metal-organic compounds
Bis[μ-4-(4-carboxyphenoxy)phthalato]bis[triaquanickel(II)]
aDepartment of Chemistry, Mudanjiang Normal College, Mudanjiang 157012, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: caixue341205@126.com
In the centrosymmetric binuclear title compound, [Ni2(C15H8O7)2(H2O)6], the NiII ion is in a distorted octahedral coordination geometry with O6 donors, three from three water molecules, the others from three carboxylate groups of two ligands. Extensive O—H⋯O hydrogen bonding connects the molecules into a three-dimensional supramolecular structure.
Related literature
For metal-organic coordination polymers, see: Evans et al. (1999); Li et al. (2008). For related structures, see: Wang et al. (2010); Hökelek et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810049718/ds2071sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810049718/ds2071Isup2.hkl
H3L4 (0.0302 g, 0.1 mmol), Ni(OAc)2.4H2O (0.0498 g, 0.2 mmol), and H2O (15 ml) was sealed in 25 ml Teflon-lined stainless steel reactor and heated to 120 oC. Green block-shaped crystals suitable for X-ray
were separated by filtration with the yield of 37%All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The distance of O—H of water molecule has been restrained using the 'DFIX' command as 0.85Å with the deviation of 0.01.
In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination polymers with appealing structures and properties have stimulated interests of chemists (Evans et al., 1999). The hydrogen bonding interaction often leads to complicated spramolecular structure (Li et al., 2008).
As shown in Fig.1, compound I is a new binuclear neutral complex with a shuttle molecular configuration. The two Ni(II) ions locate in the middle of this molecule. Ni(II) atom is coordinated in a octahedral coordination sphere The bond lengths of Ni—O are similar with the values in those complexes containing Ni—O sgment (Wang et al., 2010). There are rich hydrogen bonding interaction O—H···O in this compound, giving a three-dimensional supramolecular structure.
For metal-organic coordination polymers, see: Evans et al. (1999); Li et al. (2008). For related structures, see: Wang et al. (2010); Hökelek et al. (2009).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A packing diagram of (I) along a axis. |
[Ni2(C15H8O7)2(H2O)6] | F(000) = 848 |
Mr = 825.90 | Dx = 1.776 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2290 reflections |
a = 14.4173 (9) Å | θ = 2.6–25.3° |
b = 9.5002 (6) Å | µ = 1.32 mm−1 |
c = 11.2857 (7) Å | T = 298 K |
β = 92.632 (1)° | Sheet, green |
V = 1544.14 (17) Å3 | 0.18 × 0.12 × 0.05 mm |
Z = 2 |
Bruker SMART APEX CCD area-detector diffractometer | 2716 independent reflections |
Radiation source: fine-focus sealed tube | 2245 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 0 pixels mm-1 | θmax = 25.0°, θmin = 1.4° |
ω scans | h = −16→17 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −7→11 |
Tmin = 0.798, Tmax = 0.937 | l = −13→13 |
7457 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0295P)2 + 0.7208P] where P = (Fo2 + 2Fc2)/3 |
2716 reflections | (Δ/σ)max = 0.001 |
263 parameters | Δρmax = 0.28 e Å−3 |
10 restraints | Δρmin = −0.31 e Å−3 |
[Ni2(C15H8O7)2(H2O)6] | V = 1544.14 (17) Å3 |
Mr = 825.90 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.4173 (9) Å | µ = 1.32 mm−1 |
b = 9.5002 (6) Å | T = 298 K |
c = 11.2857 (7) Å | 0.18 × 0.12 × 0.05 mm |
β = 92.632 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 2716 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2245 reflections with I > 2σ(I) |
Tmin = 0.798, Tmax = 0.937 | Rint = 0.030 |
7457 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 10 restraints |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.28 e Å−3 |
2716 reflections | Δρmin = −0.31 e Å−3 |
263 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.13696 (16) | −0.0011 (3) | 0.4707 (2) | 0.0205 (6) | |
C2 | 1.16031 (17) | 0.1901 (3) | 0.2544 (2) | 0.0217 (6) | |
C3 | 1.23890 (17) | 0.1474 (3) | 0.3408 (2) | 0.0219 (6) | |
C4 | 1.22697 (16) | 0.0685 (3) | 0.4442 (2) | 0.0210 (6) | |
C5 | 1.30275 (18) | 0.0466 (3) | 0.5226 (2) | 0.0298 (7) | |
H5 | 1.2949 | −0.0042 | 0.5918 | 0.036* | |
C6 | 1.38951 (18) | 0.0989 (3) | 0.4998 (2) | 0.0302 (6) | |
H6 | 1.4394 | 0.0847 | 0.5536 | 0.036* | |
C7 | 1.40112 (17) | 0.1721 (3) | 0.3963 (2) | 0.0263 (6) | |
C8 | 1.32712 (17) | 0.1980 (3) | 0.3173 (2) | 0.0252 (6) | |
H8 | 1.3360 | 0.2490 | 0.2484 | 0.030* | |
C9 | 1.62538 (18) | 0.2565 (3) | 0.2812 (2) | 0.0313 (7) | |
H9 | 1.6411 | 0.3291 | 0.3335 | 0.038* | |
C10 | 1.54081 (17) | 0.1884 (3) | 0.2880 (2) | 0.0237 (6) | |
C11 | 1.51594 (18) | 0.0824 (3) | 0.2086 (2) | 0.0313 (7) | |
H11 | 1.4585 | 0.0383 | 0.2118 | 0.038* | |
C12 | 1.57749 (18) | 0.0433 (3) | 0.1249 (2) | 0.0306 (7) | |
H12 | 1.5612 | −0.0281 | 0.0715 | 0.037* | |
C13 | 1.66329 (17) | 0.1082 (3) | 0.1185 (2) | 0.0262 (6) | |
C14 | 1.68622 (18) | 0.2165 (3) | 0.1967 (2) | 0.0321 (7) | |
H14 | 1.7429 | 0.2624 | 0.1921 | 0.039* | |
C15 | 1.73084 (18) | 0.0607 (3) | 0.0322 (2) | 0.0283 (6) | |
O1 | 1.16730 (12) | 0.1605 (2) | 0.14741 (16) | 0.0346 (5) | |
O2 | 1.09321 (11) | 0.25998 (18) | 0.29324 (15) | 0.0236 (4) | |
O3 | 1.07414 (11) | −0.01111 (18) | 0.38727 (14) | 0.0215 (4) | |
O4 | 1.12870 (11) | −0.04895 (19) | 0.57313 (15) | 0.0255 (4) | |
O5 | 1.48851 (12) | 0.2300 (2) | 0.38073 (16) | 0.0327 (5) | |
O6 | 1.70082 (14) | −0.0415 (2) | −0.03746 (19) | 0.0393 (5) | |
O7 | 1.80790 (13) | 0.1132 (2) | 0.02540 (17) | 0.0418 (6) | |
O8 | 0.95069 (13) | 0.0514 (2) | 0.20299 (16) | 0.0283 (4) | |
O9 | 0.89424 (13) | 0.3188 (2) | 0.31920 (17) | 0.0267 (4) | |
O10 | 1.00957 (13) | 0.2419 (2) | 0.52416 (15) | 0.0261 (4) | |
Ni1 | 0.98127 (2) | 0.15487 (3) | 0.36037 (3) | 0.01905 (11) | |
H6A | 1.7430 (19) | −0.079 (4) | −0.077 (3) | 0.074 (13)* | |
H8A | 0.927 (2) | 0.094 (3) | 0.143 (2) | 0.062 (11)* | |
H8B | 0.918 (2) | −0.023 (3) | 0.211 (3) | 0.102 (17)* | |
H9B | 0.916 (2) | 0.385 (2) | 0.279 (2) | 0.066 (12)* | |
H9A | 0.872 (2) | 0.352 (3) | 0.3811 (16) | 0.048 (10)* | |
H10B | 1.0610 (11) | 0.275 (3) | 0.548 (2) | 0.035 (9)* | |
H10A | 0.9937 (19) | 0.176 (3) | 0.569 (2) | 0.062 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0208 (13) | 0.0174 (13) | 0.0238 (14) | 0.0048 (11) | 0.0051 (11) | 0.0013 (11) |
C2 | 0.0208 (13) | 0.0191 (14) | 0.0257 (14) | −0.0032 (11) | 0.0061 (11) | 0.0045 (11) |
C3 | 0.0213 (13) | 0.0217 (14) | 0.0230 (13) | 0.0026 (11) | 0.0033 (10) | −0.0034 (11) |
C4 | 0.0197 (13) | 0.0235 (14) | 0.0201 (13) | 0.0017 (11) | 0.0041 (10) | 0.0005 (11) |
C5 | 0.0267 (14) | 0.0371 (17) | 0.0256 (15) | 0.0034 (13) | 0.0029 (11) | 0.0068 (13) |
C6 | 0.0180 (13) | 0.0408 (17) | 0.0317 (15) | 0.0032 (13) | −0.0004 (11) | 0.0024 (13) |
C7 | 0.0169 (13) | 0.0305 (16) | 0.0318 (15) | −0.0028 (12) | 0.0061 (11) | −0.0077 (13) |
C8 | 0.0238 (14) | 0.0290 (15) | 0.0235 (14) | −0.0010 (12) | 0.0086 (11) | 0.0013 (12) |
C9 | 0.0257 (15) | 0.0352 (17) | 0.0333 (15) | −0.0080 (13) | 0.0024 (12) | −0.0097 (13) |
C10 | 0.0159 (12) | 0.0271 (15) | 0.0286 (14) | 0.0013 (11) | 0.0049 (11) | 0.0010 (12) |
C11 | 0.0187 (14) | 0.0328 (16) | 0.0426 (17) | −0.0077 (13) | 0.0060 (12) | −0.0086 (14) |
C12 | 0.0265 (15) | 0.0326 (16) | 0.0330 (15) | −0.0030 (13) | 0.0038 (12) | −0.0081 (13) |
C13 | 0.0191 (13) | 0.0329 (16) | 0.0266 (14) | 0.0009 (12) | 0.0027 (11) | 0.0024 (12) |
C14 | 0.0195 (14) | 0.0415 (17) | 0.0358 (16) | −0.0075 (13) | 0.0061 (12) | −0.0023 (14) |
C15 | 0.0255 (15) | 0.0367 (17) | 0.0228 (14) | 0.0047 (13) | 0.0010 (11) | 0.0052 (13) |
O1 | 0.0294 (10) | 0.0526 (13) | 0.0222 (10) | 0.0137 (10) | 0.0042 (8) | 0.0001 (10) |
O2 | 0.0211 (9) | 0.0208 (10) | 0.0296 (10) | 0.0030 (8) | 0.0094 (8) | 0.0028 (8) |
O3 | 0.0207 (9) | 0.0230 (10) | 0.0208 (9) | 0.0008 (8) | −0.0002 (7) | 0.0022 (8) |
O4 | 0.0226 (9) | 0.0323 (11) | 0.0218 (10) | −0.0029 (8) | 0.0039 (7) | 0.0063 (8) |
O5 | 0.0202 (9) | 0.0427 (12) | 0.0359 (11) | −0.0064 (9) | 0.0083 (8) | −0.0118 (9) |
O6 | 0.0297 (11) | 0.0466 (14) | 0.0424 (13) | 0.0023 (10) | 0.0097 (10) | −0.0129 (11) |
O7 | 0.0266 (11) | 0.0649 (16) | 0.0349 (12) | −0.0102 (11) | 0.0120 (9) | −0.0035 (11) |
O8 | 0.0373 (11) | 0.0276 (11) | 0.0199 (10) | −0.0020 (10) | −0.0003 (8) | 0.0014 (9) |
O9 | 0.0263 (10) | 0.0260 (11) | 0.0284 (11) | 0.0038 (8) | 0.0077 (9) | 0.0054 (9) |
O10 | 0.0287 (11) | 0.0273 (11) | 0.0223 (10) | −0.0050 (9) | 0.0018 (8) | −0.0025 (9) |
Ni1 | 0.01854 (18) | 0.02068 (18) | 0.01820 (18) | 0.00061 (15) | 0.00355 (12) | 0.00130 (14) |
C1—O4 | 1.253 (3) | C10—O5 | 1.376 (3) |
C1—O3 | 1.279 (3) | C10—C11 | 1.384 (4) |
C1—C4 | 1.499 (3) | C11—C12 | 1.377 (4) |
C2—O1 | 1.249 (3) | C11—H11 | 0.9300 |
C2—O2 | 1.268 (3) | C12—C13 | 1.387 (4) |
C2—C3 | 1.516 (3) | C12—H12 | 0.9300 |
C3—C8 | 1.396 (3) | C13—C14 | 1.385 (4) |
C3—C4 | 1.405 (3) | C13—C15 | 1.479 (4) |
C4—C5 | 1.389 (3) | C14—H14 | 0.9300 |
C5—C6 | 1.381 (4) | C15—O7 | 1.223 (3) |
C5—H5 | 0.9300 | C15—O6 | 1.310 (3) |
C6—C7 | 1.376 (4) | O2—Ni1 | 2.0708 (17) |
C6—H6 | 0.9300 | O3—Ni1 | 2.0817 (17) |
C7—C8 | 1.381 (4) | O4—Ni1i | 2.0491 (17) |
C7—O5 | 1.393 (3) | O8—Ni1 | 2.0600 (18) |
C8—H8 | 0.9300 | O9—Ni1 | 2.0405 (19) |
C9—C14 | 1.378 (4) | O10—Ni1 | 2.0490 (18) |
C9—C10 | 1.386 (4) | Ni1—O4i | 2.0491 (17) |
C9—H9 | 0.9300 | ||
O4—C1—O3 | 123.9 (2) | C14—C13—C15 | 120.1 (2) |
O4—C1—C4 | 117.6 (2) | C12—C13—C15 | 120.9 (3) |
O3—C1—C4 | 118.5 (2) | C9—C14—C13 | 120.3 (2) |
O1—C2—O2 | 123.3 (2) | C9—C14—H14 | 119.9 |
O1—C2—C3 | 118.1 (2) | C13—C14—H14 | 119.9 |
O2—C2—C3 | 118.5 (2) | O7—C15—O6 | 122.7 (3) |
C8—C3—C4 | 119.3 (2) | O7—C15—C13 | 123.0 (3) |
C8—C3—C2 | 116.5 (2) | O6—C15—C13 | 114.3 (2) |
C4—C3—C2 | 124.1 (2) | C2—O2—Ni1 | 119.60 (15) |
C5—C4—C3 | 119.1 (2) | C1—O3—Ni1 | 118.68 (16) |
C5—C4—C1 | 118.1 (2) | C1—O4—Ni1i | 128.60 (16) |
C3—C4—C1 | 122.8 (2) | C10—O5—C7 | 120.9 (2) |
C6—C5—C4 | 121.4 (2) | C15—O6—H6A | 113 (3) |
C6—C5—H5 | 119.3 | Ni1—O8—H8A | 122 (2) |
C4—C5—H5 | 119.3 | Ni1—O8—H8B | 114 (3) |
C7—C6—C5 | 119.1 (2) | H8A—O8—H8B | 105.6 (15) |
C7—C6—H6 | 120.4 | Ni1—O9—H9B | 117 (2) |
C5—C6—H6 | 120.4 | Ni1—O9—H9A | 110 (2) |
C6—C7—C8 | 121.2 (2) | H9B—O9—H9A | 109.2 (16) |
C6—C7—O5 | 116.9 (2) | Ni1—O10—H10B | 125.5 (19) |
C8—C7—O5 | 121.7 (2) | Ni1—O10—H10A | 102 (2) |
C7—C8—C3 | 120.0 (2) | H10B—O10—H10A | 109.7 (16) |
C7—C8—H8 | 120.0 | O9—Ni1—O10 | 89.55 (8) |
C3—C8—H8 | 120.0 | O9—Ni1—O4i | 88.86 (7) |
C14—C9—C10 | 120.0 (3) | O10—Ni1—O4i | 89.61 (7) |
C14—C9—H9 | 120.0 | O9—Ni1—O8 | 93.61 (8) |
C10—C9—H9 | 120.0 | O10—Ni1—O8 | 175.12 (8) |
O5—C10—C11 | 124.5 (2) | O4i—Ni1—O8 | 86.73 (8) |
O5—C10—C9 | 115.0 (2) | O9—Ni1—O2 | 91.72 (7) |
C11—C10—C9 | 120.4 (2) | O10—Ni1—O2 | 90.52 (7) |
C12—C11—C10 | 119.0 (2) | O4i—Ni1—O2 | 179.40 (7) |
C12—C11—H11 | 120.5 | O8—Ni1—O2 | 93.11 (7) |
C10—C11—H11 | 120.5 | O9—Ni1—O3 | 174.95 (7) |
C11—C12—C13 | 121.3 (3) | O10—Ni1—O3 | 94.25 (7) |
C11—C12—H12 | 119.3 | O4i—Ni1—O3 | 94.47 (7) |
C13—C12—H12 | 119.3 | O8—Ni1—O3 | 82.82 (7) |
C14—C13—C12 | 119.0 (2) | O2—Ni1—O3 | 84.94 (7) |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O1ii | 0.85 (1) | 1.73 (1) | 2.579 (3) | 176 (4) |
O8—H8A···O10iii | 0.85 (1) | 2.41 (3) | 2.967 (3) | 124 (3) |
O8—H8B···O2iv | 0.86 (1) | 2.07 (2) | 2.841 (3) | 150 (4) |
O9—H9B···O3v | 0.84 (1) | 2.14 (2) | 2.889 (2) | 149 (3) |
O8—H8A···O7vi | 0.85 (1) | 2.12 (2) | 2.867 (3) | 146 (3) |
O10—H10B···O1vii | 0.84 (1) | 1.96 (1) | 2.770 (3) | 164 (3) |
Symmetry codes: (ii) −x+3, −y, −z; (iii) x, −y+1/2, z−1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+2, y+1/2, −z+1/2; (vi) x−1, y, z; (vii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(C15H8O7)2(H2O)6] |
Mr | 825.90 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 14.4173 (9), 9.5002 (6), 11.2857 (7) |
β (°) | 92.632 (1) |
V (Å3) | 1544.14 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.32 |
Crystal size (mm) | 0.18 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.798, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7457, 2716, 2245 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.069, 1.02 |
No. of reflections | 2716 |
No. of parameters | 263 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O1i | 0.846 (10) | 1.734 (11) | 2.579 (3) | 176 (4) |
O8—H8A···O10ii | 0.851 (10) | 2.41 (3) | 2.967 (3) | 124 (3) |
O8—H8B···O2iii | 0.857 (10) | 2.07 (2) | 2.841 (3) | 150 (4) |
O9—H9B···O3iv | 0.841 (10) | 2.135 (18) | 2.889 (2) | 149 (3) |
O8—H8A···O7v | 0.851 (10) | 2.12 (2) | 2.867 (3) | 146 (3) |
O10—H10B···O1vi | 0.838 (10) | 1.955 (13) | 2.770 (3) | 164 (3) |
Symmetry codes: (i) −x+3, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x−1, y, z; (vi) x, −y+1/2, z+1/2. |
Acknowledgements
The project was supported by the Excellent Young Scholars of Higher University of Heilongjiang Province, China (1155G57), the Natural Science Foundation of Heilongjiang Province, China (B201016), the Doctoral Research Fund of Mudanjiang Teachers College, China (MSB: 200902) and the Research Fund of Mudanjiang Teachers College, China (KY: 200902).
References
Bruker (2001). SAINT-Plus . Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538. CrossRef CAS Google Scholar
Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m1015–m1016. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 675–684. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, H., Zhang, D., Sun, D., Chen, Y., Wang, K., Ni, Z., Tian, L. & Jiang, J. (2010). Inorg. Chem. 12, 1096–1102. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination polymers with appealing structures and properties have stimulated interests of chemists (Evans et al., 1999). The hydrogen bonding interaction often leads to complicated spramolecular structure (Li et al., 2008).
As shown in Fig.1, compound I is a new binuclear neutral complex with a shuttle molecular configuration. The two Ni(II) ions locate in the middle of this molecule. Ni(II) atom is coordinated in a octahedral coordination sphere The bond lengths of Ni—O are similar with the values in those complexes containing Ni—O sgment (Wang et al., 2010). There are rich hydrogen bonding interaction O—H···O in this compound, giving a three-dimensional supramolecular structure.