metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-aqua-bis­­{tri­aqua­[5-(1-oxopyridin-4-yl)tetra­zol-1-ido]sodium}

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 13 December 2010; accepted 15 December 2010; online 24 December 2010)

In the title compound, [Na2(C6H4N5O)2(H2O)8], the NaI atom is in a distorted octahedral environment defined by six O atoms, one from the 5-(1-oxopyridin-4-yl)tetra­zolide anion and five from water mol­ecules. Two water mol­ecules act as bridging ligands, resulting in the formation of dimeric units organized around inversion centers. In the organic anion, the pyridine and tetra­zole rings are nearly coplanar, forming a dihedral angle of 4.62 (1)°. The dimeric units and organic anions are connected by O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of a three-dimensional network.

Related literature

For tetra­zole derivatives, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For the structures and properties of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • [Na2(C6H4N5O)2(H2O)8]

  • Mr = 514.39

  • Triclinic, [P \overline 1]

  • a = 6.887 (2) Å

  • b = 7.5200 (15) Å

  • c = 12.258 (5) Å

  • α = 78.16 (4)°

  • β = 83.42 (4)°

  • γ = 66.68 (3)°

  • V = 570.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.913, Tmax = 1.000

  • 5833 measured reflections

  • 2594 independent reflections

  • 1933 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 2594 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2i 0.85 1.98 2.832 (2) 178
O1W—H1WB⋯N4ii 0.86 1.97 2.817 (2) 167
O2W—H2WA⋯O3Wiii 0.85 2.02 2.857 (2) 169
O2W—H2WB⋯N3ii 0.87 2.02 2.878 (2) 169
O3W—H3WA⋯O4Wiv 0.85 1.93 2.754 (2) 163
O3W—H3WB⋯O1iv 0.85 2.07 2.836 (2) 150
O4W—H4WA⋯O1Wv 0.86 1.96 2.812 (2) 172
O4W—H4WB⋯O1iv 0.85 1.95 2.7233 (19) 151
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tetrazole compounds attracted more attention as phase transition dielectric materials for its application in micro-electronics, memory storage. With the purpose of obtaining phase transition crystals of tetrazol-pyridine compounds, its interaction with various metal ions has been studied and a series of new materials have been elaborated with this organic molecule (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2007; Fu & Xiong 2008). In this paper, we describe the crystal structure of the title compound, tetraaquabis[5-(1-oxopyridin-4-yl)tetrazol-1-ide]sodium(I).

In the title compound, the asymmetric unit is composed of one organic anion, four H2O molecules and one Na+ cation. The NaI center, with slightly distorted octahedral geometry, is surrounded by six oxygen atoms. Two water molecules act as abridging ligand, resulting in the formation of dimeric unit (Fig. 1) organized around inversion center. In the organic anion, the tetrazole N atoms are deprotonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 4.62 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Zhao et al., 2008; Fu et al., 2009).

In crystal structure, the intermolecular hydrogen bonds are formed by all H atoms of the water molecules with tetrazole N atoms or with the O atoms. The complex dinuclear cation units, [Na2(H2O)8]2+, are linked in the crystal through O–H···O H-bonds into broad infinite cation-cation sheet parallel to the (0 0 1) plane. The two-dimensional sheets are linked by organic anions through O—H···N and O—H···O H-bonds into a three-dimensional framework (Table 1 and Fig.2).

Related literature top

For tetrazole derivatives, see: Zhao et al. (2008); Fu et al. (2008, 2009). For the structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Experimental top

A mixture of 4-(1H-tetrazol-5-yl)pyridine 1-oxide (0.4 mmol) and NaOH (0.4 mmol), ethanol (1 ml) and a few drops of water sealed in a glass tube was maintained at 373 K. Colorless needle crystals suitable for X-ray analysis were obtained after 3 days.

While the permittivity measurement shows that there is no phase transition within the temperature range (from 100 K to 400 K), and the permittivity is 8.4 at 1 MHz at room temperature.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycles of refinement, they were treated as iding on their parent O atoms.

Structure description top

Tetrazole compounds attracted more attention as phase transition dielectric materials for its application in micro-electronics, memory storage. With the purpose of obtaining phase transition crystals of tetrazol-pyridine compounds, its interaction with various metal ions has been studied and a series of new materials have been elaborated with this organic molecule (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2007; Fu & Xiong 2008). In this paper, we describe the crystal structure of the title compound, tetraaquabis[5-(1-oxopyridin-4-yl)tetrazol-1-ide]sodium(I).

In the title compound, the asymmetric unit is composed of one organic anion, four H2O molecules and one Na+ cation. The NaI center, with slightly distorted octahedral geometry, is surrounded by six oxygen atoms. Two water molecules act as abridging ligand, resulting in the formation of dimeric unit (Fig. 1) organized around inversion center. In the organic anion, the tetrazole N atoms are deprotonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 4.62 (1)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Zhao et al., 2008; Fu et al., 2009).

In crystal structure, the intermolecular hydrogen bonds are formed by all H atoms of the water molecules with tetrazole N atoms or with the O atoms. The complex dinuclear cation units, [Na2(H2O)8]2+, are linked in the crystal through O–H···O H-bonds into broad infinite cation-cation sheet parallel to the (0 0 1) plane. The two-dimensional sheets are linked by organic anions through O—H···N and O—H···O H-bonds into a three-dimensional framework (Table 1 and Fig.2).

For tetrazole derivatives, see: Zhao et al. (2008); Fu et al. (2008, 2009). For the structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional hydrogen-bonded chain. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
Di-µ-aqua-bis{triaqua[5-(1-oxopyridin-4-yl)tetrazol-1-ido]sodium} top
Crystal data top
[Na2(C6H4N5O)2(H2O)8]Z = 1
Mr = 514.39F(000) = 268
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.887 (2) ÅCell parameters from 2594 reflections
b = 7.5200 (15) Åθ = 3.0–27.5°
c = 12.258 (5) ŵ = 0.16 mm1
α = 78.16 (4)°T = 298 K
β = 83.42 (4)°Needle, colourless
γ = 66.68 (3)°0.25 × 0.15 × 0.10 mm
V = 570.2 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
2594 independent reflections
Radiation source: fine-focus sealed tube1933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.913, Tmax = 1.000l = 1515
5833 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.047P)2 + 0.0948P]
where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Na2(C6H4N5O)2(H2O)8]γ = 66.68 (3)°
Mr = 514.39V = 570.2 (3) Å3
Triclinic, P1Z = 1
a = 6.887 (2) ÅMo Kα radiation
b = 7.5200 (15) ŵ = 0.16 mm1
c = 12.258 (5) ÅT = 298 K
α = 78.16 (4)°0.25 × 0.15 × 0.10 mm
β = 83.42 (4)°
Data collection top
Rigaku Mercury2
diffractometer
2594 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1933 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 1.000Rint = 0.028
5833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2594 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.44822 (10)0.33639 (10)0.43816 (5)0.0346 (2)
O10.61821 (19)0.08957 (19)0.31881 (9)0.0378 (3)
O1W0.33072 (19)0.59396 (19)0.28360 (10)0.0414 (3)
H1WA0.22250.61810.24720.062*
H1WB0.42850.60850.23680.062*
O2W0.74752 (18)0.43381 (18)0.43714 (9)0.0370 (3)
H2WA0.86770.35980.46370.056*
H2WB0.77150.50530.37610.056*
O3W0.1735 (2)0.1911 (2)0.49613 (11)0.0454 (3)
H3WA0.20950.09770.45990.068*
H3WB0.20380.14040.56350.068*
O4W0.6251 (2)0.12583 (19)0.61122 (10)0.0413 (3)
H4WA0.64860.20250.64630.062*
H4WB0.54450.07740.65320.062*
N10.7291 (2)0.1343 (2)0.22842 (11)0.0308 (3)
N21.0244 (2)0.3306 (2)0.15939 (12)0.0392 (4)
N31.1872 (2)0.3602 (3)0.21981 (12)0.0429 (4)
N41.3389 (2)0.3266 (3)0.15339 (12)0.0443 (4)
N51.2806 (2)0.2732 (2)0.04794 (12)0.0419 (4)
C10.6427 (3)0.1983 (3)0.12848 (14)0.0390 (4)
H10.50440.21090.12200.047*
C20.7555 (3)0.2455 (3)0.03546 (14)0.0383 (4)
H20.69260.29000.03340.046*
C30.9619 (3)0.2278 (2)0.04267 (13)0.0303 (4)
C41.0458 (3)0.1597 (3)0.14777 (15)0.0433 (5)
H41.18420.14450.15660.052*
C50.9284 (3)0.1147 (3)0.23857 (14)0.0423 (5)
H50.98750.06980.30840.051*
C61.0873 (3)0.2775 (2)0.05454 (13)0.0307 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0354 (4)0.0374 (4)0.0307 (4)0.0152 (3)0.0012 (3)0.0040 (3)
O10.0434 (7)0.0472 (8)0.0282 (6)0.0272 (6)0.0108 (5)0.0046 (5)
O1W0.0358 (7)0.0603 (9)0.0308 (6)0.0255 (6)0.0033 (5)0.0017 (6)
O2W0.0314 (6)0.0441 (7)0.0317 (6)0.0143 (5)0.0023 (5)0.0005 (5)
O3W0.0418 (7)0.0474 (8)0.0421 (7)0.0136 (6)0.0051 (6)0.0024 (6)
O4W0.0440 (7)0.0448 (8)0.0398 (7)0.0241 (6)0.0021 (6)0.0053 (6)
N10.0339 (8)0.0364 (8)0.0252 (7)0.0189 (6)0.0044 (6)0.0039 (6)
N20.0349 (8)0.0588 (10)0.0273 (7)0.0248 (7)0.0011 (6)0.0015 (7)
N30.0389 (9)0.0609 (11)0.0308 (8)0.0263 (8)0.0051 (6)0.0009 (7)
N40.0383 (9)0.0659 (11)0.0330 (8)0.0292 (8)0.0043 (7)0.0021 (7)
N50.0346 (8)0.0631 (11)0.0327 (8)0.0274 (8)0.0014 (6)0.0019 (7)
C10.0291 (9)0.0599 (12)0.0326 (9)0.0242 (8)0.0018 (7)0.0032 (8)
C20.0343 (9)0.0577 (12)0.0264 (9)0.0235 (8)0.0037 (7)0.0012 (8)
C30.0301 (8)0.0354 (9)0.0279 (8)0.0169 (7)0.0012 (6)0.0032 (7)
C40.0327 (9)0.0675 (14)0.0332 (10)0.0278 (9)0.0039 (7)0.0029 (9)
C50.0359 (10)0.0660 (13)0.0273 (9)0.0266 (9)0.0052 (7)0.0037 (8)
C60.0293 (8)0.0360 (9)0.0278 (8)0.0157 (7)0.0010 (6)0.0025 (7)
Geometric parameters (Å, º) top
Na1—O1W2.3665 (19)N1—C11.336 (2)
Na1—O2Wi2.4305 (17)N1—C51.339 (2)
Na1—O12.4408 (18)N2—C61.334 (2)
Na1—O2W2.4437 (15)N2—N31.340 (2)
Na1—O4W2.486 (2)N3—N41.311 (2)
Na1—O3W2.5080 (17)N4—N51.337 (2)
Na1—Na1i3.4684 (16)N5—C61.330 (2)
O1—N11.3344 (17)C1—C21.371 (2)
O1W—H1WA0.8508C1—H10.9300
O1W—H1WB0.8595C2—C31.386 (2)
O2W—Na1i2.4305 (18)C2—H20.9300
O2W—H2WA0.8506C3—C41.386 (2)
O2W—H2WB0.8674C3—C61.464 (2)
O3W—H3WA0.8460C4—C51.365 (2)
O3W—H3WB0.8469C4—H40.9300
O4W—H4WA0.8571C5—H50.9300
O4W—H4WB0.8501
O1W—Na1—O2Wi89.59 (6)Na1—O3W—H3WA104.0
O1W—Na1—O192.55 (6)Na1—O3W—H3WB100.9
O2Wi—Na1—O1174.05 (5)H3WA—O3W—H3WB107.3
O1W—Na1—O2W86.19 (6)Na1—O4W—H4WA105.9
O2Wi—Na1—O2W89.27 (5)Na1—O4W—H4WB111.5
O1—Na1—O2W96.41 (5)H4WA—O4W—H4WB107.4
O1W—Na1—O4W163.27 (5)O1—N1—C1120.51 (14)
O2Wi—Na1—O4W83.50 (6)O1—N1—C5119.42 (14)
O1—Na1—O4W95.86 (6)C1—N1—C5120.07 (15)
O2W—Na1—O4W78.53 (6)C6—N2—N3104.47 (14)
O1W—Na1—O3W109.49 (6)N4—N3—N2109.39 (14)
O2Wi—Na1—O3W85.24 (5)N3—N4—N5109.73 (14)
O1—Na1—O3W88.81 (5)C6—N5—N4104.48 (14)
O2W—Na1—O3W163.30 (5)N1—C1—C2120.75 (16)
O4W—Na1—O3W85.17 (6)N1—C1—H1119.6
O1W—Na1—Na1i87.03 (5)C2—C1—H1119.6
O2Wi—Na1—Na1i44.79 (4)C1—C2—C3120.88 (16)
O1—Na1—Na1i140.86 (5)C1—C2—H2119.6
O2W—Na1—Na1i44.48 (4)C3—C2—H2119.6
O4W—Na1—Na1i77.33 (5)C4—C3—C2116.46 (16)
O3W—Na1—Na1i128.08 (5)C4—C3—C6120.99 (15)
N1—O1—Na1118.00 (10)C2—C3—C6122.55 (15)
Na1—O1W—H1WA124.0C5—C4—C3120.99 (17)
Na1—O1W—H1WB115.4C5—C4—H4119.5
H1WA—O1W—H1WB108.1C3—C4—H4119.5
Na1i—O2W—Na190.73 (5)N1—C5—C4120.86 (16)
Na1i—O2W—H2WA109.3N1—C5—H5119.6
Na1—O2W—H2WA125.5C4—C5—H5119.6
Na1i—O2W—H2WB105.5N5—C6—N2111.93 (15)
Na1—O2W—H2WB116.3N5—C6—C3123.24 (15)
H2WA—O2W—H2WB106.5N2—C6—C3124.82 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2ii0.851.982.832 (2)178
O1W—H1WB···N4iii0.861.972.817 (2)167
O2W—H2WA···O3Wiv0.852.022.857 (2)169
O2W—H2WB···N3iii0.872.022.878 (2)169
O3W—H3WA···O4Wv0.851.932.754 (2)163
O3W—H3WB···O1v0.852.072.836 (2)150
O4W—H4WA···O1Wi0.861.962.812 (2)172
O4W—H4WB···O1v0.851.952.7233 (19)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Na2(C6H4N5O)2(H2O)8]
Mr514.39
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.887 (2), 7.5200 (15), 12.258 (5)
α, β, γ (°)78.16 (4), 83.42 (4), 66.68 (3)
V3)570.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.913, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5833, 2594, 1933
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections2594
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2i0.851.982.832 (2)178.4
O1W—H1WB···N4ii0.861.972.817 (2)167.4
O2W—H2WA···O3Wiii0.852.022.857 (2)169.1
O2W—H2WB···N3ii0.872.022.878 (2)169.4
O3W—H3WA···O4Wiv0.851.932.754 (2)162.9
O3W—H3WB···O1iv0.852.072.836 (2)150.4
O4W—H4WA···O1Wv0.861.962.812 (2)172.3
O4W—H4WB···O1iv0.851.952.7233 (19)150.8
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds