metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2-oxo-2H-chromene-3-carboxyl­ato)zinc(II)

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 1 December 2010; accepted 4 December 2010; online 11 December 2010)

In the title compound, [Zn(C10H5O4)2(H2O)2], the ZnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water mol­ecules in the axial positions and four O atoms from two deprotonated coumarin-3-carb­oxy­late ligands in the equatorial plane, forming a slightly distorted octa­hedral coordination geometry. O—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules form infinite chains parallel to [010].

Related literature

For related structures, see: Chu et al. (2010[Chu, W. J., Yao, H. C., Ma, H. C., He, Y., Fan, Y. T. & Hou, H. W. (2010). J Coord. Chem. 63, 3734-3742.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H5O4)2(H2O)2]

  • Mr = 479.70

  • Triclinic, [P \overline 1]

  • a = 6.6113 (13) Å

  • b = 6.8404 (14) Å

  • c = 10.392 (2) Å

  • α = 85.64 (3)°

  • β = 89.47 (3)°

  • γ = 66.09 (3)°

  • V = 428.27 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.741, Tmax = 0.748

  • 2642 measured reflections

  • 1808 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.12

  • 1808 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O3i 0.82 1.88 2.6950 (17) 179
O1W—H2⋯O3ii 0.93 1.83 2.7473 (19) 168
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past decades, numerous papers dealing with mononuclear zinc complexes have been published (Chu et al. 2010). Herein, we report the synthesis and crystal structure of a new mononuclear zinc complex.

In the title compound, [Zn(C10H5O4)2(H2O)2], each ZnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane, forming an octahedral coordination geometry (Fig. 1). O—H···O hydrogen bonds involving the water molecules build up chain parllel to the [0 1 0] axis (Table 1, Fig. 2). The O-H···O interactions results in the formation of R42(8) rings (Etter, 1990; Bernstein et al., 1995).

Related literature top

For related structures, see: Chu et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The title complex was synthesized by carefully layering a solution of ZnSO4.7H2O (28.8 mg, 0.1 mmol) in ethanol solution (10 ml) on top of a solution of coumarin-3-carboxylic acid (19.0 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about one month at room temperature, colorless block-shaped single crystals suitable for X-ray investigation appeared at the boundary between ethanol solution and water with a yield of 27%.

Refinement top

The H atoms were placed geometrically (C—H = 0.93 Å) and treated as riding with Uiso(H) = 1.2eq(C) . H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycle of refinement they were treated as riding on their parent O atom.

Structure description top

In the past decades, numerous papers dealing with mononuclear zinc complexes have been published (Chu et al. 2010). Herein, we report the synthesis and crystal structure of a new mononuclear zinc complex.

In the title compound, [Zn(C10H5O4)2(H2O)2], each ZnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane, forming an octahedral coordination geometry (Fig. 1). O—H···O hydrogen bonds involving the water molecules build up chain parllel to the [0 1 0] axis (Table 1, Fig. 2). The O-H···O interactions results in the formation of R42(8) rings (Etter, 1990; Bernstein et al., 1995).

For related structures, see: Chu et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of chains along [010] built from hydrogen bonds, and the formation of R 24(8) rings. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x+1, y-1, z]
Diaquabis(2-oxo-2H-chromene-3-carboxylato)zinc(II) top
Crystal data top
[Zn(C10H5O4)2(H2O)2]Z = 1
Mr = 479.70F(000) = 244
Triclinic, P1Dx = 1.860 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6113 (13) ÅCell parameters from 2271 reflections
b = 6.8404 (14) Åθ = 3.4–28.4°
c = 10.392 (2) ŵ = 1.50 mm1
α = 85.64 (3)°T = 293 K
β = 89.47 (3)°Block, colourless
γ = 66.09 (3)°0.2 × 0.2 × 0.2 mm
V = 428.27 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1808 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 27.1°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 88
Tmin = 0.741, Tmax = 0.748k = 88
2642 measured reflectionsl = 013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.2757P]
where P = (Fo2 + 2Fc2)/3
1808 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C10H5O4)2(H2O)2]γ = 66.09 (3)°
Mr = 479.70V = 428.27 (18) Å3
Triclinic, P1Z = 1
a = 6.6113 (13) ÅMo Kα radiation
b = 6.8404 (14) ŵ = 1.50 mm1
c = 10.392 (2) ÅT = 293 K
α = 85.64 (3)°0.2 × 0.2 × 0.2 mm
β = 89.47 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1793 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.748Rint = 0.013
2642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.12Δρmax = 0.42 e Å3
1808 reflectionsΔρmin = 0.28 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.01047 (10)
O10.30343 (17)0.68964 (17)0.87151 (10)0.0127 (2)
O1W0.49536 (17)0.22209 (17)0.59641 (10)0.0133 (2)
H10.39720.19510.56490.020*
H20.61830.10220.57630.020*
O20.45061 (18)0.64366 (18)0.68157 (10)0.0141 (2)
O30.17320 (17)0.86870 (17)0.50573 (10)0.0134 (2)
O40.16868 (17)0.63230 (18)0.47583 (10)0.0132 (2)
C10.2479 (3)0.7880 (2)0.99672 (15)0.0146 (3)
H1A0.38800.80730.96790.018*
C20.2071 (3)0.7889 (3)1.12660 (15)0.0168 (3)
H3A0.32030.81111.18500.020*
C30.0042 (3)0.7564 (2)1.17064 (15)0.0161 (3)
H2A0.03050.75671.25840.019*
C40.1753 (3)0.7237 (2)1.08507 (15)0.0148 (3)
H11A0.31600.70151.11430.018*
C50.1306 (2)0.7250 (2)0.95493 (14)0.0119 (3)
C60.0780 (2)0.7579 (2)0.90792 (14)0.0122 (3)
C70.1088 (2)0.7641 (2)0.77180 (14)0.0120 (3)
H7A0.24800.78930.73850.014*
C80.0600 (2)0.7342 (2)0.68973 (14)0.0109 (3)
C90.2798 (2)0.6861 (2)0.74172 (14)0.0113 (3)
C100.0171 (2)0.7468 (2)0.54635 (14)0.0105 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00736 (13)0.01189 (14)0.01013 (13)0.00175 (9)0.00122 (8)0.00152 (9)
O10.0106 (5)0.0164 (5)0.0101 (5)0.0041 (4)0.0009 (4)0.0028 (4)
O1W0.0105 (5)0.0139 (5)0.0143 (5)0.0036 (4)0.0005 (4)0.0016 (4)
O20.0099 (5)0.0185 (5)0.0133 (5)0.0048 (4)0.0021 (4)0.0041 (4)
O30.0093 (5)0.0143 (5)0.0138 (5)0.0018 (4)0.0009 (4)0.0012 (4)
O40.0091 (5)0.0168 (5)0.0116 (5)0.0026 (4)0.0013 (4)0.0032 (4)
C10.0139 (7)0.0135 (7)0.0155 (7)0.0046 (6)0.0028 (6)0.0014 (6)
C20.0204 (8)0.0135 (7)0.0147 (7)0.0051 (6)0.0069 (6)0.0015 (6)
C30.0247 (8)0.0122 (7)0.0098 (7)0.0059 (6)0.0016 (6)0.0012 (5)
C40.0166 (7)0.0133 (7)0.0129 (7)0.0043 (6)0.0009 (6)0.0014 (6)
C50.0129 (7)0.0092 (6)0.0117 (7)0.0024 (5)0.0034 (5)0.0017 (5)
C60.0133 (7)0.0095 (6)0.0129 (7)0.0036 (5)0.0020 (5)0.0008 (5)
C70.0110 (7)0.0108 (7)0.0135 (7)0.0037 (5)0.0002 (5)0.0008 (5)
C80.0105 (7)0.0100 (6)0.0113 (6)0.0032 (5)0.0004 (5)0.0016 (5)
C90.0123 (7)0.0096 (6)0.0105 (6)0.0026 (5)0.0004 (5)0.0015 (5)
C100.0097 (6)0.0108 (6)0.0120 (7)0.0051 (5)0.0006 (5)0.0009 (5)
Geometric parameters (Å, º) top
Zn1—O42.0122 (12)C1—C61.406 (2)
Zn1—O4i2.0122 (12)C1—H1A0.9300
Zn1—O1Wi2.0918 (12)C2—C31.398 (2)
Zn1—O1W2.0918 (12)C2—H3A0.9300
Zn1—O22.1548 (12)C3—C41.388 (2)
Zn1—O2i2.1548 (12)C3—H2A0.9300
O1—C91.3623 (18)C4—C51.386 (2)
O1—C51.3801 (18)C4—H11A0.9300
O1W—H10.8200C5—C61.391 (2)
O1W—H20.9269C6—C71.426 (2)
O2—C91.2241 (18)C7—C81.356 (2)
O3—C101.2501 (19)C7—H7A0.9300
O4—C101.2617 (19)C8—C91.454 (2)
C1—C21.380 (2)C8—C101.509 (2)
O4—Zn1—O4i180.0C3—C2—H3A119.9
O4—Zn1—O1Wi88.05 (5)C4—C3—C2120.84 (15)
O4i—Zn1—O1Wi91.95 (5)C4—C3—H2A119.6
O4—Zn1—O1W91.95 (5)C2—C3—H2A119.6
O4i—Zn1—O1W88.05 (5)C5—C4—C3118.17 (15)
O1Wi—Zn1—O1W180.00 (3)C5—C4—H11A120.9
O4—Zn1—O287.20 (5)C3—C4—H11A120.9
O4i—Zn1—O292.80 (5)O1—C5—C4117.34 (14)
O1Wi—Zn1—O290.89 (5)O1—C5—C6120.25 (13)
O1W—Zn1—O289.11 (5)C4—C5—C6122.41 (14)
O4—Zn1—O2i92.80 (5)C5—C6—C1118.34 (14)
O4i—Zn1—O2i87.20 (5)C5—C6—C7118.03 (14)
O1Wi—Zn1—O2i89.11 (5)C1—C6—C7123.62 (14)
O1W—Zn1—O2i90.89 (5)C8—C7—C6121.59 (14)
O2—Zn1—O2i180.000 (1)C8—C7—H7A119.2
C9—O1—C5122.65 (12)C6—C7—H7A119.2
Zn1—O1W—H1109.5C7—C8—C9119.36 (14)
Zn1—O1W—H2110.7C7—C8—C10119.39 (13)
H1—O1W—H399.9C9—C8—C10121.24 (13)
C9—O2—Zn1122.37 (10)O2—C9—O1114.78 (13)
C10—O4—Zn1131.42 (10)O2—C9—C8127.30 (14)
C2—C1—C6120.10 (15)O1—C9—C8117.92 (13)
C2—C1—H1A119.9O3—C10—O4124.05 (14)
C6—C1—H1A119.9O3—C10—C8116.41 (13)
C1—C2—C3120.13 (15)O4—C10—C8119.51 (13)
C1—C2—H3A119.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O3ii0.821.882.6950 (17)179
O1W—H2···O3iii0.931.832.7473 (19)168
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H5O4)2(H2O)2]
Mr479.70
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6113 (13), 6.8404 (14), 10.392 (2)
α, β, γ (°)85.64 (3), 89.47 (3), 66.09 (3)
V3)428.27 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.741, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
2642, 1808, 1793
Rint0.013
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.12
No. of reflections1808
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O3i0.821.882.6950 (17)179.4
O1W—H2···O3ii0.931.832.7473 (19)167.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21075114), the Science and Technology Development Project of Beijing Education Committee and the Special Environmental Protection Fund for Public Welfare project (201009015).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChu, W. J., Yao, H. C., Ma, H. C., He, Y., Fan, Y. T. & Hou, H. W. (2010). J Coord. Chem. 63, 3734–3742.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds