organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[1-(3-Chloro-4-fluoro­phen­yl)ethyl­­idene]hydrazinecarbo­thio­amide

aDepartment of Chemisry and Chemical Engineering, Jining University, 273155 Qufu, Shandong, People's Republic of China
*Correspondence e-mail: zhaixiurong@163.com

(Received 2 November 2010; accepted 6 December 2010; online 11 December 2010)

In the crystal of the title compound, C9H9ClFN3S, the molecules are inter­connected by N—H⋯S and N—H⋯F hydrogen bonds. There are two different N—H⋯S hydrogen bond: the stronger one links mol­ecules into infinite chains along the b axis with graph-set motif C(4), while the weaker N—H⋯S hydrogen bond combines with the previous one into an R22(8) network. Moreover, the chains are linked into layers parallel to (102) by weak N—H⋯F hydrogen bonds, which form an R22(22) ring motif. In addition, there are also weak ππ inter­actions between the benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.8997 (15) Å].

Related literature

For the chemistry and biological activity of thio­semi­carba­zones and their derivatives, see: Kasuga et al. (2001[Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem. 84, 55-65.]); Fonari et al. (2003[Fonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129-140.]); Amoedo et al. (2006[Amoedo, A., Adrio, L. A., Antelo, J. M., Martinez, J., Pereira, M. T., Fernandez, A. & Vila, J. M. (2006). Eur. J. Inorg. Chem. pp. 3016-3021.]); Mirsha et al. (2006[Mirsha, D., Nasker, S., Drew, M. G. B. & Chattopadhay, S. K. (2006). Inorg. Chim. Acta, 359, 585-592.]); Kovala-Demertzi et al. 2007[Kovala-Demertzi, D., Varadinova, T., Genova, P., Souza, P. & Demertzis, M. A. (2007). Bioinorg. Chem. Appl. doi:10.1155/2007/56165.]; Tarafder et al. (2008[Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988-o989.]); Kizilcikli et al. (2004[Kizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met. Org. Chem. 34, 653-665.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set theory, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9ClFN3S

  • Mr = 245.70

  • Monoclinic, P 21 /c

  • a = 7.8226 (10) Å

  • b = 8.2415 (12) Å

  • c = 18.4582 (19) Å

  • β = 112.244 (4)°

  • V = 1101.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.950

  • 6461 measured reflections

  • 2379 independent reflections

  • 2069 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.06

  • 2379 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.86 2.50 3.327 (2) 161
N2—H2⋯S1ii 0.86 2.73 3.4817 (19) 147
N1—H1A⋯F1iii 0.86 2.30 3.051 (2) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N, S donor ligands and have been investigated because of their chemistry and biological activities (Kasuga et al., 2001; Fonari et al., 2003; Kizilcikli et al., 2004; Amoedo et al., 2006; Mirsha et al., 2006; Kovala-Demertzi et al., 2007; Tarafder et al., 2008.) In order to search for new thiosemicarbazones, the title compound has been synthesized and its crystal structure is reported here.

In the title molecule (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987). In the crystal structure, the molecules are linked by intermolecular N1—H1B···S1 hydrogen bonds, forming infinite chains with the graph-set motif C(4) (Tab. 1; Fig. 2; Etter et al., 1990). The involved atoms in this graph set motif are S1—C1—N1—H1B···S1i [the symmetry code i: 1 - x, 1/2 + y, 1/2 + -z]. Moreover, this interaction is strengthened by an almost parallel, a somewhat longer N2—H2···S1 hydrogen bond (Tab. 1; Fig. 3). Both these H bonds form a network R22(8). (The involved atoms in the network are C1i—N1i—H1Bi···S1ii—C1ii—N2ii—H2ii···S1i [the symmetry code i: 1 - x, 1/2 + y, 1/2 - z; ii: 2 - x, 1 - y, -z]). The chains are further linked into the layers by weak N—H···F hydrogen bonds. The N—H···F hydrogen bonds form a ring motif R22(22). [The involved atoms in the ring motif are N1—H1A···F1ii—C6ii—C5ii—C4ii—C3ii—C2ii—N3ii— N2ii—C1ii—N1ii—H1Aii···F1—C6—C5—C4—C3—C2—N3— N2—C1 (the symmetry code ii: 2 - x, 1 - y, -z)]. The layers are parallel to (1 0 2).

In addition, there are also present weak π-electron—π-electron interactions between the benzene rings of the adjacent molecules (the centroid—the centroid distance equals to 3.8997 (15) Å; the symmetry code: 2 - x, 1 - y, -z). Moreover, there is also even a weaker π-electron—π-electron ring interaction between another benzene ring from the other side with the centroid-centroid distance equal to 4.3962 (15)Å (the symmetry code: 2 - x, -y, -z).

Related literature top

For the chemistry and biological activity of thiosemicarbazones and their derivatives, see: Kasuga et al. (2001); Fonari et al. (2003); Amoedo et al. (2006); Mirsha et al. (2006); Kovala-Demertzi et al. 2007; Tarafder et al. (2008); Kizilcikli et al. (2004). For bond-length data, see: Allen et al. (1987). For graph-set theory, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by the reaction of hydrazinecarbothioamide (1 mmol, 91.1 mg) with 1-(3-chloro-4-fluoro-phenyl)-ethanone (1 mmol, 172.6 mg) in anhydrous ethanol (20 ml) under reflux conditions (353 K) for 6 h. The solvent was removed under reduced pressure and the solid product has been recrystallized from 10 ml of anhydrous ethanol. The yield was 82%. After six days, colourless block-shaped crystals with approx. size 0.2 × 0.1 × 0.1 mm were obtained.

Refinement top

All the H atoms could be discerned in the difference electron density map. However, they were situated into the idealized positions and refined within the riding atom approximation. The used constraints: Nprimary/secondary amine—Hprimary/secondary amine=0.86; Caryl—Haryl = 0.93; Cmethyl—Hmethyl = 0.96 Å. Uiso(Hprimary/secondary amine/aryl)=1.2 Ueq(Cprimary/secondary amine/aryl); Uiso(Hmethyl) =1.5Ueq(Cmethyl). A rotating group model was used for the refinement of the positions of the methyl group. The minimal and the maximal residual electron densities were located at 0.85 and 0.70 Å from Cl1, respectively.

Structure description top

Thiosemicarbazones constitute an important class of N, S donor ligands and have been investigated because of their chemistry and biological activities (Kasuga et al., 2001; Fonari et al., 2003; Kizilcikli et al., 2004; Amoedo et al., 2006; Mirsha et al., 2006; Kovala-Demertzi et al., 2007; Tarafder et al., 2008.) In order to search for new thiosemicarbazones, the title compound has been synthesized and its crystal structure is reported here.

In the title molecule (Fig. 1), the bond lengths and angles are normal (Allen et al., 1987). In the crystal structure, the molecules are linked by intermolecular N1—H1B···S1 hydrogen bonds, forming infinite chains with the graph-set motif C(4) (Tab. 1; Fig. 2; Etter et al., 1990). The involved atoms in this graph set motif are S1—C1—N1—H1B···S1i [the symmetry code i: 1 - x, 1/2 + y, 1/2 + -z]. Moreover, this interaction is strengthened by an almost parallel, a somewhat longer N2—H2···S1 hydrogen bond (Tab. 1; Fig. 3). Both these H bonds form a network R22(8). (The involved atoms in the network are C1i—N1i—H1Bi···S1ii—C1ii—N2ii—H2ii···S1i [the symmetry code i: 1 - x, 1/2 + y, 1/2 - z; ii: 2 - x, 1 - y, -z]). The chains are further linked into the layers by weak N—H···F hydrogen bonds. The N—H···F hydrogen bonds form a ring motif R22(22). [The involved atoms in the ring motif are N1—H1A···F1ii—C6ii—C5ii—C4ii—C3ii—C2ii—N3ii— N2ii—C1ii—N1ii—H1Aii···F1—C6—C5—C4—C3—C2—N3— N2—C1 (the symmetry code ii: 2 - x, 1 - y, -z)]. The layers are parallel to (1 0 2).

In addition, there are also present weak π-electron—π-electron interactions between the benzene rings of the adjacent molecules (the centroid—the centroid distance equals to 3.8997 (15) Å; the symmetry code: 2 - x, 1 - y, -z). Moreover, there is also even a weaker π-electron—π-electron ring interaction between another benzene ring from the other side with the centroid-centroid distance equal to 4.3962 (15)Å (the symmetry code: 2 - x, -y, -z).

For the chemistry and biological activity of thiosemicarbazones and their derivatives, see: Kasuga et al. (2001); Fonari et al. (2003); Amoedo et al. (2006); Mirsha et al. (2006); Kovala-Demertzi et al. 2007; Tarafder et al. (2008); Kizilcikli et al. (2004). For bond-length data, see: Allen et al. (1987). For graph-set theory, see: Etter et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view showing infinite chains with the graph-set motif C(4) corresponding to the C1-N1-H1B···S1i hydrogen bonds (dashed lines) [symmetry code i: 1-x, y+1/2, -z+1/2].
[Figure 3] Fig. 3. A view showing the network R22(8) pertinent to hydrogen bonds S1—C1—N2—H2···S1ii—C1ii—N1ii—H1Bii···S1 (the dashed lines) [symmetry code ii: 1-x, y-1/2, -z+1/2].
(E)-2-[1-(3-Chloro-4-fluorophenyl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C9H9ClFN3SF(000) = 504
Mr = 245.70Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3779 reflections
a = 7.8226 (10) Åθ = 2.4–28.2°
b = 8.2415 (12) ŵ = 0.52 mm1
c = 18.4582 (19) ÅT = 296 K
β = 112.244 (4)°Block, colorless
V = 1101.4 (2) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2379 independent reflections
Radiation source: fine-focus sealed tube2069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 95
Tmin = 0.926, Tmax = 0.950k = 910
6461 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.6228P]
where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C9H9ClFN3SV = 1101.4 (2) Å3
Mr = 245.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8226 (10) ŵ = 0.52 mm1
b = 8.2415 (12) ÅT = 296 K
c = 18.4582 (19) Å0.15 × 0.12 × 0.10 mm
β = 112.244 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2069 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.950Rint = 0.018
6461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
2379 reflectionsΔρmin = 0.47 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.35789 (9)0.14464 (12)0.01370 (4)0.0767 (3)
S10.48566 (10)0.45517 (7)0.27045 (4)0.0579 (2)
F11.0826 (2)0.3057 (2)0.11859 (9)0.0675 (4)
N30.7524 (2)0.3397 (2)0.13785 (10)0.0416 (4)
N20.6771 (3)0.3277 (2)0.19401 (10)0.0412 (4)
H20.68240.23890.21920.049*
N10.6073 (3)0.5950 (2)0.17163 (12)0.0524 (5)
H1A0.66620.59510.14060.063*
H1B0.55640.68270.17900.063*
C30.9182 (3)0.2442 (2)0.06572 (12)0.0399 (4)
C20.8562 (3)0.2247 (2)0.13192 (12)0.0392 (4)
C80.8048 (3)0.3213 (3)0.00227 (13)0.0484 (5)
H80.69010.35970.00590.058*
C70.8590 (4)0.3422 (3)0.06482 (14)0.0525 (6)
H70.78200.39300.11050.063*
C61.0288 (3)0.2858 (3)0.05752 (13)0.0476 (5)
C51.1441 (3)0.2103 (3)0.00803 (14)0.0462 (5)
C41.0893 (3)0.1874 (3)0.07075 (13)0.0441 (5)
H41.16670.13450.11570.053*
C10.5950 (3)0.4612 (2)0.20768 (12)0.0394 (4)
C90.9087 (4)0.0788 (3)0.18293 (15)0.0576 (6)
H9A0.92280.10800.23520.086*
H9B1.02320.03620.18320.086*
H9C0.81390.00200.16320.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0482 (4)0.1172 (7)0.0786 (5)0.0102 (3)0.0398 (3)0.0058 (4)
S10.0888 (5)0.0384 (3)0.0771 (4)0.0073 (3)0.0662 (4)0.0041 (2)
F10.0798 (10)0.0817 (10)0.0629 (9)0.0066 (8)0.0519 (8)0.0007 (8)
N30.0465 (10)0.0413 (9)0.0478 (9)0.0002 (7)0.0301 (8)0.0025 (7)
N20.0518 (10)0.0363 (8)0.0485 (9)0.0031 (7)0.0336 (8)0.0005 (7)
N10.0665 (12)0.0402 (9)0.0728 (13)0.0084 (9)0.0515 (11)0.0074 (9)
C30.0403 (10)0.0401 (10)0.0458 (10)0.0019 (8)0.0235 (9)0.0053 (8)
C20.0367 (10)0.0430 (10)0.0430 (10)0.0013 (8)0.0210 (8)0.0059 (8)
C80.0451 (11)0.0575 (13)0.0495 (12)0.0048 (10)0.0260 (10)0.0009 (10)
C70.0553 (13)0.0600 (14)0.0465 (12)0.0028 (11)0.0244 (10)0.0039 (10)
C60.0557 (13)0.0503 (12)0.0493 (12)0.0102 (10)0.0340 (10)0.0075 (9)
C50.0403 (11)0.0521 (12)0.0551 (12)0.0047 (9)0.0282 (10)0.0112 (10)
C40.0407 (11)0.0513 (12)0.0455 (11)0.0016 (9)0.0220 (9)0.0036 (9)
C10.0415 (10)0.0389 (10)0.0457 (10)0.0004 (8)0.0255 (9)0.0017 (8)
C90.0665 (15)0.0605 (14)0.0584 (14)0.0217 (12)0.0379 (12)0.0113 (11)
Geometric parameters (Å, º) top
Cl1—C51.723 (2)C3—C21.484 (3)
S1—C11.681 (2)C2—C91.486 (3)
F1—C61.354 (2)C8—C71.383 (3)
N3—C21.279 (3)C8—H80.9300
N3—N21.376 (2)C7—C61.365 (3)
N2—C11.345 (2)C7—H70.9300
N2—H20.8600C6—C51.356 (3)
N1—C11.310 (3)C5—C41.391 (3)
N1—H1A0.8600C4—H40.9300
N1—H1B0.8600C9—H9A0.9600
C3—C81.386 (3)C9—H9B0.9600
C3—C41.387 (3)C9—H9C0.9600
C2—N3—N2118.55 (17)F1—C6—C5119.1 (2)
C1—N2—N3116.98 (16)F1—C6—C7118.3 (2)
C1—N2—H2121.5C5—C6—C7122.5 (2)
N3—N2—H2121.5C6—C5—C4119.6 (2)
C1—N1—H1A120.0C6—C5—Cl1120.06 (17)
C1—N1—H1B120.0C4—C5—Cl1120.32 (18)
H1A—N1—H1B120.0C3—C4—C5119.5 (2)
C8—C3—C4119.05 (19)C3—C4—H4120.3
C8—C3—C2119.89 (18)C5—C4—H4120.3
C4—C3—C2121.06 (19)N1—C1—N2117.44 (18)
N3—C2—C3113.97 (18)N1—C1—S1121.95 (15)
N3—C2—C9125.24 (19)N2—C1—S1120.60 (15)
C3—C2—C9120.74 (17)C2—C9—H9A109.5
C7—C8—C3121.3 (2)C2—C9—H9B109.5
C7—C8—H8119.3H9A—C9—H9B109.5
C3—C8—H8119.3C2—C9—H9C109.5
C6—C7—C8118.0 (2)H9A—C9—H9C109.5
C6—C7—H7121.0H9B—C9—H9C109.5
C8—C7—H7121.0
C2—N3—N2—C1169.12 (19)C8—C7—C6—C50.4 (4)
N2—N3—C2—C3175.60 (17)F1—C6—C5—C4179.2 (2)
N2—N3—C2—C92.1 (3)C7—C6—C5—C40.3 (4)
C8—C3—C2—N331.7 (3)F1—C6—C5—Cl11.3 (3)
C4—C3—C2—N3147.8 (2)C7—C6—C5—Cl1179.13 (19)
C8—C3—C2—C9146.0 (2)C8—C3—C4—C50.6 (3)
C4—C3—C2—C934.4 (3)C2—C3—C4—C5178.9 (2)
C4—C3—C8—C70.1 (3)C6—C5—C4—C30.8 (3)
C2—C3—C8—C7179.6 (2)Cl1—C5—C4—C3178.62 (17)
C3—C8—C7—C60.6 (4)N3—N2—C1—N15.8 (3)
C8—C7—C6—F1179.9 (2)N3—N2—C1—S1175.61 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.503.327 (2)161
N2—H2···S1ii0.862.733.4817 (19)147
N1—H1A···F1iii0.862.303.051 (2)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9ClFN3S
Mr245.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8226 (10), 8.2415 (12), 18.4582 (19)
β (°) 112.244 (4)
V3)1101.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.926, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
6461, 2379, 2069
Rint0.018
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.06
No. of reflections2379
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.862.503.327 (2)161
N2—H2···S1ii0.862.733.4817 (19)147
N1—H1A···F1iii0.862.303.051 (2)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmoedo, A., Adrio, L. A., Antelo, J. M., Martinez, J., Pereira, M. T., Fernandez, A. & Vila, J. M. (2006). Eur. J. Inorg. Chem. pp. 3016–3021.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct. 647, 129–140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem. 84, 55–65.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met. Org. Chem. 34, 653–665.  CAS Google Scholar
First citationKovala-Demertzi, D., Varadinova, T., Genova, P., Souza, P. & Demertzis, M. A. (2007). Bioinorg. Chem. Appl. doi:10.1155/2007/56165.  Google Scholar
First citationMirsha, D., Nasker, S., Drew, M. G. B. & Chattopadhay, S. K. (2006). Inorg. Chim. Acta, 359, 585–592.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds