organic compounds
(E)-1-[4-(Hexyloxy)phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one
aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my
In the title compound, C21H24O3, intermolecular O—H⋯O and C—H⋯O interactions form bifurcated acceptor bonds, generating R21(6) ring motifs. These ring motifs link the molecules into extended chains along [010]. The is further stabilized by C—H⋯π interactions.
Related literature
For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak et al. (2009, 2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810052086/fj2369sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052086/fj2369Isup2.hkl
A mixture of 4-hydroxybenzaldehyde (1.22 g, 10 mmol), 4-hexyloxyacetophenone (2.20 g, 10 mmol) and KOH (2.02 g, 36 mmol) in 30 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane-ethanol mixture, followed by few days of slow evaporation, suitable crystals were collected for X-ray analysis.
All the C– and O-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97Å and O—H = 0.84 Å. The Uiso values were constrained to be -1.5Uequ (methyl H and O atoms) and -1.2Uequ (other H atoms). The rotating model group was applied for the methyl group.
The biological properties of
derivatives have been extensively reported (Bhat et al., 2005; Xue et al., 2004; Lee et al., 2006; Zhao et al., 2005). Synthetic and naturally occurring have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative, (I) which showed antimicrobial activity when tested against E. coli ATCC 8739 In this paper, we report the of the title compound.The bond lengths observed in the title compound (Fig.1) are comparable with previously reported values (Allen et al., 1987). The conformation of the enone moiety (O1/C7—C9) is s-cis as shown by the value of -6.3 (2)° for O1—C9—C8—C7 torsion angle. The enone (O1/C7—C9) moiety adopts s-cis conformation with O2—C7—C8—C9 torsion angle being -6.3 (2)°. The dihedral angle between the mean plane through the enone moiety and the benzene rings is 5.1 (1)° for C1—C6 ring and 5.6 (1)° for C10—C15 ring. The two benzene rings make a dihedral angle of 7.8 (1)° between them.
The widening of C1—C6—C7 and C6—C7—C8 angles to 123.0 (1)° and 126.9 (1)° respectively, are the consequences of the close interatomic contact between H1A and H8A which is 2.20 Å. Similarly, the strain induced by short H8A···H11A contact, which is 2.09Å resulted in the opening of C9—C10—C11 angle to 123.8 (1)°. The distortion of angles, which is relative to what is predicted in terms of hybidization principles can also be observed in the related structures previously reported by Razak, Fun, Ngaini, Rahman et al. (2009), Razak, Fun, Ngaini, Fadzillah et al. (2009a,b), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009).
The conformation assumed by the zigzag alkoxyl tail is trans. Even though the torsion angle of C12—C13—O3—C16 is -1.3 (2)°, which shows that it is roughly coplanar with the attached benzene ring, the alkoxyl tail is actually twisted about the C18—C19 bond. Within the aliphatic chain, the C17—C18—C19—C20 torsion angle shows the value of -167.0 (1)°
In the π interactions (Table 1).
intermolecular O2—H2···O1(-x,y - 1/2,-z + 3/2) and C4—H4A···O1(-x,y - 1/2,-z + 3/2) interactions form bifurcated acceptor bonds generating R12(6) ring motifs (Bernstein et al., 1995). These intermolecular interactions link the molecules into extended chains along the [0 1 0] direction. The is further stabilized by C—H···For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak et al. (2009, 2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of temperature controller, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. | |
Fig. 2. A molecular chain of the title compound along the b axis. |
C21H24O3 | F(000) = 696 |
Mr = 324.40 | Dx = 1.197 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9960 reflections |
a = 10.2807 (2) Å | θ = 2.3–31.1° |
b = 16.6322 (2) Å | µ = 0.08 mm−1 |
c = 11.4736 (2) Å | T = 100 K |
β = 113.439 (1)° | Plate, yellow |
V = 1799.99 (5) Å3 | 0.53 × 0.46 × 0.09 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 5839 independent reflections |
Radiation source: sealed tube | 4743 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
π and ω scans | θmax = 31.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −15→14 |
Tmin = 0.960, Tmax = 0.993 | k = −24→24 |
35735 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0702P)2 + 0.4086P] where P = (Fo2 + 2Fc2)/3 |
5839 reflections | (Δ/σ)max = 0.001 |
219 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C21H24O3 | V = 1799.99 (5) Å3 |
Mr = 324.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.2807 (2) Å | µ = 0.08 mm−1 |
b = 16.6322 (2) Å | T = 100 K |
c = 11.4736 (2) Å | 0.53 × 0.46 × 0.09 mm |
β = 113.439 (1)° |
Bruker APEXII CCD area-detector diffractometer | 5839 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4743 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.993 | Rint = 0.034 |
35735 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.41 e Å−3 |
5839 reflections | Δρmin = −0.20 e Å−3 |
219 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.15448 (9) | 0.50631 (5) | 0.96314 (7) | 0.02611 (17) | |
O2 | −0.08883 (8) | 0.02224 (4) | 0.78756 (7) | 0.02446 (16) | |
H2 | −0.1115 | 0.0146 | 0.7095 | 0.037* | |
O3 | 0.37607 (9) | 0.61122 (5) | 1.53438 (7) | 0.02772 (18) | |
C1 | 0.03955 (11) | 0.20205 (6) | 0.97710 (9) | 0.0226 (2) | |
H1A | 0.0805 | 0.2163 | 1.0645 | 0.027* | |
C2 | 0.00156 (11) | 0.12297 (6) | 0.94356 (9) | 0.0231 (2) | |
H2A | 0.0155 | 0.0836 | 1.0074 | 0.028* | |
C3 | −0.05759 (10) | 0.10104 (6) | 0.81509 (9) | 0.02014 (19) | |
C4 | −0.08238 (10) | 0.15987 (6) | 0.72177 (9) | 0.02078 (19) | |
H4A | −0.1251 | 0.1457 | 0.6344 | 0.025* | |
C5 | −0.04439 (11) | 0.23904 (6) | 0.75716 (9) | 0.02089 (19) | |
H5A | −0.0618 | 0.2787 | 0.6931 | 0.025* | |
C6 | 0.01911 (10) | 0.26189 (6) | 0.88518 (9) | 0.01983 (18) | |
C7 | 0.06282 (10) | 0.34531 (6) | 0.91739 (9) | 0.02114 (19) | |
H7A | 0.0432 | 0.3814 | 0.8483 | 0.025* | |
C8 | 0.12779 (10) | 0.37647 (6) | 1.03444 (9) | 0.02112 (19) | |
H8A | 0.1482 | 0.3426 | 1.1062 | 0.025* | |
C9 | 0.16801 (10) | 0.46172 (6) | 1.05398 (9) | 0.01995 (18) | |
C10 | 0.22628 (10) | 0.49587 (6) | 1.18407 (9) | 0.01980 (19) | |
C11 | 0.24298 (10) | 0.45194 (6) | 1.29304 (9) | 0.02125 (19) | |
H11A | 0.2192 | 0.3964 | 1.2853 | 0.025* | |
C12 | 0.29373 (11) | 0.48771 (6) | 1.41261 (10) | 0.0228 (2) | |
H12A | 0.3043 | 0.4570 | 1.4856 | 0.027* | |
C13 | 0.32897 (11) | 0.56930 (6) | 1.42408 (10) | 0.0227 (2) | |
C14 | 0.31631 (11) | 0.61369 (6) | 1.31623 (10) | 0.0256 (2) | |
H14A | 0.3432 | 0.6687 | 1.3244 | 0.031* | |
C15 | 0.26496 (11) | 0.57768 (6) | 1.19849 (10) | 0.0239 (2) | |
H15A | 0.2555 | 0.6085 | 1.1258 | 0.029* | |
C16 | 0.38894 (11) | 0.57030 (7) | 1.64912 (10) | 0.0251 (2) | |
H16A | 0.4594 | 0.5263 | 1.6688 | 0.030* | |
H16B | 0.2966 | 0.5472 | 1.6399 | 0.030* | |
C17 | 0.43689 (12) | 0.63306 (7) | 1.75310 (10) | 0.0281 (2) | |
H17A | 0.3622 | 0.6745 | 1.7340 | 0.034* | |
H17B | 0.5234 | 0.6597 | 1.7539 | 0.034* | |
C18 | 0.46809 (12) | 0.59804 (7) | 1.88375 (10) | 0.0269 (2) | |
H18A | 0.5392 | 0.5546 | 1.9007 | 0.032* | |
H18B | 0.3803 | 0.5737 | 1.8838 | 0.032* | |
C19 | 0.52330 (13) | 0.65975 (7) | 1.99042 (11) | 0.0298 (2) | |
H19A | 0.4449 | 0.6959 | 1.9856 | 0.036* | |
H19B | 0.5975 | 0.6928 | 1.9792 | 0.036* | |
C20 | 0.58473 (13) | 0.61976 (7) | 2.12078 (11) | 0.0321 (2) | |
H20A | 0.5103 | 0.5862 | 2.1308 | 0.038* | |
H20B | 0.6628 | 0.5836 | 2.1247 | 0.038* | |
C21 | 0.64050 (18) | 0.67832 (10) | 2.23034 (13) | 0.0502 (4) | |
H21A | 0.6852 | 0.6485 | 2.3102 | 0.075* | |
H21B | 0.5619 | 0.7105 | 2.2330 | 0.075* | |
H21C | 0.7105 | 0.7139 | 2.2189 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0332 (4) | 0.0223 (3) | 0.0210 (4) | 0.0006 (3) | 0.0089 (3) | 0.0028 (3) |
O2 | 0.0315 (4) | 0.0194 (3) | 0.0214 (4) | −0.0027 (3) | 0.0093 (3) | −0.0019 (3) |
O3 | 0.0343 (4) | 0.0242 (4) | 0.0233 (4) | −0.0042 (3) | 0.0100 (3) | −0.0070 (3) |
C1 | 0.0279 (5) | 0.0224 (4) | 0.0164 (4) | −0.0004 (4) | 0.0076 (4) | −0.0011 (3) |
C2 | 0.0293 (5) | 0.0217 (4) | 0.0179 (4) | 0.0000 (4) | 0.0091 (4) | 0.0016 (3) |
C3 | 0.0213 (4) | 0.0196 (4) | 0.0199 (4) | −0.0004 (3) | 0.0086 (4) | −0.0015 (3) |
C4 | 0.0230 (4) | 0.0220 (4) | 0.0167 (4) | 0.0003 (4) | 0.0073 (4) | −0.0018 (3) |
C5 | 0.0243 (4) | 0.0214 (4) | 0.0164 (4) | 0.0012 (4) | 0.0075 (4) | 0.0011 (3) |
C6 | 0.0220 (4) | 0.0200 (4) | 0.0177 (4) | 0.0002 (3) | 0.0081 (3) | −0.0011 (3) |
C7 | 0.0225 (4) | 0.0205 (4) | 0.0202 (4) | 0.0008 (3) | 0.0083 (4) | 0.0004 (3) |
C8 | 0.0233 (4) | 0.0191 (4) | 0.0201 (4) | 0.0002 (3) | 0.0076 (4) | 0.0002 (3) |
C9 | 0.0185 (4) | 0.0201 (4) | 0.0201 (4) | 0.0016 (3) | 0.0064 (3) | −0.0002 (3) |
C10 | 0.0179 (4) | 0.0193 (4) | 0.0205 (4) | 0.0007 (3) | 0.0058 (3) | −0.0008 (3) |
C11 | 0.0214 (4) | 0.0202 (4) | 0.0213 (5) | −0.0028 (3) | 0.0077 (4) | −0.0016 (3) |
C12 | 0.0229 (4) | 0.0239 (5) | 0.0207 (5) | −0.0029 (4) | 0.0078 (4) | −0.0017 (4) |
C13 | 0.0209 (4) | 0.0231 (5) | 0.0226 (5) | −0.0015 (4) | 0.0071 (4) | −0.0049 (4) |
C14 | 0.0283 (5) | 0.0183 (4) | 0.0274 (5) | −0.0006 (4) | 0.0082 (4) | −0.0025 (4) |
C15 | 0.0265 (5) | 0.0197 (4) | 0.0234 (5) | 0.0011 (4) | 0.0076 (4) | 0.0015 (4) |
C16 | 0.0247 (5) | 0.0269 (5) | 0.0234 (5) | −0.0025 (4) | 0.0093 (4) | −0.0054 (4) |
C17 | 0.0294 (5) | 0.0276 (5) | 0.0256 (5) | −0.0027 (4) | 0.0091 (4) | −0.0088 (4) |
C18 | 0.0260 (5) | 0.0267 (5) | 0.0257 (5) | −0.0008 (4) | 0.0077 (4) | −0.0071 (4) |
C19 | 0.0310 (5) | 0.0274 (5) | 0.0271 (5) | 0.0000 (4) | 0.0074 (4) | −0.0078 (4) |
C20 | 0.0324 (6) | 0.0314 (6) | 0.0295 (6) | 0.0017 (5) | 0.0093 (5) | −0.0061 (4) |
C21 | 0.0633 (10) | 0.0464 (8) | 0.0306 (7) | −0.0042 (7) | 0.0078 (6) | −0.0100 (6) |
O1—C9 | 1.2410 (12) | C12—C13 | 1.3971 (14) |
O2—C3 | 1.3563 (12) | C12—H12A | 0.9500 |
O2—H2 | 0.8400 | C13—C14 | 1.4018 (15) |
O3—C13 | 1.3545 (12) | C14—C15 | 1.3766 (15) |
O3—C16 | 1.4406 (13) | C14—H14A | 0.9500 |
C1—C2 | 1.3824 (14) | C15—H15A | 0.9500 |
C1—C6 | 1.4039 (14) | C16—C17 | 1.5127 (14) |
C1—H1A | 0.9500 | C16—H16A | 0.9900 |
C2—C3 | 1.4009 (14) | C16—H16B | 0.9900 |
C2—H2A | 0.9500 | C17—C18 | 1.5187 (16) |
C3—C4 | 1.3971 (13) | C17—H17A | 0.9900 |
C4—C5 | 1.3874 (14) | C17—H17B | 0.9900 |
C4—H4A | 0.9500 | C18—C19 | 1.5235 (15) |
C5—C6 | 1.4019 (13) | C18—H18A | 0.9900 |
C5—H5A | 0.9500 | C18—H18B | 0.9900 |
C6—C7 | 1.4598 (14) | C19—C20 | 1.5253 (17) |
C7—C8 | 1.3435 (14) | C19—H19A | 0.9900 |
C7—H7A | 0.9500 | C19—H19B | 0.9900 |
C8—C9 | 1.4690 (13) | C20—C21 | 1.5113 (18) |
C8—H8A | 0.9500 | C20—H20A | 0.9900 |
C9—C10 | 1.4826 (14) | C20—H20B | 0.9900 |
C10—C11 | 1.3985 (14) | C21—H21A | 0.9800 |
C10—C15 | 1.4088 (14) | C21—H21B | 0.9800 |
C11—C12 | 1.3925 (14) | C21—H21C | 0.9800 |
C11—H11A | 0.9500 | ||
C3—O2—H2 | 109.5 | C15—C14—H14A | 119.9 |
C13—O3—C16 | 118.65 (8) | C13—C14—H14A | 119.9 |
C2—C1—C6 | 121.61 (9) | C14—C15—C10 | 121.04 (10) |
C2—C1—H1A | 119.2 | C14—C15—H15A | 119.5 |
C6—C1—H1A | 119.2 | C10—C15—H15A | 119.5 |
C1—C2—C3 | 119.80 (9) | O3—C16—C17 | 106.11 (9) |
C1—C2—H2A | 120.1 | O3—C16—H16A | 110.5 |
C3—C2—H2A | 120.1 | C17—C16—H16A | 110.5 |
O2—C3—C4 | 122.97 (9) | O3—C16—H16B | 110.5 |
O2—C3—C2 | 117.40 (9) | C17—C16—H16B | 110.5 |
C4—C3—C2 | 119.64 (9) | H16A—C16—H16B | 108.7 |
C5—C4—C3 | 119.74 (9) | C16—C17—C18 | 112.85 (9) |
C5—C4—H4A | 120.1 | C16—C17—H17A | 109.0 |
C3—C4—H4A | 120.1 | C18—C17—H17A | 109.0 |
C4—C5—C6 | 121.57 (9) | C16—C17—H17B | 109.0 |
C4—C5—H5A | 119.2 | C18—C17—H17B | 109.0 |
C6—C5—H5A | 119.2 | H17A—C17—H17B | 107.8 |
C5—C6—C1 | 117.59 (9) | C17—C18—C19 | 113.55 (9) |
C5—C6—C7 | 119.41 (9) | C17—C18—H18A | 108.9 |
C1—C6—C7 | 122.99 (9) | C19—C18—H18A | 108.9 |
C8—C7—C6 | 126.90 (9) | C17—C18—H18B | 108.9 |
C8—C7—H7A | 116.6 | C19—C18—H18B | 108.9 |
C6—C7—H7A | 116.6 | H18A—C18—H18B | 107.7 |
C7—C8—C9 | 121.52 (9) | C18—C19—C20 | 111.76 (10) |
C7—C8—H8A | 119.2 | C18—C19—H19A | 109.3 |
C9—C8—H8A | 119.2 | C20—C19—H19A | 109.3 |
O1—C9—C8 | 121.19 (9) | C18—C19—H19B | 109.3 |
O1—C9—C10 | 118.82 (9) | C20—C19—H19B | 109.3 |
C8—C9—C10 | 119.99 (9) | H19A—C19—H19B | 107.9 |
C11—C10—C15 | 118.10 (9) | C21—C20—C19 | 114.00 (11) |
C11—C10—C9 | 123.83 (9) | C21—C20—H20A | 108.8 |
C15—C10—C9 | 118.06 (9) | C19—C20—H20A | 108.8 |
C12—C11—C10 | 121.48 (9) | C21—C20—H20B | 108.8 |
C12—C11—H11A | 119.3 | C19—C20—H20B | 108.8 |
C10—C11—H11A | 119.3 | H20A—C20—H20B | 107.6 |
C11—C12—C13 | 119.29 (10) | C20—C21—H21A | 109.5 |
C11—C12—H12A | 120.4 | C20—C21—H21B | 109.5 |
C13—C12—H12A | 120.4 | H21A—C21—H21B | 109.5 |
O3—C13—C12 | 124.81 (10) | C20—C21—H21C | 109.5 |
O3—C13—C14 | 115.26 (9) | H21A—C21—H21C | 109.5 |
C12—C13—C14 | 119.93 (9) | H21B—C21—H21C | 109.5 |
C15—C14—C13 | 120.12 (10) | ||
C6—C1—C2—C3 | 0.63 (16) | C8—C9—C10—C15 | 179.28 (9) |
C1—C2—C3—O2 | 177.98 (9) | C15—C10—C11—C12 | 1.21 (15) |
C1—C2—C3—C4 | −2.28 (15) | C9—C10—C11—C12 | −177.74 (9) |
O2—C3—C4—C5 | −178.39 (9) | C10—C11—C12—C13 | −0.09 (15) |
C2—C3—C4—C5 | 1.89 (15) | C16—O3—C13—C12 | −1.30 (15) |
C3—C4—C5—C6 | 0.16 (15) | C16—O3—C13—C14 | 178.63 (9) |
C4—C5—C6—C1 | −1.76 (15) | C11—C12—C13—O3 | 178.38 (9) |
C4—C5—C6—C7 | 177.29 (9) | C11—C12—C13—C14 | −1.55 (15) |
C2—C1—C6—C5 | 1.36 (15) | O3—C13—C14—C15 | −177.87 (9) |
C2—C1—C6—C7 | −177.65 (10) | C12—C13—C14—C15 | 2.07 (16) |
C5—C6—C7—C8 | −178.26 (10) | C13—C14—C15—C10 | −0.93 (16) |
C1—C6—C7—C8 | 0.73 (16) | C11—C10—C15—C14 | −0.70 (15) |
C6—C7—C8—C9 | 179.19 (9) | C9—C10—C15—C14 | 178.32 (9) |
C7—C8—C9—O1 | −6.32 (15) | C13—O3—C16—C17 | −177.53 (9) |
C7—C8—C9—C10 | 173.83 (9) | O3—C16—C17—C18 | −175.01 (9) |
O1—C9—C10—C11 | 178.37 (9) | C16—C17—C18—C19 | 177.23 (9) |
C8—C9—C10—C11 | −1.77 (14) | C17—C18—C19—C20 | −166.95 (10) |
O1—C9—C10—C15 | −0.58 (14) | C18—C19—C20—C21 | −179.71 (11) |
Cg2 is the centroid of C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.84 | 1.86 | 2.694 (1) | 175 |
C4—H4A···O1i | 0.95 | 2.54 | 3.213 (1) | 128 |
C16—H16A···Cg2ii | 0.99 | 2.77 | 3.666 (1) | 151 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+3. |
Experimental details
Crystal data | |
Chemical formula | C21H24O3 |
Mr | 324.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.2807 (2), 16.6322 (2), 11.4736 (2) |
β (°) | 113.439 (1) |
V (Å3) | 1799.99 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.53 × 0.46 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.960, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 35735, 5839, 4743 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.730 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.135, 1.03 |
No. of reflections | 5839 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.20 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2 is the centroid of C10–C15 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.84 | 1.86 | 2.694 (1) | 175 |
C4—H4A···O1i | 0.95 | 2.54 | 3.213 (1) | 128 |
C16—H16A···Cg2ii | 0.99 | 2.77 | 3.666 (1) | 151 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+3. |
Acknowledgements
HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No.1001/PFIZIK/811151. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007 (01). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for her postgraduate studies.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028–1031. Web of Science CrossRef PubMed CAS Google Scholar
Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134. Web of Science CSD CrossRef IUCr Journals Google Scholar
Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753. Web of Science CrossRef PubMed CAS Google Scholar
Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The biological properties of chalcones derivatives have been extensively reported (Bhat et al., 2005; Xue et al., 2004; Lee et al., 2006; Zhao et al., 2005). Synthetic and naturally occurring chalcones have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative, (I) which showed antimicrobial activity when tested against E. coli ATCC 8739 In this paper, we report the crystal structure of the title compound.
The bond lengths observed in the title compound (Fig.1) are comparable with previously reported values (Allen et al., 1987). The conformation of the enone moiety (O1/C7—C9) is s-cis as shown by the value of -6.3 (2)° for O1—C9—C8—C7 torsion angle. The enone (O1/C7—C9) moiety adopts s-cis conformation with O2—C7—C8—C9 torsion angle being -6.3 (2)°. The dihedral angle between the mean plane through the enone moiety and the benzene rings is 5.1 (1)° for C1—C6 ring and 5.6 (1)° for C10—C15 ring. The two benzene rings make a dihedral angle of 7.8 (1)° between them.
The widening of C1—C6—C7 and C6—C7—C8 angles to 123.0 (1)° and 126.9 (1)° respectively, are the consequences of the close interatomic contact between H1A and H8A which is 2.20 Å. Similarly, the strain induced by short H8A···H11A contact, which is 2.09Å resulted in the opening of C9—C10—C11 angle to 123.8 (1)°. The distortion of angles, which is relative to what is predicted in terms of hybidization principles can also be observed in the related structures previously reported by Razak, Fun, Ngaini, Rahman et al. (2009), Razak, Fun, Ngaini, Fadzillah et al. (2009a,b), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009).
The conformation assumed by the zigzag alkoxyl tail is trans. Even though the torsion angle of C12—C13—O3—C16 is -1.3 (2)°, which shows that it is roughly coplanar with the attached benzene ring, the alkoxyl tail is actually twisted about the C18—C19 bond. Within the aliphatic chain, the C17—C18—C19—C20 torsion angle shows the value of -167.0 (1)°
In the crystal structure, intermolecular O2—H2···O1(-x,y - 1/2,-z + 3/2) and C4—H4A···O1(-x,y - 1/2,-z + 3/2) interactions form bifurcated acceptor bonds generating R12(6) ring motifs (Bernstein et al., 1995). These intermolecular interactions link the molecules into extended chains along the [0 1 0] direction. The crystal structure is further stabilized by C—H···π interactions (Table 1).