.090 (4)0.087 (3)0.040 (3)0.031 (3)0.030 (3)
C130.101 (4)0.059 (3)0.100 (3)0.009 (2)0.025 (3)0.008 (2)
C100.075 (3)0.074 (3)0.050 (2)0.005 (2)0.005 (2)0.0020 (19)
F1'0.115 (7)0.075 (6)0.097 (7)0.002 (5)0.025 (5)0.006 (5)
C140.076 (3)0.062 (2)0.064 (2)0.006 (2)0.013 (2)0.001 (2)
F10.096 (3)0.074 (2)0.088 (2)0.0046 (17)0.0376 (18)0.0071 (17)
Geometric parameters (Å, º) top
N1—C71.278 (4)C6—H60.9300
N1—N21.389 (3)C7—H70.9300
N2—C81.342 (4)C8—C91.487 (4)
N2—H20.8600C9—C101.381 (4)
O1—C21.351 (4)C9—C141.384 (5)
O1—H10.8200C11—C121.354 (5)
O2—C81.225 (3)C11—C101.389 (4)
C1—C61.402 (4)C11—H110.9300
C1—C21.412 (4)C12—C131.365 (5)
C1—C71.445 (4)C12—H120.9300
C2—C31.387 (4)C13—C141.380 (4)
C3—C41.366 (5)C13—H130.9300
C3—H30.9300C10—F11.307 (4)
C4—C51.375 (5)C10—H100.9300
C4—H40.9300F1'—C141.288 (7)
C5—C61.384 (5)C14—H14A0.9300
C5—H50.9300
C7—N1—N2117.2 (2)O2—C8—N2122.4 (3)
C8—N2—N1119.2 (2)O2—C8—C9120.8 (3)
C8—N2—H2120.4N2—C8—C9116.8 (3)
N1—N2—H2120.4C10—C9—C14116.0 (3)
C2—O1—H1109.5C10—C9—C8124.6 (3)
C6—C1—C2117.8 (3)C14—C9—C8119.3 (3)
C6—C1—C7119.9 (3)C12—C11—C10119.2 (4)
C2—C1—C7122.4 (3)C12—C11—H11120.4
O1—C2—C3118.1 (3)C10—C11—H11120.4
O1—C2—C1121.8 (3)C11—C12—C13120.9 (4)
C3—C2—C1120.1 (3)C11—C12—H12119.5
C4—C3—C2120.2 (3)C13—C12—H12119.5
C4—C3—H3119.9C12—C13—C14119.0 (3)
C2—C3—H3119.9C12—C13—H13120.5
C3—C4—C5121.3 (4)C14—C13—H13120.5
C3—C4—H4119.3F1—C10—C9121.6 (3)
C5—C4—H4119.3F1—C10—C11116.1 (3)
C4—C5—C6119.3 (4)C9—C10—C11122.3 (3)
C4—C5—H5120.4C9—C10—H10118.9
C6—C5—H5120.4C11—C10—H10118.9
C5—C6—C1121.3 (3)F1'—C14—C13115.6 (5)
C5—C6—H6119.4F1'—C14—C9121.9 (5)
C1—C6—H6119.4C13—C14—C9122.5 (4)
N1—C7—C1121.1 (3)C13—C14—H14A118.7
N1—C7—H7119.5C9—C14—H14A118.7
C1—C7—H7119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.637 (3)146
N2—H2···O2i0.862.022.841 (3)158.4
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11FN2O2
Mr258.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.661 (3), 13.515 (3), 8.998 (3)
β (°) 98.150 (3)
V3)1283.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6829, 2675, 1093
Rint0.066
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.198, 0.97
No. of reflections2675
No. of parameters180
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.637 (3)145.9
N2—H2···O2i0.862.022.841 (3)158.4
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the 2008 Ningxia science and technology key projects (No. 222) and the 2009 Ningxia science and technology key projects (No. 232).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C.-B., Wang, Z.-G., Nan, Y., Yuan, L., Wang, R. & Zhang, S.-X. (2011). Acta Cryst. E67, o70.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o752.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds