metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-Benzene){2-[2-(tert-butyl­sulfan­yl)phenyl]pyridine-κ2N,S}chlorido­ruthenium(II) hexa­fluorido­phosphate

aGraduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
*Correspondence e-mail: mhiro@sci.osaka-cu.ac.jp

(Received 10 November 2010; accepted 29 November 2010; online 11 December 2010)

In the title compound, [RuCl(C6H6)(C15H17NS)]PF6, the cation adopts a three-legged piano-stool structure around the Ru(II) atom with an η6-benzene ligand, a chloride ligand and a 2-[2-(tert-butyl­sulfan­yl)phen­yl]pyridine (btppy) ligand. The btppy ligand acts as a N,S-bidentate ligand, forming a six-membered ring, which has an envelope conformation. The S—Ru—N bite angle is 86.76 (9)°, and the dihedral angle between the pyridine and benzene rings in btppy is 39.8 (2)°. The unit cell contains two pairs of racemic diastereomers with (SRu,SS) and (RRu,RS) configurations, in which the tert-butyl group on the coordin­ated S atom is distant from the η6-benzene ligand.

Related literature

For general background to the use of chiral N,S-bidentate ligands in asymmetric allylic substitution reactions, see: Mellah et al. (2007[Mellah, M., Voituriez, A. & Schulz, E. (2007). Chem. Rev. 107, 5133-5209.]). For the synthesis of 2-(2′-(tert-butyl­thio)­phen­yl)pyridine, see: Clavier et al. (2003[Clavier, S., Rist, Ø., Hansen, S., Gerlach, L.-O., Högberg, T. & Bergman, J. (2003). Org. Biomol. Chem. 1, 4248-4253.]). For related structures, see: Shibue et al. (2008[Shibue, M., Hirotsu, M., Nishioka, T. & Kinoshita, I. (2008). Organometallics, 27, 4475-4483.]); Sau et al. (2010[Sau, Y.-K., Yi, X.-Y., Chan, K.-W., Lai, C.-S., Williams, I. D. & Leung, W.-H. (2010). J. Organomet. Chem. 695, 1399-1404.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C6H6)(C15H17NS)]PF6

  • Mr = 602.97

  • Monoclinic, C c

  • a = 16.638 (4) Å

  • b = 10.5589 (19) Å

  • c = 14.327 (3) Å

  • β = 110.758 (4)°

  • V = 2353.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 193 K

  • 0.24 × 0.17 × 0.09 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.725, Tmax = 0.914

  • 11123 measured reflections

  • 4474 independent reflections

  • 4165 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.078

  • S = 1.03

  • 4474 reflections

  • 291 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1824 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Selected geometric parameters (Å, °)

Ru1—Cl1 2.3970 (14)
Ru1—S1 2.3671 (10)
Ru1—N1 2.122 (3)
Ru1—C16 2.183 (6)
Ru1—C17 2.187 (6)
Ru1—C18 2.178 (6)
Ru1—C19 2.199 (6)
Ru1—C20 2.172 (7)
Ru1—C21 2.161 (5)
Cl1—Ru1—S1 93.84 (4)
Cl1—Ru1—N1 86.89 (14)
S1—Ru1—N1 86.76 (9)
Ru1—S1—C11 98.00 (15)
Ru1—S1—C12 123.42 (13)
C11—S1—C12 106.9 (2)
Ru1—N1—C1 116.1 (3)
Ru1—N1—C5 125.4 (3)

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Coordination of bidentate ligands bearing thioether sulfur atoms generates chirality at the sulfur center. The chirality of the coordinated S atoms in catalysts would be important in improving enantioselectivities for asymmetric reactions. A variety of chiral N,S-bidentate ligands have been developed and used for asymmetric allylic substitution reactions (Mellah et al., 2007). We previously reported the structurally characterized ruthenium(II) arene complex with 4-(2'-pyridyl)dibenzothiophene (PyDBT), [RuCl(PyDBT)(η6-C6H6)]CF3SO3 (Shibue et al., 2008). In this complex, PyDBT acts as a N,S-bidentate ligand to form chiral centers at Ru and S atoms. The pyridine and dibenzothiophene planes in PyDBT are twisted with respect to each other, and the dibenzothiophene moiety is in close proximity to the η6-benzene ligand. To clarify the steric interactions around the coordinated S atom, we present here the crystal structure of the title ruthenium(II) arene complex of 2-(2'-(t-butylthio)phenyl)pyridine (btppy).

The asymmetric unit of the title compound (I) consists of a [RuCl(btppy)(η6-C6H6)]+ cation and a hexafluorophosphate anion (Fig. 1). The Ru center of the complex cation is surrounded by a benzene, a btppy and a chloride ligand to form a three-legged piano-stool structure. The btppy ligand acts as a N,S-bidentate ligand to form a six-membered ring. The chelate ring adopts an envelope conformation, which is similar to that in the previously reported ruthenium(II) complex [RuCl(PyDBT)(η6-C6H6)]CF3SO3, (II) (Shibue et al., 2008). The S—Ru—N bite angle (86.76 (9)°) is larger than that of (II) (79.20 (7)°, 80.00 (7)°, two independent molecules), which is due to the longer C—S bond in the btppy chelate ring (1.820 (5) Å) compared with the PyDBT chelate ring in (II) (C—S = 1.762 (5), 1.760 (4) Å). The Ru—S (2.3671 (10) Å) and Ru—N (2.122 (3) Å) bond lengths in (I) are slightly shorter than those in (II) (Ru—S, 2.3821 (9), 2.3901 (8) Å; Ru—N, 2.161 (3), 2.164 (3) Å), indicating the higher coordinating ability of btppy. The dihedral angle between the pyridine and benzene rings in btppy (39.8 (2)°) is similar to that in PyDBT of (II) (37.7 (2)°).

There are two pair of racemic diastereomers with (SRu, SS) and (RRu, RS) configurations in the unit cell. The t-butyl group on the coordinated S atom is placed far from the η6-benzene ligand. An average Ru—C distance of 2.180 (6) Å in (I) is comparable to that in (II) (2.192 (4), 2.180 (4) Å). The Cl—Ru—S angle (93.84 (4)°) in (I) is larger than that in (II) (82.84 (3)°, 84.87 (3)°), and no significant interaction was observed between the t-butyl group and the chloro ligand. Molecular modeling analysis suggests that the other diastereomers with configurations of (SRu, RS) and (RRu, SS) cause a severe repulsive interaction between the t-butyl group and the benzene ligand. The 1H NMR spectrum of (I) in CDCl3 revealed the presence of a single diastereomer. This suggests that the (SRu, SS) and (RRu, RS) isomers observed in the crystal are retained in solution. Similar stereoselectivity was recently reported for the iridium(III) complex [(η5-C5Me5)Ir(η2-ppy-S-p-tol)(H2O)](OTf)2 (Sau et al., 2010), in which the structure of the chelate ring is analogous to that for btppy in (I).

Related literature top

For general background to the use of chiral N,S-bidentate ligands in asymmetric allylic substitution reactions, see: Mellah et al. (2007). For the synthesis of 2-(2'-(tert-butylthio)phenyl)pyridine, see: Clavier et al. (2003). For related structures, see: Shibue et al. (2008); Sau et al. (2010).

Experimental top

The btppy ligand was prepared according to a literature procedure (Clavier et al., 2003). For the synthesis of the title compound (I), [RuCl2(C6H6)]2 (51 mg, 0.10 mmol) was added to a deoxygenated solution of btppy (50 mg, 0.21 mmol) in methanol (10 ml). The reaction mixture was refluxed for 6 h under an argon atmosphere. After cooling to room temperature, KPF6 (60 mg, 0.33 mmol) was added. The resulting orange solution was concentrated under reduced pressure. The residue was dissolved in chloroform (10 ml), and the insoluble white solid was removed by filtration. The filtrate was concentrated under reduced pressure, and the resulting brown residue was recrystallized by vapor diffusion of diethyl ether into a dichloromethane solution to afford yellow crystals (19 mg, 15%). Anal. Calcd for C21H23ClF6NPRuS: C, 41.83; H, 3.84; N, 2.32%. Found: C, 41.78; H, 3.82; N, 2.35%. 1H NMR (300 MHz, CDCl3): δ 1.00 (s, 9H, t-Bu), 5.62 (s, 6H, C6H6), 7.51 (ddd, J = 7.5, 6.0, 1.4 Hz, 1H), 7.62 (td, J = 7.6, 1.2 Hz, 1H), 7.77 (td, J = 7.7, 1.2 Hz, 1H), 7.82 (dd, J = 7.9, 1.0 Hz, 1H), 7.84 (dd, J = 7.6, 1.2 Hz, 1H), 8.02 (m, 2H), 9.39 (dd, J = 5.9, 1.2 Hz, 1H).

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located on calculated positions with C—H(aromatic) = 0.95 Å and C—H(methyl) = 0.98 Å, and were refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Coordination of bidentate ligands bearing thioether sulfur atoms generates chirality at the sulfur center. The chirality of the coordinated S atoms in catalysts would be important in improving enantioselectivities for asymmetric reactions. A variety of chiral N,S-bidentate ligands have been developed and used for asymmetric allylic substitution reactions (Mellah et al., 2007). We previously reported the structurally characterized ruthenium(II) arene complex with 4-(2'-pyridyl)dibenzothiophene (PyDBT), [RuCl(PyDBT)(η6-C6H6)]CF3SO3 (Shibue et al., 2008). In this complex, PyDBT acts as a N,S-bidentate ligand to form chiral centers at Ru and S atoms. The pyridine and dibenzothiophene planes in PyDBT are twisted with respect to each other, and the dibenzothiophene moiety is in close proximity to the η6-benzene ligand. To clarify the steric interactions around the coordinated S atom, we present here the crystal structure of the title ruthenium(II) arene complex of 2-(2'-(t-butylthio)phenyl)pyridine (btppy).

The asymmetric unit of the title compound (I) consists of a [RuCl(btppy)(η6-C6H6)]+ cation and a hexafluorophosphate anion (Fig. 1). The Ru center of the complex cation is surrounded by a benzene, a btppy and a chloride ligand to form a three-legged piano-stool structure. The btppy ligand acts as a N,S-bidentate ligand to form a six-membered ring. The chelate ring adopts an envelope conformation, which is similar to that in the previously reported ruthenium(II) complex [RuCl(PyDBT)(η6-C6H6)]CF3SO3, (II) (Shibue et al., 2008). The S—Ru—N bite angle (86.76 (9)°) is larger than that of (II) (79.20 (7)°, 80.00 (7)°, two independent molecules), which is due to the longer C—S bond in the btppy chelate ring (1.820 (5) Å) compared with the PyDBT chelate ring in (II) (C—S = 1.762 (5), 1.760 (4) Å). The Ru—S (2.3671 (10) Å) and Ru—N (2.122 (3) Å) bond lengths in (I) are slightly shorter than those in (II) (Ru—S, 2.3821 (9), 2.3901 (8) Å; Ru—N, 2.161 (3), 2.164 (3) Å), indicating the higher coordinating ability of btppy. The dihedral angle between the pyridine and benzene rings in btppy (39.8 (2)°) is similar to that in PyDBT of (II) (37.7 (2)°).

There are two pair of racemic diastereomers with (SRu, SS) and (RRu, RS) configurations in the unit cell. The t-butyl group on the coordinated S atom is placed far from the η6-benzene ligand. An average Ru—C distance of 2.180 (6) Å in (I) is comparable to that in (II) (2.192 (4), 2.180 (4) Å). The Cl—Ru—S angle (93.84 (4)°) in (I) is larger than that in (II) (82.84 (3)°, 84.87 (3)°), and no significant interaction was observed between the t-butyl group and the chloro ligand. Molecular modeling analysis suggests that the other diastereomers with configurations of (SRu, RS) and (RRu, SS) cause a severe repulsive interaction between the t-butyl group and the benzene ligand. The 1H NMR spectrum of (I) in CDCl3 revealed the presence of a single diastereomer. This suggests that the (SRu, SS) and (RRu, RS) isomers observed in the crystal are retained in solution. Similar stereoselectivity was recently reported for the iridium(III) complex [(η5-C5Me5)Ir(η2-ppy-S-p-tol)(H2O)](OTf)2 (Sau et al., 2010), in which the structure of the chelate ring is analogous to that for btppy in (I).

For general background to the use of chiral N,S-bidentate ligands in asymmetric allylic substitution reactions, see: Mellah et al. (2007). For the synthesis of 2-(2'-(tert-butylthio)phenyl)pyridine, see: Clavier et al. (2003). For related structures, see: Shibue et al. (2008); Sau et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(η6-Benzene){2-[2-(tert-butylsulfanyl)phenyl]pyridine- κ2N,S}chloridoruthenium(II) hexafluoridophosphate top
Crystal data top
[RuCl(C6H6)(C15H17NS)]PF6F(000) = 1208.00
Mr = 602.97Dx = 1.702 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71070 Å
Hall symbol: C -2ycCell parameters from 5146 reflections
a = 16.638 (4) Åθ = 4.2–27.5°
b = 10.5589 (19) ŵ = 0.99 mm1
c = 14.327 (3) ÅT = 193 K
β = 110.758 (4)°Prism, yellow
V = 2353.6 (8) Å30.24 × 0.17 × 0.09 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
4474 independent reflections
Radiation source: rotating anode X-ray tube4165 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 4.2°
ω scansh = 2121
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1312
Tmin = 0.725, Tmax = 0.914l = 1818
11123 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0317P)2 + 6.2745P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.078Δρmax = 0.52 e Å3
S = 1.03Δρmin = 0.39 e Å3
4474 reflectionsAbsolute structure: Flack (1983), 1824 Friedel pairs
291 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Crystal data top
[RuCl(C6H6)(C15H17NS)]PF6V = 2353.6 (8) Å3
Mr = 602.97Z = 4
Monoclinic, CcMo Kα radiation
a = 16.638 (4) ŵ = 0.99 mm1
b = 10.5589 (19) ÅT = 193 K
c = 14.327 (3) Å0.24 × 0.17 × 0.09 mm
β = 110.758 (4)°
Data collection top
Rigaku Mercury
diffractometer
4474 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4165 reflections with F2 > 2σ(F2)
Tmin = 0.725, Tmax = 0.914Rint = 0.034
11123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.52 e Å3
S = 1.03Δρmin = 0.39 e Å3
4474 reflectionsAbsolute structure: Flack (1983), 1824 Friedel pairs
291 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.440889 (18)0.11432 (3)0.376620 (19)0.02598 (8)
Cl10.45796 (9)0.16185 (16)0.22110 (9)0.0513 (3)
S10.58842 (7)0.14331 (10)0.47160 (8)0.0254 (2)
P10.69584 (11)0.73747 (15)0.57967 (11)0.0475 (3)
F10.6579 (3)0.6607 (5)0.6493 (3)0.0999 (15)
F20.7309 (4)0.8098 (5)0.5069 (4)0.1156 (18)
F30.7809 (3)0.7558 (4)0.6683 (4)0.131 (2)
F40.6641 (4)0.8656 (4)0.6080 (4)0.120 (2)
F50.6079 (3)0.7164 (7)0.4899 (4)0.138 (2)
F60.7296 (3)0.6079 (4)0.5553 (4)0.1003 (16)
N10.4267 (2)0.3121 (3)0.3922 (3)0.0329 (9)
C10.3753 (3)0.3726 (5)0.3113 (4)0.0462 (12)
C20.3601 (4)0.5007 (6)0.3073 (6)0.0675 (19)
C30.4025 (4)0.5699 (5)0.3912 (6)0.066 (2)
C40.4540 (3)0.5107 (4)0.4763 (5)0.0516 (14)
C50.4655 (3)0.3802 (4)0.4765 (3)0.0336 (10)
C60.5200 (3)0.3164 (4)0.5718 (3)0.0369 (11)
C70.5125 (4)0.3609 (5)0.6596 (4)0.0549 (15)
C80.5601 (5)0.3089 (7)0.7504 (4)0.0643 (18)
C90.6163 (4)0.2118 (6)0.7564 (4)0.0589 (18)
C100.6249 (3)0.1659 (5)0.6696 (3)0.0452 (12)
C110.5760 (3)0.2207 (4)0.5792 (3)0.0306 (10)
C120.6615 (2)0.2452 (4)0.4304 (3)0.0346 (10)
C130.6198 (3)0.3698 (4)0.3827 (4)0.0450 (13)
C140.6825 (3)0.1590 (6)0.3568 (4)0.0515 (14)
C150.7403 (3)0.2697 (7)0.5230 (4)0.0566 (17)
C160.4470 (3)0.0321 (5)0.4865 (4)0.0507 (15)
C170.3813 (3)0.0508 (5)0.4822 (4)0.0457 (13)
C180.3169 (3)0.0775 (5)0.3907 (5)0.0519 (15)
C190.3172 (4)0.0179 (7)0.3037 (4)0.069 (2)
C200.3868 (5)0.0664 (7)0.3120 (6)0.076 (2)
C210.4492 (6)0.0882 (5)0.4002 (7)0.068 (2)
H10.34740.32410.25280.055*
H20.32180.53980.24870.081*
H30.39610.65930.39030.079*
H40.48180.55850.53510.062*
H70.47390.42830.65690.066*
H80.55380.34060.80950.077*
H90.64910.17630.81930.071*
H100.66340.09840.67200.054*
H13A0.56950.35170.32310.054*
H13B0.66140.41970.36380.054*
H13C0.60200.41780.43060.054*
H14A0.63060.14530.29800.062*
H14B0.70370.07750.38870.062*
H14C0.72680.19890.33620.062*
H15A0.72470.32510.56870.068*
H15B0.78490.31060.50360.068*
H15C0.76220.18910.55630.068*
H160.49070.05050.54880.061*
H170.38000.08960.54150.055*
H180.27280.13630.38760.062*
H190.27280.03290.24130.083*
H200.38880.10770.25390.091*
H210.49550.14280.40340.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02434 (16)0.02938 (15)0.02221 (15)0.00544 (19)0.00577 (12)0.00200 (19)
Cl10.0469 (7)0.0825 (10)0.0235 (5)0.0105 (7)0.0113 (5)0.0022 (6)
S10.0239 (5)0.0271 (5)0.0237 (5)0.0005 (4)0.0065 (4)0.0003 (4)
P10.0524 (9)0.0479 (8)0.0337 (7)0.0149 (7)0.0047 (6)0.0053 (6)
F10.124 (4)0.100 (3)0.094 (3)0.014 (3)0.062 (3)0.023 (2)
F20.148 (5)0.094 (3)0.114 (4)0.026 (3)0.060 (3)0.005 (3)
F30.113 (4)0.062 (2)0.125 (4)0.001 (2)0.071 (3)0.003 (2)
F40.196 (6)0.076 (3)0.098 (3)0.084 (3)0.064 (4)0.020 (2)
F50.093 (3)0.205 (6)0.073 (3)0.024 (4)0.025 (3)0.027 (3)
F60.120 (3)0.070 (2)0.139 (4)0.001 (2)0.079 (3)0.043 (2)
N10.020 (2)0.036 (2)0.041 (2)0.0042 (16)0.0090 (17)0.0089 (19)
C10.033 (2)0.043 (3)0.056 (3)0.006 (2)0.009 (2)0.015 (2)
C20.046 (3)0.058 (4)0.090 (5)0.013 (3)0.014 (3)0.037 (3)
C30.056 (4)0.027 (2)0.116 (6)0.012 (2)0.031 (4)0.022 (3)
C40.046 (3)0.028 (2)0.082 (4)0.003 (2)0.025 (3)0.002 (2)
C50.026 (2)0.032 (2)0.042 (2)0.0003 (19)0.012 (2)0.002 (2)
C60.037 (2)0.038 (2)0.038 (2)0.013 (2)0.016 (2)0.016 (2)
C70.066 (4)0.053 (3)0.051 (3)0.008 (2)0.027 (3)0.025 (2)
C80.081 (4)0.080 (4)0.036 (3)0.025 (3)0.026 (3)0.025 (3)
C90.074 (4)0.074 (4)0.020 (2)0.021 (3)0.004 (3)0.000 (2)
C100.050 (3)0.050 (3)0.029 (2)0.003 (2)0.006 (2)0.002 (2)
C110.035 (2)0.025 (2)0.021 (2)0.0133 (18)0.004 (2)0.0025 (17)
C120.022 (2)0.048 (2)0.033 (2)0.006 (2)0.010 (2)0.005 (2)
C130.042 (3)0.042 (2)0.051 (3)0.008 (2)0.016 (2)0.015 (2)
C140.046 (3)0.071 (4)0.047 (3)0.001 (2)0.028 (2)0.001 (2)
C150.033 (3)0.079 (4)0.053 (4)0.017 (2)0.008 (2)0.008 (3)
C160.047 (3)0.043 (3)0.055 (3)0.017 (2)0.008 (2)0.022 (2)
C170.052 (3)0.051 (3)0.043 (3)0.020 (2)0.027 (2)0.001 (2)
C180.030 (2)0.047 (3)0.078 (4)0.005 (2)0.019 (3)0.018 (3)
C190.052 (4)0.085 (5)0.044 (3)0.049 (3)0.014 (3)0.015 (3)
C200.096 (6)0.066 (4)0.088 (5)0.050 (4)0.062 (5)0.052 (4)
C210.062 (5)0.027 (2)0.123 (9)0.009 (3)0.042 (6)0.000 (3)
Geometric parameters (Å, º) top
Ru1—Cl12.3970 (14)C12—C141.524 (8)
Ru1—S12.3671 (10)C12—C151.521 (6)
Ru1—N12.122 (3)C16—C171.386 (8)
Ru1—C162.183 (6)C16—C211.383 (12)
Ru1—C172.187 (6)C17—C181.396 (7)
Ru1—C182.178 (6)C18—C191.398 (10)
Ru1—C192.199 (6)C19—C201.432 (12)
Ru1—C202.172 (7)C20—C211.340 (11)
Ru1—C212.161 (5)C1—H10.950
S1—C111.820 (5)C2—H20.950
S1—C121.869 (5)C3—H30.950
P1—F11.580 (6)C4—H40.950
P1—F21.563 (7)C7—H70.950
P1—F31.542 (5)C8—H80.950
P1—F41.558 (6)C9—H90.950
P1—F51.585 (5)C10—H100.950
P1—F61.565 (5)C13—H13A0.980
N1—C11.335 (6)C13—H13B0.980
N1—C51.357 (6)C13—H13C0.980
C1—C21.374 (8)C14—H14A0.980
C2—C31.369 (10)C14—H14B0.980
C3—C41.368 (9)C14—H14C0.980
C4—C51.391 (7)C15—H15A0.980
C5—C61.505 (6)C15—H15B0.980
C6—C71.389 (9)C15—H15C0.980
C6—C111.353 (7)C16—H160.950
C7—C81.374 (8)C17—H170.950
C8—C91.370 (11)C18—H180.950
C9—C101.389 (9)C19—H190.950
C10—C111.388 (6)C20—H200.950
C12—C131.531 (7)C21—H210.950
Cl1···C16i3.574 (6)H2···H14Bxiii3.292
S1···F4ii3.502 (5)H2···H14Cxiii2.880
F1···C14iii3.430 (8)H2···H15Cxii3.534
F1···C19iv3.365 (8)H3···F3ix3.206
F2···C9v3.423 (7)H3···F53.354
F2···C18vi3.538 (9)H3···C14xiii3.414
F3···C2vii3.233 (8)H3···C16viii3.522
F3···C19iv3.414 (8)H3···C20viii3.090
F3···C20iv2.962 (9)H3···C21viii2.797
F4···S1viii3.502 (5)H3···H8v3.222
F4···C10viii3.415 (8)H3···H20viii3.117
F4···C14iii3.476 (9)H3···H21viii2.630
F4···C16viii3.575 (8)H3···H14Bxiii3.308
F5···C33.556 (9)H3···H14Cxiii2.677
F5···C43.310 (9)H3···H15Bxiii3.277
F5···C8v3.247 (8)H4···F13.005
F5···C9v3.481 (9)H4···F52.926
F5···C21viii3.236 (10)H7···C2iii3.418
F6···C133.545 (6)H7···H2iii3.258
F6···C17vi3.116 (9)H7···H13Aiii3.303
F6···C18vi3.194 (10)H8···F5iii2.490
F6···C19iv3.589 (8)H8···C3iii3.270
C2···F3ix3.233 (8)H8···C13iii3.292
C3···F53.556 (9)H8···H3iii3.222
C4···F53.310 (9)H8···H18iv3.419
C8···F5iii3.247 (8)H8···H20x3.560
C9···F2iii3.423 (7)H8···H21x2.836
C9···F5iii3.481 (9)H8···H13Aiii3.259
C10···F4ii3.415 (8)H8···H13Biii3.037
C13···F63.545 (6)H8···H13Ciii3.028
C14···F1v3.430 (8)H9···F2iii2.550
C14···F4v3.476 (9)H9···F5iii2.986
C16···Cl1x3.574 (6)H9···C14x3.595
C16···F4ii3.575 (8)H9···H18iv2.772
C17···F6xi3.116 (9)H9···H21x3.207
C18···F2xi3.538 (9)H9···H14Ax3.413
C18···F6xi3.194 (10)H9···H14Bx2.891
C19···F1xii3.365 (8)H10···F4ii2.626
C19···F3xii3.414 (8)H10···C1iv3.394
C19···F6xii3.589 (8)H10···C2iv3.328
C20···F3xii2.962 (9)H10···H1iv2.979
C21···F5ii3.236 (10)H10···H2iv2.869
Cl1···H16i2.954H10···H14Ax3.299
Cl1···H15Bxii3.425H10···H14Bx3.474
P1···H2vii3.491H16···Cl1x2.954
P1···H18vi3.584H16···F4ii2.845
P1···H20iv3.569H16···F5ii3.425
P1···H14Ciii3.589H16···H15Bxi3.567
F1···H43.005H17···F2xi3.307
F1···H19iv2.790H17···F3xi3.351
F1···H13Aiii3.313H17···F6xi2.588
F1···H13Biii3.170H17···H20x3.002
F1···H14Aiii3.103H17···H15Bxi3.296
F1···H14Ciii2.916H18···P1xi3.584
F2···H9v2.550H18···F2xi2.758
F2···H17vi3.307H18···F6xi2.757
F2···H18vi2.758H18···C8xii3.434
F2···H14Bviii3.243H18···C9xii3.068
F3···H2vii2.428H18···H8xii3.419
F3···H3vii3.206H18···H9xii2.772
F3···H17vi3.351H18···H13Bxi2.887
F3···H19iv3.241H19···F1xii2.790
F3···H20iv2.369H19···F3xii3.241
F3···H14Ciii2.892H19···F6xii2.910
F4···H2vii2.863H19···H13Bxi3.202
F4···H10viii2.626H19···H15Axii2.757
F4···H16viii2.845H20···P1xii3.569
F4···H21viii3.262H20···F3xii2.369
F4···H14Aiii2.968H20···F6xii3.127
F4···H14Ciii3.133H20···C8i3.569
F5···H33.354H20···H3ii3.117
F5···H42.926H20···H8i3.560
F5···H8v2.490H20···H17i3.002
F5···H9v2.986H21···F4ii3.262
F5···H16viii3.425H21···F5ii2.366
F5···H21viii2.366H21···C3ii3.382
F5···H13C3.258H21···C8i3.272
F6···H17vi2.588H21···C9i3.465
F6···H18vi2.757H21···H3ii2.630
F6···H19iv2.910H21···H8i2.836
F6···H20iv3.127H21···H9i3.207
F6···H13B3.249H13A···F1v3.313
F6···H13C3.006H13A···H7v3.303
F6···H15A2.996H13A···H8v3.259
F6···H15B3.425H13B···F1v3.170
C1···H10xii3.394H13B···F63.249
C1···H183.414H13B···C8v3.428
C1···H13A3.183H13B···C18vi2.986
C1···H13C3.579H13B···C19vi3.181
C1···H15Cxii3.527H13B···H8v3.037
C2···H7v3.418H13B···H18vi2.887
C2···H10xii3.328H13B···H19vi3.202
C2···H14Bxiii3.308H13C···F53.258
C2···H14Cxiii3.182H13C···F63.006
C3···H8v3.270H13C···H8v3.028
C3···H21viii3.382H14A···F1v3.103
C3···H14Bxiii3.296H14A···F4v2.968
C3···H14Cxiii3.065H14A···H9i3.413
C8···H18iv3.434H14A···H10i3.299
C8···H20x3.569H14B···F2ii3.243
C8···H21x3.272H14B···C2xiv3.308
C8···H13Biii3.428H14B···C3xiv3.296
C9···H18iv3.068H14B···H2xiv3.292
C9···H21x3.465H14B···H3xiv3.308
C10···H1iv3.466H14B···H9i2.891
C13···H8v3.292H14B···H10i3.474
C14···H2xiv3.449H14C···P1v3.589
C14···H3xiv3.414H14C···F1v2.916
C14···H9i3.595H14C···F3v2.892
C15···H1iv3.293H14C···F4v3.133
C16···H3ii3.522H14C···C2xiv3.182
C16···H15Bxi3.250H14C···C3xiv3.065
C17···H15Bxi3.074H14C···H2xiv2.880
C18···H13Bxi2.986H14C···H3xiv2.677
C18···H15Bxi3.384H15A···F62.996
C19···H13Bxi3.181H15A···C19iv3.575
C19···H15Axii3.575H15A···H1iv3.129
C20···H3ii3.090H15A···H19iv2.757
C21···H3ii2.797H15B···Cl1iv3.425
H1···C10xii3.466H15B···F63.425
H1···C15xii3.293H15B···C16vi3.250
H1···H10xii2.979H15B···C17vi3.074
H1···H15Axii3.129H15B···C18vi3.384
H1···H15Cxii2.671H15B···H3xiv3.277
H2···P1ix3.491H15B···H16vi3.567
H2···F3ix2.428H15B···H17vi3.296
H2···F4ix2.863H15C···C1iv3.527
H2···C14xiii3.449H15C···H1iv2.671
H2···H7v3.258H15C···H2iv3.534
H2···H10xii2.869
Cl1—Ru1—S193.84 (4)S1—C12—C14102.1 (3)
Cl1—Ru1—N186.89 (14)S1—C12—C15106.2 (4)
Cl1—Ru1—C16145.87 (18)C13—C12—C14112.5 (4)
Cl1—Ru1—C17159.90 (13)C13—C12—C15110.9 (4)
Cl1—Ru1—C18123.49 (17)C14—C12—C15111.5 (4)
Cl1—Ru1—C1993.14 (19)Ru1—C16—C1771.7 (3)
Cl1—Ru1—C2087.4 (2)Ru1—C16—C2170.6 (4)
Cl1—Ru1—C21109.3 (3)C17—C16—C21120.1 (5)
S1—Ru1—N186.76 (9)Ru1—C17—C1671.4 (4)
S1—Ru1—C1684.44 (15)Ru1—C17—C1871.0 (4)
S1—Ru1—C17105.91 (13)C16—C17—C18120.0 (5)
S1—Ru1—C18142.48 (17)Ru1—C18—C1771.7 (3)
S1—Ru1—C19159.70 (19)Ru1—C18—C1972.2 (4)
S1—Ru1—C20123.2 (2)C17—C18—C19120.1 (5)
S1—Ru1—C2192.4 (2)Ru1—C19—C1870.5 (3)
N1—Ru1—C16126.9 (2)Ru1—C19—C2069.8 (4)
N1—Ru1—C1797.7 (2)C18—C19—C20117.7 (5)
N1—Ru1—C1891.25 (19)Ru1—C20—C1971.9 (4)
N1—Ru1—C19112.7 (2)Ru1—C20—C2171.5 (4)
N1—Ru1—C20149.9 (2)C19—C20—C21121.2 (8)
N1—Ru1—C21163.8 (3)Ru1—C21—C1672.3 (3)
C16—Ru1—C1737.0 (2)Ru1—C21—C2072.4 (4)
C16—Ru1—C1867.1 (2)C16—C21—C20120.8 (8)
C16—Ru1—C1979.1 (2)N1—C1—H1118.0
C16—Ru1—C2065.9 (2)C2—C1—H1118.0
C16—Ru1—C2137.1 (3)C1—C2—H2121.3
C17—Ru1—C1837.3 (2)C3—C2—H2121.3
C17—Ru1—C1967.0 (2)C2—C3—H3119.9
C17—Ru1—C2078.7 (3)C4—C3—H3119.9
C17—Ru1—C2167.0 (3)C3—C4—H4120.1
C18—Ru1—C1937.2 (2)C5—C4—H4120.1
C18—Ru1—C2067.7 (3)C6—C7—H7119.5
C18—Ru1—C2179.6 (3)C8—C7—H7119.5
C19—Ru1—C2038.2 (3)C7—C8—H8119.7
C19—Ru1—C2167.3 (3)C9—C8—H8119.7
C20—Ru1—C2136.0 (3)C8—C9—H9120.3
Ru1—S1—C1198.00 (15)C10—C9—H9120.3
Ru1—S1—C12123.42 (13)C9—C10—H10120.7
C11—S1—C12106.9 (2)C11—C10—H10120.7
F1—P1—F2177.5 (2)C12—C13—H13A109.5
F1—P1—F390.0 (3)C12—C13—H13B109.5
F1—P1—F491.8 (3)C12—C13—H13C109.5
F1—P1—F588.8 (3)H13A—C13—H13B109.5
F1—P1—F687.0 (3)H13A—C13—H13C109.5
F2—P1—F392.1 (3)H13B—C13—H13C109.5
F2—P1—F489.5 (3)C12—C14—H14A109.5
F2—P1—F589.0 (3)C12—C14—H14B109.5
F2—P1—F691.7 (3)C12—C14—H14C109.5
F3—P1—F488.5 (2)H14A—C14—H14B109.5
F3—P1—F5178.8 (3)H14A—C14—H14C109.5
F3—P1—F689.8 (2)H14B—C14—H14C109.5
F4—P1—F591.8 (3)C12—C15—H15A109.5
F4—P1—F6177.9 (2)C12—C15—H15B109.5
F5—P1—F689.8 (3)C12—C15—H15C109.5
Ru1—N1—C1116.1 (3)H15A—C15—H15B109.5
Ru1—N1—C5125.4 (3)H15A—C15—H15C109.5
C1—N1—C5118.4 (4)H15B—C15—H15C109.5
N1—C1—C2124.0 (5)Ru1—C16—H16130.3
C1—C2—C3117.3 (6)C17—C16—H16120.0
C2—C3—C4120.3 (5)C21—C16—H16120.0
C3—C4—C5119.8 (5)Ru1—C17—H17130.2
N1—C5—C4120.1 (4)C16—C17—H17120.0
N1—C5—C6121.0 (4)C18—C17—H17120.0
C4—C5—C6118.9 (4)Ru1—C18—H18128.4
C5—C6—C7116.9 (4)C17—C18—H18119.9
C5—C6—C11125.6 (5)C19—C18—H18119.9
C7—C6—C11117.5 (4)Ru1—C19—H19130.9
C6—C7—C8121.1 (6)C18—C19—H19121.2
C7—C8—C9120.6 (6)C20—C19—H19121.2
C8—C9—C10119.3 (5)Ru1—C20—H20129.7
C9—C10—C11118.5 (5)C19—C20—H20119.4
S1—C11—C6123.5 (3)C21—C20—H20119.4
S1—C11—C10113.5 (3)Ru1—C21—H21127.9
C6—C11—C10122.9 (5)C16—C21—H21119.6
S1—C12—C13113.2 (3)C20—C21—H21119.6
Cl1—Ru1—S1—C11141.23 (14)C18—Ru1—C17—C16132.5 (5)
Cl1—Ru1—S1—C1224.8 (2)C17—Ru1—C19—C1829.6 (3)
Cl1—Ru1—N1—C145.1 (4)C17—Ru1—C19—C20101.3 (5)
Cl1—Ru1—N1—C5134.7 (4)C19—Ru1—C17—C16102.9 (3)
Cl1—Ru1—C16—C17145.4 (2)C19—Ru1—C17—C1829.6 (3)
Cl1—Ru1—C16—C2112.8 (6)C17—Ru1—C20—C1967.0 (4)
Cl1—Ru1—C17—C16112.0 (4)C17—Ru1—C20—C2166.1 (6)
Cl1—Ru1—C17—C1820.4 (6)C20—Ru1—C17—C1664.7 (3)
Cl1—Ru1—C18—C17171.7 (2)C20—Ru1—C17—C1867.8 (3)
Cl1—Ru1—C18—C1940.4 (4)C17—Ru1—C21—C1628.8 (4)
Cl1—Ru1—C19—C18147.3 (3)C17—Ru1—C21—C20102.9 (6)
Cl1—Ru1—C19—C2081.9 (4)C21—Ru1—C17—C1628.9 (3)
Cl1—Ru1—C20—C1998.3 (4)C21—Ru1—C17—C18103.6 (4)
Cl1—Ru1—C20—C21128.5 (6)C18—Ru1—C19—C20130.9 (6)
Cl1—Ru1—C21—C16172.4 (3)C19—Ru1—C18—C17131.4 (5)
Cl1—Ru1—C21—C2055.9 (7)C18—Ru1—C20—C1929.6 (4)
S1—Ru1—N1—C1139.1 (4)C18—Ru1—C20—C21103.5 (7)
S1—Ru1—N1—C540.7 (4)C20—Ru1—C18—C17101.0 (4)
N1—Ru1—S1—C1154.57 (19)C20—Ru1—C18—C1930.4 (4)
N1—Ru1—S1—C1261.8 (2)C18—Ru1—C21—C1665.6 (4)
S1—Ru1—C16—C17126.0 (3)C18—Ru1—C21—C2066.1 (6)
S1—Ru1—C16—C21101.5 (4)C21—Ru1—C18—C1765.4 (4)
C16—Ru1—S1—C1173.0 (2)C21—Ru1—C18—C1966.0 (4)
C16—Ru1—S1—C12170.6 (2)C19—Ru1—C20—C21133.1 (9)
S1—Ru1—C17—C1656.9 (3)C20—Ru1—C19—C18130.9 (6)
S1—Ru1—C17—C18170.7 (3)C19—Ru1—C21—C16102.4 (5)
C17—Ru1—S1—C1142.6 (2)C19—Ru1—C21—C2029.3 (6)
C17—Ru1—S1—C12159.0 (2)C21—Ru1—C19—C18103.2 (5)
S1—Ru1—C18—C1714.9 (4)C21—Ru1—C19—C2027.7 (5)
S1—Ru1—C18—C19146.2 (3)C20—Ru1—C21—C16131.7 (9)
C18—Ru1—S1—C1133.3 (3)C21—Ru1—C20—C19133.1 (9)
C18—Ru1—S1—C12149.7 (3)Ru1—S1—C11—C646.4 (4)
S1—Ru1—C19—C18102.8 (6)Ru1—S1—C11—C10129.0 (3)
S1—Ru1—C19—C2028.1 (8)Ru1—S1—C12—C1341.4 (4)
C19—Ru1—S1—C11108.9 (6)Ru1—S1—C12—C1479.8 (3)
C19—Ru1—S1—C12134.6 (6)Ru1—S1—C12—C15163.3 (3)
S1—Ru1—C20—C19168.7 (3)C11—S1—C12—C1370.6 (3)
S1—Ru1—C20—C2135.6 (7)C11—S1—C12—C14168.2 (2)
C20—Ru1—S1—C11129.3 (3)C11—S1—C12—C1551.3 (4)
C20—Ru1—S1—C12114.3 (3)C12—S1—C11—C682.3 (4)
S1—Ru1—C21—C1677.5 (4)C12—S1—C11—C10102.3 (4)
S1—Ru1—C21—C20150.8 (6)Ru1—N1—C1—C2178.6 (6)
C21—Ru1—S1—C11109.3 (3)Ru1—N1—C5—C4177.3 (4)
C21—Ru1—S1—C12134.3 (3)Ru1—N1—C5—C63.9 (7)
N1—Ru1—C16—C1744.3 (3)C1—N1—C5—C42.5 (8)
N1—Ru1—C16—C21176.8 (4)C1—N1—C5—C6176.3 (5)
C16—Ru1—N1—C1140.3 (4)C5—N1—C1—C21.2 (10)
C16—Ru1—N1—C539.9 (5)N1—C1—C2—C31.7 (12)
N1—Ru1—C17—C16145.7 (3)C1—C2—C3—C43.3 (12)
N1—Ru1—C17—C1881.8 (3)C2—C3—C4—C52.1 (12)
C17—Ru1—N1—C1115.3 (4)C3—C4—C5—N10.9 (10)
C17—Ru1—N1—C564.9 (4)C3—C4—C5—C6177.9 (6)
N1—Ru1—C18—C17101.2 (3)N1—C5—C6—C7140.0 (5)
N1—Ru1—C18—C19127.5 (3)N1—C5—C6—C1140.7 (8)
C18—Ru1—N1—C178.4 (4)C4—C5—C6—C738.8 (8)
C18—Ru1—N1—C5101.8 (4)C4—C5—C6—C11140.5 (6)
N1—Ru1—C19—C1859.3 (4)C5—C6—C7—C8179.6 (6)
N1—Ru1—C19—C20169.8 (4)C5—C6—C11—S15.3 (7)
C19—Ru1—N1—C147.0 (5)C5—C6—C11—C10179.7 (5)
C19—Ru1—N1—C5133.2 (4)C7—C6—C11—S1175.4 (4)
N1—Ru1—C20—C1919.0 (8)C7—C6—C11—C100.5 (8)
N1—Ru1—C20—C21152.1 (6)C11—C6—C7—C80.3 (8)
C20—Ru1—N1—C134.4 (8)C6—C7—C8—C90.1 (8)
C20—Ru1—N1—C5145.8 (6)C7—C8—C9—C100.1 (9)
N1—Ru1—C21—C169.2 (12)C8—C9—C10—C110.2 (7)
N1—Ru1—C21—C20122.5 (8)C9—C10—C11—S1175.8 (5)
C21—Ru1—N1—C1133.4 (9)C9—C10—C11—C60.4 (8)
C21—Ru1—N1—C546.8 (11)Ru1—C16—C17—C1853.7 (5)
C16—Ru1—C17—C18132.5 (5)Ru1—C16—C21—C2056.0 (7)
C17—Ru1—C16—C21132.6 (5)C17—C16—C21—Ru153.9 (6)
C16—Ru1—C18—C1728.8 (3)C17—C16—C21—C202.1 (11)
C16—Ru1—C18—C19102.6 (4)C21—C16—C17—Ru153.4 (6)
C18—Ru1—C16—C1729.0 (3)C21—C16—C17—C180.3 (8)
C18—Ru1—C16—C21103.5 (5)Ru1—C17—C18—C1955.7 (6)
C16—Ru1—C19—C1866.3 (3)C16—C17—C18—Ru153.9 (5)
C16—Ru1—C19—C2064.6 (5)C16—C17—C18—C191.8 (9)
C19—Ru1—C16—C1766.0 (3)Ru1—C18—C19—C2053.3 (6)
C19—Ru1—C16—C2166.6 (5)C17—C18—C19—Ru155.4 (5)
C16—Ru1—C20—C19103.6 (5)C17—C18—C19—C202.2 (10)
C16—Ru1—C20—C2129.6 (6)Ru1—C19—C20—C2154.0 (7)
C20—Ru1—C16—C17103.8 (4)C18—C19—C20—Ru153.6 (6)
C20—Ru1—C16—C2128.8 (5)C18—C19—C20—C210.4 (11)
C16—Ru1—C21—C20131.7 (9)Ru1—C20—C21—C1655.9 (6)
C21—Ru1—C16—C17132.6 (5)C19—C20—C21—Ru154.2 (7)
C17—Ru1—C18—C19131.4 (5)C19—C20—C21—C161.7 (13)
Symmetry codes: (i) x, y, z1/2; (ii) x, y1, z; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y+3/2, z+1/2; (viii) x, y+1, z; (ix) x1/2, y+3/2, z1/2; (x) x, y, z+1/2; (xi) x1/2, y1/2, z; (xii) x1/2, y+1/2, z1/2; (xiii) x1/2, y+1/2, z; (xiv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[RuCl(C6H6)(C15H17NS)]PF6
Mr602.97
Crystal system, space groupMonoclinic, Cc
Temperature (K)193
a, b, c (Å)16.638 (4), 10.5589 (19), 14.327 (3)
β (°) 110.758 (4)
V3)2353.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.24 × 0.17 × 0.09
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.725, 0.914
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
11123, 4474, 4165
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.03
No. of reflections4474
No. of parameters291
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.39
Absolute structureFlack (1983), 1824 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ru1—Cl12.3970 (14)Ru1—C192.199 (6)
Ru1—S12.3671 (10)Ru1—C202.172 (7)
Ru1—N12.122 (3)Ru1—C212.161 (5)
Ru1—C162.183 (6)S1—C111.820 (5)
Ru1—C172.187 (6)S1—C121.869 (5)
Ru1—C182.178 (6)
Cl1—Ru1—S193.84 (4)Ru1—S1—C12123.42 (13)
Cl1—Ru1—N186.89 (14)C11—S1—C12106.9 (2)
S1—Ru1—N186.76 (9)Ru1—N1—C1116.1 (3)
Ru1—S1—C1198.00 (15)Ru1—N1—C5125.4 (3)
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClavier, S., Rist, Ø., Hansen, S., Gerlach, L.-O., Högberg, T. & Bergman, J. (2003). Org. Biomol. Chem. 1, 4248–4253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMellah, M., Voituriez, A. & Schulz, E. (2007). Chem. Rev. 107, 5133–5209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSau, Y.-K., Yi, X.-Y., Chan, K.-W., Lai, C.-S., Williams, I. D. & Leung, W.-H. (2010). J. Organomet. Chem. 695, 1399–1404.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibue, M., Hirotsu, M., Nishioka, T. & Kinoshita, I. (2008). Organometallics, 27, 4475–4483.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds