metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,3-bis­­(2,4,6-tri­methyl­phen­yl)-2,3-di­hydro-1H-imidazol-2-yl­­idene]di­chloridodi­nitro­syltungsten(II) tetra­hydro­furan-d8 monosolvate

aInstitut of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
*Correspondence e-mail: oblacque@aci.uzh.ch

(Received 15 November 2010; accepted 30 November 2010; online 4 December 2010)

The mol­ecular structure of the title compound, [WCl2(NO)2(C21H24N2)2]·C4D8O, displays a distorted octa­hedral arrangement around the W atom with two trans 1,3-bis­(2,4,6-trimethyl­phen­yl)imidazol-2-yl­idene (IMes) carbene ligands in axial positions. The four equatorial positions are occupied by nitrosyl and chloride ligands, which are trans to each other. The Ccarbene—W—Ccarbene bond angle of 173.44 (18)° and the Cl—W—Nnitros­yl bond angles of 171.34 (11) and 171.32 (13)° deviate only slightly from linearity. The distortion comes from the nitrosyl and chloride ligands which are not fully coplanar since the two N atoms deviate from the WCl2 plane by −0.279 (4) and 0.272 (4) Å, respectively. An inter­molecular C—H⋯O inter­action connects the organometallic mol­ecule and the tetra­hydro­furan-d8 solvent mol­ecule.

Related literature

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007[Fraga-Hernández, J. (2007). PhD thesis, University of Zürich, Switzerland.]). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005[Nonnenmacher, M., Kunz, D., Rominger, F. & Oeser, T. (2005). J. Organomet. Chem. 690, 5647-5653.]); Hahn et al. (2005[Hahn, F. E., Langenhahn, V. & Pape, T. (2005). Chem. Commun. pp. 5390-5392.]); Wu et al. (2007[Wu, F., Dioumaev, V. K., Szalda, D. J., Hanson, J. & Bullock, R. M. (2007). Organometallics, 26, 5079-5090.]). For an overview of the first organometallic nitro­syls, see: Enemark & Feltham (1974[Enemark, J. H. & Feltham, R. D. (1974). Coord. Chem. Rev. 13, 339-406.]); Richter-Addo & Legzdins (1988[Richter-Addo, G. B. & Legzdins, P. (1988). Chem. Rev. 88, 991-1010.]); Berke & Burger (1994[Berke, H. & Burger, P. (1994). Comments Inorg. Chem. 16, 279-312.]).

[Scheme 1]

Experimental

Crystal data
  • [WCl2(NO)2(C21H24N2)2]·C4D8O

  • Mr = 1003.72

  • Triclinic, [P \overline 1]

  • a = 11.3861 (7) Å

  • b = 13.0517 (9) Å

  • c = 17.0448 (11) Å

  • α = 81.245 (8)°

  • β = 72.473 (7)°

  • γ = 68.983 (7)°

  • V = 2251.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 183 K

  • 0.25 × 0.15 × 0.08 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.568, Tmax = 0.816

  • 44725 measured reflections

  • 7466 independent reflections

  • 6365 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.076

  • S = 1.12

  • 7466 reflections

  • 535 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3 0.93 2.40 3.320 (7) 172

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of our efforts on the synthesis of novel dinitrosyl hydride and dihydride tungsten derivatives bearing sterically demanding and highly donating phosphine ligands or N-heterocyclic (NHC) carbene ligands, the title compound W(NO)2Cl2(IMes)2.C4D8O was synthesized as an intermediate species by the reaction of the coordination polymer dinitrosyldichlorotungsten [W(NO)2Cl2]n with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), purified and characterized by several spectroscopic techniques and single-crystal X-ray diffraction.

The molecular structure of the title compound, C42H48Cl2N6O2W.C4D8O, displays a distorted octahedral arrangement around the W center with two trans 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene ligands in axial positions, and the four equatorial positions are occupied by trans nitrosyl and chloride ligands (Fig. 1). The Ccarbene—W—Ccarbene bond angle of 173.44 (18)° and the Cl—W—Nnitrosyl bond angles of 171.34 (11) and 171.32 (13)° deviates only slightly from linearity. The distortion comes from the nitrosyl and chloride ligands which are not fully coplanar since N1 and N2 deviate from the Cl1—W1—Cl2 plane by -0.279 (4) and +0.272 (4) Å, respectively. The five-membered rings of the carbene ligands are almost perpendicular to each other, the dihedral angle between the mean planes C1/N3/C2/C3/N4 and C22/N5/C23/C25/N6 is 74.2 (2)°. Each ring adopts an eclipsed conformation with one linear Cl—W—NNO moiety, the dihedral angles between the mean planes Cl1/W1/N2/C1 and C1/N3/C2/C3/N4, and between Cl2/W1/N1/C22 and C22/N5/C23/C25/N6, are 15.8 (2) and 5.2 (2)°, respectively.

In the crystal structure, intermolecular C—H···O interactions connect the metal-organic molecules and the tetrahydrofurane-d8 solvent molecules (Table 1).

Related literature top

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005); Hahn et al. (2005); Wu et al. (2007). For an overview of the first organometallic nitrosyls, see: Enemark & Feltham (1974); Richter-Addo & Legzdins (1988); Berke & Burger (1994).

Experimental top

To a stirred suspension of [W(NO)2Cl2]n (128.4 mg, 0.408 mmol) in 15 ml THF was added dropwise a solution of IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (248 mg, 0.815 mmol) in THF (5 ml) over a period of 15 minutes. Gradually, the solution intensified in color and a floculent black residue formed. The reaction mixture was stirred at room temperature for 6 h to obtain a deep green solution whose IR spectrum exhibited vibrations at 1737 and 1624 cm-1 attributable to nitrosyl groups. The volatiles were removed under vacuum, and the residue was extracted with 25 ml of toluene. The dark green solution was filtered through celite and dried under vacuum. The solid was recrystallized in CH2Cl2/pentane, leaving a fraction of green crystals, which where washed with pentane (2 x 3 ml) and dried in vacuo to afford 312.8 mg of [W(NO)2Cl2(IMes)2] (83%).

IR (ATR, 22°C, cm-1): 1737 (NO), 1624 (NO).

1H NMR (THF-d8, 300 MHz, 22°C): δ 6.97 (s, NCH, 4H, 3JHH = 0.6 Hz), 6.78 (s, ArH, 8H), 2.25 (s, 4-CH3, 12H), 1.99 (s, 2,6-CH3, 24H).

13C {1H} NMR (benzene-d6, 125.8 MHz, 22°C): δ 182.6 (s, NCN), 139.6 (s, Mes C-1), 134.6 (s, Mes C-4), 129.8 (s, Mes C-2,6), 128.9 (s, Mes C-3,5), 122.4 (s, NCC), 21.0 (s, 4-CH3), 17.4 (s, 2,6-CH3).

Elemental analysis (%) calculated for C42H48Cl2N6O2W: C (54.62), H (5.24), N (9.10); found C (54.83), H (5.44), N (9.02).

Refinement top

All H positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å for aromatic H atoms, with C—H = 0.96 Å for methyl H atoms, and with C—H = 0.97 Å for methylene H atoms [Uiso(H) = 1.3Ueq(C)].

Structure description top

In the course of our efforts on the synthesis of novel dinitrosyl hydride and dihydride tungsten derivatives bearing sterically demanding and highly donating phosphine ligands or N-heterocyclic (NHC) carbene ligands, the title compound W(NO)2Cl2(IMes)2.C4D8O was synthesized as an intermediate species by the reaction of the coordination polymer dinitrosyldichlorotungsten [W(NO)2Cl2]n with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), purified and characterized by several spectroscopic techniques and single-crystal X-ray diffraction.

The molecular structure of the title compound, C42H48Cl2N6O2W.C4D8O, displays a distorted octahedral arrangement around the W center with two trans 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene ligands in axial positions, and the four equatorial positions are occupied by trans nitrosyl and chloride ligands (Fig. 1). The Ccarbene—W—Ccarbene bond angle of 173.44 (18)° and the Cl—W—Nnitrosyl bond angles of 171.34 (11) and 171.32 (13)° deviates only slightly from linearity. The distortion comes from the nitrosyl and chloride ligands which are not fully coplanar since N1 and N2 deviate from the Cl1—W1—Cl2 plane by -0.279 (4) and +0.272 (4) Å, respectively. The five-membered rings of the carbene ligands are almost perpendicular to each other, the dihedral angle between the mean planes C1/N3/C2/C3/N4 and C22/N5/C23/C25/N6 is 74.2 (2)°. Each ring adopts an eclipsed conformation with one linear Cl—W—NNO moiety, the dihedral angles between the mean planes Cl1/W1/N2/C1 and C1/N3/C2/C3/N4, and between Cl2/W1/N1/C22 and C22/N5/C23/C25/N6, are 15.8 (2) and 5.2 (2)°, respectively.

In the crystal structure, intermolecular C—H···O interactions connect the metal-organic molecules and the tetrahydrofurane-d8 solvent molecules (Table 1).

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005); Hahn et al. (2005); Wu et al. (2007). For an overview of the first organometallic nitrosyls, see: Enemark & Feltham (1974); Richter-Addo & Legzdins (1988); Berke & Burger (1994).

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1999); cell refinement: CELL in IPDS Software (Stoe & Cie, 1999); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the labeling of the non-H atoms and 20% probability ellipsoids.
Bis[1,3-bis(2,4,6-trimethylphenyl)-2,3-dihydro-1H-imidazol- 2-ylidene]dichloridodinitrosyltungsten(II) tetrahydrofuran-d8 monosolvate top
Crystal data top
[WCl2(NO)2(C21H24N2)2]·C4D8OZ = 2
Mr = 1003.72F(000) = 1012
Triclinic, P1Dx = 1.48 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3861 (7) ÅCell parameters from 7997 reflections
b = 13.0517 (9) Åθ = 3.0–30.3°
c = 17.0448 (11) ŵ = 2.73 mm1
α = 81.245 (8)°T = 183 K
β = 72.473 (7)°Plate, green
γ = 68.983 (7)°0.25 × 0.15 × 0.08 mm
V = 2251.9 (3) Å3
Data collection top
Stoe IPDS
diffractometer
7466 independent reflections
Radiation source: fine-focus sealed tube6365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ oscillation scanθmax = 25°, θmin = 3.0°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1213
Tmin = 0.568, Tmax = 0.816k = 1515
44725 measured reflectionsl = 020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.12Δρmax = 1.00 e Å3
7466 reflectionsΔρmin = 0.42 e Å3
535 parameters
Crystal data top
[WCl2(NO)2(C21H24N2)2]·C4D8Oγ = 68.983 (7)°
Mr = 1003.72V = 2251.9 (3) Å3
Triclinic, P1Z = 2
a = 11.3861 (7) ÅMo Kα radiation
b = 13.0517 (9) ŵ = 2.73 mm1
c = 17.0448 (11) ÅT = 183 K
α = 81.245 (8)°0.25 × 0.15 × 0.08 mm
β = 72.473 (7)°
Data collection top
Stoe IPDS
diffractometer
7466 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
6365 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.816Rint = 0.046
44725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.12Δρmax = 1.00 e Å3
7466 reflectionsΔρmin = 0.42 e Å3
535 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.748163 (17)0.774765 (17)0.734179 (12)0.02191 (7)
Cl10.74039 (11)0.82743 (12)0.59143 (8)0.0377 (3)
Cl20.63266 (11)0.96649 (11)0.76621 (9)0.0401 (3)
N10.8115 (4)0.6268 (4)0.7123 (3)0.0350 (10)
O10.8406 (4)0.5351 (3)0.7034 (3)0.0607 (13)
N20.7786 (4)0.7372 (4)0.8350 (3)0.0434 (12)
O20.8123 (5)0.7087 (5)0.8966 (3)0.0757 (17)
C10.5416 (4)0.7669 (4)0.7755 (3)0.0235 (10)
N30.4669 (3)0.7666 (4)0.8548 (2)0.0287 (9)
C20.3430 (5)0.7670 (5)0.8590 (3)0.0442 (15)
H20.27560.76810.90650.057*
C30.3397 (5)0.7653 (5)0.7825 (3)0.0434 (15)
H30.26930.76450.7660.056*
N40.4603 (3)0.7649 (4)0.7312 (2)0.0286 (9)
C40.5013 (4)0.7590 (4)0.9315 (3)0.0258 (10)
C50.5675 (4)0.6562 (4)0.9616 (3)0.0302 (11)
C60.5887 (5)0.6493 (5)1.0389 (3)0.0381 (12)
H60.63480.58161.05950.049*
C70.5432 (5)0.7401 (5)1.0858 (3)0.0399 (14)
C80.4749 (5)0.8402 (5)1.0539 (3)0.0393 (14)
H80.44370.90181.0850.051*
C90.4517 (4)0.8518 (4)0.9777 (3)0.0310 (12)
C100.6143 (6)0.5546 (5)0.9139 (4)0.0431 (13)
H10A0.55010.55730.88710.056*
H10B0.62790.49070.95080.056*
H10C0.6950.55090.87320.056*
C110.5614 (6)0.7296 (7)1.1711 (4)0.062 (2)
H11A0.58130.79191.17960.081*
H11B0.63190.66351.17660.081*
H11C0.48260.72681.21120.081*
C120.3677 (5)0.9606 (5)0.9488 (4)0.0460 (15)
H12A0.28290.95720.95380.06*
H12B0.40750.97660.89230.06*
H12C0.35911.01740.9820.06*
C130.4801 (4)0.7632 (4)0.6427 (3)0.0271 (11)
C140.5257 (4)0.6605 (4)0.6083 (3)0.0325 (12)
C150.5311 (5)0.6613 (5)0.5253 (3)0.0393 (14)
H150.56280.59480.50.051*
C160.4906 (4)0.7580 (5)0.4795 (3)0.0371 (13)
C170.4438 (4)0.8572 (5)0.5170 (3)0.0352 (12)
H170.41620.92240.48650.046*
C180.4374 (4)0.8611 (4)0.5994 (3)0.0279 (11)
C190.5644 (6)0.5538 (5)0.6569 (4)0.0484 (15)
H19A0.63450.55030.67860.063*
H19B0.59270.49380.62180.063*
H19C0.4910.54890.70150.063*
C200.4971 (5)0.7543 (7)0.3890 (4)0.0550 (18)
H20A0.58670.72570.35790.071*
H20B0.45790.82710.36780.071*
H20C0.45090.70770.38440.071*
C210.3868 (5)0.9700 (4)0.6394 (4)0.0393 (13)
H21A0.31220.97210.68520.051*
H21B0.3621.02870.60.051*
H21C0.4540.97830.65840.051*
C220.9457 (4)0.8013 (4)0.6851 (3)0.0218 (10)
N50.9786 (3)0.8939 (3)0.6796 (2)0.0223 (8)
C231.1098 (4)0.8746 (4)0.6391 (3)0.0253 (10)
H231.15330.92550.62760.033*
C241.1615 (4)0.7697 (4)0.6197 (3)0.0268 (11)
H241.24790.73330.59260.035*
N61.0612 (3)0.7249 (3)0.6478 (2)0.0223 (8)
C250.9052 (4)0.9987 (4)0.7170 (3)0.0238 (10)
C260.9017 (4)1.0074 (4)0.7986 (3)0.0271 (11)
C270.8452 (5)1.1120 (4)0.8294 (3)0.0322 (12)
H270.83981.11970.88390.042*
C280.7966 (5)1.2048 (4)0.7820 (3)0.0323 (11)
C290.8005 (4)1.1917 (4)0.7015 (3)0.0304 (11)
H290.76621.25320.66950.04*
C300.8543 (4)1.0889 (4)0.6676 (3)0.0255 (10)
C310.9567 (6)0.9102 (5)0.8509 (4)0.0428 (14)
H31A0.89970.8670.86750.056*
H31B0.96450.93450.89890.056*
H31C1.04120.86630.82010.056*
C320.7440 (6)1.3177 (5)0.8157 (4)0.0492 (15)
H32A0.7131.31190.87470.064*
H32B0.67351.36340.79320.064*
H32C0.81221.34960.80080.064*
C330.8575 (5)1.0771 (4)0.5809 (3)0.0359 (12)
H33A0.94251.07210.54530.047*
H33B0.79311.13990.56360.047*
H33C0.8391.01180.57820.047*
C341.0899 (4)0.6077 (4)0.6418 (3)0.0251 (10)
C351.1166 (4)0.5382 (4)0.7091 (3)0.0285 (11)
C361.1433 (4)0.4258 (4)0.7025 (3)0.0335 (11)
H361.15910.37740.74710.044*
C371.1465 (4)0.3850 (4)0.6306 (3)0.0327 (12)
C381.1286 (4)0.4567 (4)0.5636 (3)0.0308 (11)
H381.13630.4290.51450.04*
C391.0993 (4)0.5699 (4)0.5670 (3)0.0263 (10)
C401.1198 (6)0.5791 (5)0.7860 (4)0.0409 (13)
H40A1.18260.61670.77220.053*
H40B1.1440.5180.82390.053*
H40C1.0350.62880.81110.053*
C411.1681 (6)0.2642 (4)0.6278 (4)0.0447 (14)
H41A1.08540.25240.64450.058*
H41B1.21980.22240.66450.058*
H41C1.21290.24090.57270.058*
C421.0835 (5)0.6465 (5)0.4932 (3)0.0356 (12)
H42A0.99990.70330.50650.046*
H42B1.08910.60650.44870.046*
H42C1.15130.6790.47710.046*
O30.0873 (4)0.7653 (5)1.0168 (3)0.0734 (15)
C430.0328 (7)0.8164 (9)1.0722 (5)0.086 (3)
D43A0.06820.89291.05470.112*
D43B0.02160.81341.12680.112*
C440.1204 (9)0.7577 (10)1.0733 (7)0.100 (3)
D44A0.16810.78961.03210.129*
D44B0.18230.75961.1270.129*
C450.0341 (12)0.6449 (9)1.0546 (8)0.111 (4)
D45A0.07050.60811.02750.145*
D45B0.01530.60181.10370.145*
C460.0864 (10)0.6674 (9)0.9966 (6)0.098 (3)
D46A0.16490.60841.00270.127*
D46B0.08320.67220.93990.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01818 (9)0.02470 (11)0.02314 (10)0.00853 (6)0.00253 (6)0.00466 (7)
Cl10.0302 (6)0.0598 (9)0.0275 (6)0.0210 (6)0.0064 (5)0.0024 (6)
Cl20.0273 (6)0.0348 (7)0.0563 (8)0.0127 (5)0.0022 (5)0.0182 (7)
N10.0211 (19)0.031 (3)0.048 (3)0.0105 (17)0.0039 (18)0.006 (2)
O10.039 (2)0.036 (2)0.103 (4)0.0160 (18)0.001 (2)0.018 (3)
N20.030 (2)0.067 (3)0.040 (3)0.028 (2)0.009 (2)0.004 (3)
O20.063 (3)0.149 (5)0.038 (3)0.065 (3)0.026 (2)0.028 (3)
C10.025 (2)0.024 (2)0.023 (2)0.0101 (18)0.0046 (18)0.002 (2)
N30.0227 (18)0.039 (2)0.028 (2)0.0139 (17)0.0039 (16)0.006 (2)
C20.028 (3)0.078 (4)0.034 (3)0.031 (3)0.000 (2)0.005 (3)
C30.027 (2)0.076 (4)0.035 (3)0.029 (3)0.003 (2)0.008 (3)
N40.0233 (18)0.039 (2)0.027 (2)0.0157 (17)0.0064 (16)0.001 (2)
C40.022 (2)0.035 (3)0.020 (2)0.0131 (19)0.0006 (17)0.003 (2)
C50.030 (2)0.036 (3)0.024 (3)0.015 (2)0.0027 (19)0.007 (2)
C60.032 (3)0.048 (3)0.028 (3)0.010 (2)0.001 (2)0.004 (3)
C70.029 (2)0.065 (4)0.027 (3)0.017 (3)0.002 (2)0.012 (3)
C80.033 (3)0.049 (3)0.038 (3)0.019 (2)0.004 (2)0.022 (3)
C90.025 (2)0.036 (3)0.032 (3)0.014 (2)0.0021 (19)0.009 (2)
C100.053 (3)0.030 (3)0.037 (3)0.011 (2)0.000 (2)0.007 (3)
C110.045 (3)0.108 (6)0.035 (3)0.022 (4)0.009 (3)0.021 (4)
C120.038 (3)0.037 (3)0.050 (4)0.007 (2)0.003 (3)0.006 (3)
C130.018 (2)0.037 (3)0.029 (3)0.0124 (19)0.0073 (18)0.004 (2)
C140.023 (2)0.036 (3)0.040 (3)0.010 (2)0.012 (2)0.001 (3)
C150.026 (2)0.050 (4)0.041 (3)0.006 (2)0.008 (2)0.019 (3)
C160.025 (2)0.057 (4)0.031 (3)0.013 (2)0.006 (2)0.011 (3)
C170.027 (2)0.046 (3)0.034 (3)0.015 (2)0.008 (2)0.003 (3)
C180.017 (2)0.034 (3)0.034 (3)0.0109 (18)0.0037 (18)0.007 (2)
C190.051 (3)0.038 (3)0.060 (4)0.011 (3)0.023 (3)0.004 (3)
C200.037 (3)0.092 (5)0.036 (3)0.016 (3)0.011 (2)0.014 (4)
C210.034 (3)0.036 (3)0.050 (3)0.012 (2)0.012 (2)0.005 (3)
C220.025 (2)0.023 (2)0.019 (2)0.0075 (18)0.0062 (17)0.005 (2)
N50.0192 (17)0.023 (2)0.025 (2)0.0072 (14)0.0049 (15)0.0036 (18)
C230.022 (2)0.029 (3)0.028 (2)0.0136 (18)0.0053 (18)0.001 (2)
C240.020 (2)0.033 (3)0.029 (3)0.0113 (19)0.0028 (18)0.007 (2)
N60.0208 (17)0.021 (2)0.024 (2)0.0065 (15)0.0043 (15)0.0034 (18)
C250.020 (2)0.022 (2)0.030 (3)0.0092 (17)0.0040 (18)0.006 (2)
C260.027 (2)0.031 (3)0.027 (3)0.0130 (19)0.0074 (19)0.003 (2)
C270.038 (3)0.034 (3)0.027 (3)0.015 (2)0.006 (2)0.008 (2)
C280.032 (2)0.028 (3)0.035 (3)0.012 (2)0.001 (2)0.007 (2)
C290.030 (2)0.025 (3)0.031 (3)0.0079 (19)0.004 (2)0.000 (2)
C300.025 (2)0.026 (3)0.026 (2)0.0119 (19)0.0013 (18)0.003 (2)
C310.054 (3)0.041 (3)0.033 (3)0.009 (3)0.018 (3)0.005 (3)
C320.054 (3)0.037 (3)0.052 (4)0.013 (3)0.004 (3)0.017 (3)
C330.048 (3)0.029 (3)0.029 (3)0.011 (2)0.011 (2)0.000 (2)
C340.0168 (19)0.023 (2)0.031 (3)0.0033 (17)0.0021 (18)0.004 (2)
C350.024 (2)0.028 (3)0.031 (3)0.0050 (19)0.0072 (19)0.001 (2)
C360.029 (2)0.028 (3)0.040 (3)0.004 (2)0.011 (2)0.000 (3)
C370.029 (2)0.023 (3)0.044 (3)0.0068 (19)0.007 (2)0.007 (3)
C380.029 (2)0.030 (3)0.031 (3)0.009 (2)0.002 (2)0.010 (2)
C390.020 (2)0.027 (3)0.029 (3)0.0057 (18)0.0021 (18)0.007 (2)
C400.057 (3)0.030 (3)0.040 (3)0.011 (2)0.023 (3)0.000 (3)
C410.051 (3)0.026 (3)0.055 (4)0.008 (2)0.017 (3)0.006 (3)
C420.042 (3)0.036 (3)0.028 (3)0.011 (2)0.007 (2)0.006 (3)
O30.052 (3)0.111 (5)0.061 (3)0.040 (3)0.003 (2)0.008 (3)
C430.061 (4)0.134 (8)0.074 (5)0.039 (5)0.015 (4)0.023 (6)
C440.083 (6)0.138 (10)0.093 (7)0.063 (6)0.026 (5)0.020 (7)
C450.138 (9)0.084 (7)0.124 (9)0.066 (7)0.037 (8)0.037 (7)
C460.107 (7)0.088 (7)0.084 (7)0.017 (6)0.023 (6)0.008 (6)
Geometric parameters (Å, º) top
W1—N21.815 (5)N5—C251.449 (5)
W1—N11.856 (4)C23—C241.332 (7)
W1—C12.278 (4)C23—H230.93
W1—C222.284 (4)C24—N61.392 (6)
W1—Cl22.4315 (12)C24—H240.93
W1—Cl12.4449 (13)N6—C341.457 (6)
N1—O11.143 (6)C25—C301.391 (7)
N2—O21.188 (6)C25—C261.401 (7)
C1—N31.364 (6)C26—C271.392 (7)
C1—N41.369 (6)C26—C311.490 (8)
N3—C21.390 (6)C27—C281.385 (8)
N3—C41.453 (6)C27—H270.93
C2—C31.319 (8)C28—C291.395 (7)
C2—H20.93C28—C321.509 (7)
C3—N41.387 (6)C29—C301.393 (7)
C3—H30.93C29—H290.93
N4—C131.459 (6)C30—C331.497 (7)
C4—C51.389 (7)C31—H31A0.96
C4—C91.392 (7)C31—H31B0.96
C5—C61.393 (7)C31—H31C0.96
C5—C101.505 (7)C32—H32A0.96
C6—C71.382 (8)C32—H32B0.96
C6—H60.93C32—H32C0.96
C7—C81.385 (9)C33—H33A0.96
C7—C111.508 (8)C33—H33B0.96
C8—C91.379 (8)C33—H33C0.96
C8—H80.93C34—C351.388 (7)
C9—C121.507 (8)C34—C391.398 (7)
C10—H10A0.96C35—C361.402 (7)
C10—H10B0.96C35—C401.504 (7)
C10—H10C0.96C36—C371.393 (7)
C11—H11A0.96C36—H360.93
C11—H11B0.96C37—C381.379 (8)
C11—H11C0.96C37—C411.513 (7)
C12—H12A0.96C38—C391.399 (7)
C12—H12B0.96C38—H380.93
C12—H12C0.96C39—C421.496 (7)
C13—C181.377 (7)C40—H40A0.96
C13—C141.403 (7)C40—H40B0.96
C14—C151.396 (8)C40—H40C0.96
C14—C191.500 (8)C41—H41A0.96
C15—C161.384 (8)C41—H41B0.96
C15—H150.93C41—H41C0.96
C16—C171.386 (8)C42—H42A0.96
C16—C201.529 (8)C42—H42B0.96
C17—C181.392 (7)C42—H42C0.96
C17—H170.93O3—C461.376 (11)
C18—C211.513 (7)O3—C431.403 (9)
C19—H19A0.96C43—C441.454 (12)
C19—H19B0.96C43—D43A0.97
C19—H19C0.96C43—D43B0.97
C20—H20A0.96C44—C451.467 (15)
C20—H20B0.96C44—D44A0.97
C20—H20C0.96C44—D44B0.97
C21—H21A0.96C45—C461.526 (14)
C21—H21B0.96C45—D45A0.97
C21—H21C0.96C45—D45B0.97
C22—N51.370 (6)C46—D46A0.97
C22—N61.370 (5)C46—D46B0.97
N5—C231.390 (5)
N2—W1—N189.2 (2)C22—N5—C25130.6 (3)
N2—W1—C195.23 (17)C23—N5—C25117.6 (3)
N1—W1—C189.24 (16)C24—C23—N5107.3 (4)
N2—W1—C2289.32 (17)C24—C23—H23126.3
N1—W1—C2295.56 (16)N5—C23—H23126.3
C1—W1—C22173.44 (18)C23—C24—N6106.8 (4)
N2—W1—Cl292.77 (17)C23—C24—H24126.6
N1—W1—Cl2171.34 (11)N6—C24—H24126.6
C1—W1—Cl282.19 (12)C22—N6—C24111.4 (4)
C22—W1—Cl292.89 (11)C22—N6—C34128.5 (4)
N2—W1—Cl1171.32 (13)C24—N6—C34119.8 (3)
N1—W1—Cl191.09 (15)C30—C25—C26122.7 (4)
C1—W1—Cl193.45 (12)C30—C25—N5118.5 (4)
C22—W1—Cl182.02 (12)C26—C25—N5118.4 (4)
Cl2—W1—Cl188.23 (5)C27—C26—C25117.1 (5)
O1—N1—W1174.1 (4)C27—C26—C31120.6 (4)
O2—N2—W1173.0 (4)C25—C26—C31122.3 (4)
N3—C1—N4102.8 (3)C28—C27—C26122.4 (5)
N3—C1—W1126.0 (3)C28—C27—H27118.8
N4—C1—W1131.2 (3)C26—C27—H27118.8
C1—N3—C2111.8 (4)C27—C28—C29118.3 (4)
C1—N3—C4129.8 (4)C27—C28—C32121.0 (5)
C2—N3—C4118.2 (4)C29—C28—C32120.7 (5)
C3—C2—N3106.6 (4)C30—C29—C28121.9 (5)
C3—C2—H2126.7C30—C29—H29119.1
N3—C2—H2126.7C28—C29—H29119.1
C2—C3—N4107.6 (4)C25—C30—C29117.5 (4)
C2—C3—H3126.2C25—C30—C33121.7 (4)
N4—C3—H3126.2C29—C30—C33120.8 (5)
C1—N4—C3111.2 (4)C26—C31—H31A109.5
C1—N4—C13131.2 (4)C26—C31—H31B109.5
C3—N4—C13117.7 (4)H31A—C31—H31B109.5
C5—C4—C9121.9 (4)C26—C31—H31C109.5
C5—C4—N3118.6 (4)H31A—C31—H31C109.5
C9—C4—N3118.9 (4)H31B—C31—H31C109.5
C4—C5—C6117.7 (4)C28—C32—H32A109.5
C4—C5—C10122.0 (5)C28—C32—H32B109.5
C6—C5—C10120.3 (5)H32A—C32—H32B109.5
C7—C6—C5122.0 (5)C28—C32—H32C109.5
C7—C6—H6119H32A—C32—H32C109.5
C5—C6—H6119H32B—C32—H32C109.5
C6—C7—C8118.1 (5)C30—C33—H33A109.5
C6—C7—C11121.1 (6)C30—C33—H33B109.5
C8—C7—C11120.8 (5)H33A—C33—H33B109.5
C9—C8—C7122.3 (5)C30—C33—H33C109.5
C9—C8—H8118.8H33A—C33—H33C109.5
C7—C8—H8118.8H33B—C33—H33C109.5
C8—C9—C4117.9 (5)C35—C34—C39123.1 (4)
C8—C9—C12120.1 (5)C35—C34—N6118.0 (4)
C4—C9—C12121.9 (5)C39—C34—N6118.7 (5)
C5—C10—H10A109.5C34—C35—C36117.2 (5)
C5—C10—H10B109.5C34—C35—C40122.5 (5)
H10A—C10—H10B109.5C36—C35—C40120.3 (5)
C5—C10—H10C109.5C37—C36—C35121.6 (5)
H10A—C10—H10C109.5C37—C36—H36119.2
H10B—C10—H10C109.5C35—C36—H36119.2
C7—C11—H11A109.5C38—C37—C36118.8 (5)
C7—C11—H11B109.5C38—C37—C41121.5 (5)
H11A—C11—H11B109.5C36—C37—C41119.8 (5)
C7—C11—H11C109.5C37—C38—C39122.2 (5)
H11A—C11—H11C109.5C37—C38—H38118.9
H11B—C11—H11C109.5C39—C38—H38118.9
C9—C12—H12A109.5C34—C39—C38116.9 (5)
C9—C12—H12B109.5C34—C39—C42121.4 (4)
H12A—C12—H12B109.5C38—C39—C42121.7 (4)
C9—C12—H12C109.5C35—C40—H40A109.5
H12A—C12—H12C109.5C35—C40—H40B109.5
H12B—C12—H12C109.5H40A—C40—H40B109.5
C18—C13—C14123.1 (4)C35—C40—H40C109.5
C18—C13—N4118.6 (4)H40A—C40—H40C109.5
C14—C13—N4117.7 (5)H40B—C40—H40C109.5
C15—C14—C13116.5 (5)C37—C41—H41A109.5
C15—C14—C19120.4 (5)C37—C41—H41B109.5
C13—C14—C19123.0 (5)H41A—C41—H41B109.5
C16—C15—C14122.1 (5)C37—C41—H41C109.5
C16—C15—H15119H41A—C41—H41C109.5
C14—C15—H15119H41B—C41—H41C109.5
C15—C16—C17119.0 (5)C39—C42—H42A109.5
C15—C16—C20120.0 (5)C39—C42—H42B109.5
C17—C16—C20121.0 (6)H42A—C42—H42B109.5
C16—C17—C18121.3 (5)C39—C42—H42C109.5
C16—C17—H17119.4H42A—C42—H42C109.5
C18—C17—H17119.4H42B—C42—H42C109.5
C13—C18—C17118.0 (4)C46—O3—C43108.7 (6)
C13—C18—C21121.3 (5)O3—C43—C44107.3 (8)
C17—C18—C21120.7 (5)O3—C43—D43A110.3
C14—C19—H19A109.5C44—C43—D43A110.3
C14—C19—H19B109.5O3—C43—D43B110.3
H19A—C19—H19B109.5C44—C43—D43B110.3
C14—C19—H19C109.5D43A—C43—D43B108.5
H19A—C19—H19C109.5C43—C44—C45104.5 (8)
H19B—C19—H19C109.5C43—C44—D44A110.9
C16—C20—H20A109.5C45—C44—D44A110.9
C16—C20—H20B109.5C43—C44—D44B110.9
H20A—C20—H20B109.5C45—C44—D44B110.9
C16—C20—H20C109.5D44A—C44—D44B108.9
H20A—C20—H20C109.5C44—C45—C46100.1 (8)
H20B—C20—H20C109.5C44—C45—D45A111.8
C18—C21—H21A109.5C46—C45—D45A111.8
C18—C21—H21B109.5C44—C45—D45B111.8
H21A—C21—H21B109.5C46—C45—D45B111.8
C18—C21—H21C109.5D45A—C45—D45B109.5
H21A—C21—H21C109.5O3—C46—C45107.8 (8)
H21B—C21—H21C109.5O3—C46—D46A110.1
N5—C22—N6103.2 (3)C45—C46—D46A110.1
N5—C22—W1130.8 (3)O3—C46—D46B110.1
N6—C22—W1125.8 (3)C45—C46—D46B110.1
C22—N5—C23111.2 (3)D46A—C46—D46B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.403.320 (7)172

Experimental details

Crystal data
Chemical formula[WCl2(NO)2(C21H24N2)2]·C4D8O
Mr1003.72
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)11.3861 (7), 13.0517 (9), 17.0448 (11)
α, β, γ (°)81.245 (8), 72.473 (7), 68.983 (7)
V3)2251.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.25 × 0.15 × 0.08
Data collection
DiffractometerStoe IPDS
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.568, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
44725, 7466, 6365
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.12
No. of reflections7466
No. of parameters535
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.42

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 1999), CELL in IPDS Software (Stoe & Cie, 1999), INTEGRATE in IPDS Software (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.403.320 (7)172
 

Acknowledgements

Financial support by the University of Zürich is gratefully acknowledged.

References

First citationBerke, H. & Burger, P. (1994). Comments Inorg. Chem. 16, 279–312.  CrossRef CAS Web of Science Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnemark, J. H. & Feltham, R. D. (1974). Coord. Chem. Rev. 13, 339–406.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFraga-Hernández, J. (2007). PhD thesis, University of Zürich, Switzerland.  Google Scholar
First citationHahn, F. E., Langenhahn, V. & Pape, T. (2005). Chem. Commun. pp. 5390–5392.  Web of Science CSD CrossRef Google Scholar
First citationNonnenmacher, M., Kunz, D., Rominger, F. & Oeser, T. (2005). J. Organomet. Chem. 690, 5647–5653.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichter-Addo, G. B. & Legzdins, P. (1988). Chem. Rev. 88, 991–1010.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, F., Dioumaev, V. K., Szalda, D. J., Hanson, J. & Bullock, R. M. (2007). Organometallics, 26, 5079–5090.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds