inorganic compounds
Silver trimagnesium phosphate bis(hydrogenphosphate), AgMg3(PO4)(HPO4)2, with an alluaudite-like structure
aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr
The title compound, AgMg3(PO4)(HPO4)2, which has been synthesized by the hydrothermal method, has an alluaudite-like structure which is formed by edge-sharing MgO6 octahedra (one of which has symmetry 2), resulting in chains linked together by phosphate groups and hydrogen bonds. The three-dimensional framework leads to two different channels along the c axis, one of which is occupied by Ag+ ions with a square-planar coordination. The Ag+ ions are disordered over two sites in a 0.89 (3):0.11 (3) ratio. The OH groups, which point into the other type of channel, are involved in strong O—H⋯O hydrogen bonds. The title compound is isotypic with the compounds AM3H2(XO4)(HXO4)2 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type.
Related literature
For applications of related compounds, see: Kacimi et al. (2005); Korzenski et al. (1998); Trad et al. (2010). For compounds with the same structure type, see: Moore (1971); Hatert (2008); Hatert et al. (2000); Assani et al. (2010); Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003); Leroux et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810053304/fj2371sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810053304/fj2371Isup2.hkl
The crystals of the title compound has been hydrothermally synthesized starting from a mixture of magnesium oxide (0,0605 g), silver nitrate (0,1699 g), 85 wt % phosphoric acid (0,10 ml), and 12 ml of water. The hydrothermal synthesis was carried out in 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K during 24 h. The product was filtered off, washed with deionized water and air dried. The reaction product consists yellow powder besides a colorless parallelepipedic crystals of the title compound.
The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1), for the water molecule. In the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O).
In this model of the title compound, the atomic displacement parameters for Ag are higher than those of other atoms. This is due to the fact that Ag is in a channel. The same phenomenon is observed in the case of crystal structures of AgCo3(PO4)(HPO4)2; AgNi3(PO4)(HPO4)2 and AgMn3(AsO4)(HAsO4)2. However, Leroux et al. (1995) have proposed another model in the case of AgMn3(PO4)(HPO4)2 in which Ag is split into two very near sites with relatively weak atomic displacement parameters. The
is slightly better in this model.Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).
In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)
By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.
The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).
For applications of related compounds, see: Kacimi et al. (2005); Korzenski et al. (1998); Trad et al. (2010). For compounds with the same structure type, see: Moore (1971); Hatert (2008); Hatert et al. (2000); Assani et al. (2010); Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003); Leroux et al. (1995).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).AgMg3(PO4)(HPO4)2 | F(000) = 904 |
Mr = 467.73 | Dx = 3.631 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2330 reflections |
a = 11.9126 (5) Å | θ = 2.5–38.0° |
b = 12.1197 (6) Å | µ = 3.21 mm−1 |
c = 6.4780 (3) Å | T = 296 K |
β = 113.812 (2)° | Prism, colourless |
V = 855.66 (7) Å3 | 0.31 × 0.16 × 0.12 mm |
Z = 4 |
Bruker X8 APEX diffractometer | 2330 independent reflections |
Radiation source: fine-focus sealed tube | 1998 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 38.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −20→20 |
Tmin = 0.545, Tmax = 0.680 | k = −20→20 |
10680 measured reflections | l = −11→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0323P)2 + 1.8049P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
2330 reflections | Δρmax = 0.63 e Å−3 |
91 parameters | Δρmin = −1.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0013 (3) |
AgMg3(PO4)(HPO4)2 | V = 855.66 (7) Å3 |
Mr = 467.73 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.9126 (5) Å | µ = 3.21 mm−1 |
b = 12.1197 (6) Å | T = 296 K |
c = 6.4780 (3) Å | 0.31 × 0.16 × 0.12 mm |
β = 113.812 (2)° |
Bruker X8 APEX diffractometer | 2330 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1998 reflections with I > 2σ(I) |
Tmin = 0.545, Tmax = 0.680 | Rint = 0.034 |
10680 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.63 e Å−3 |
2330 reflections | Δρmin = −1.28 e Å−3 |
91 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1A | 0.5000 | 0.0261 (4) | 0.7500 | 0.0192 (3) | 0.89 (3) |
Ag1B | 0.5000 | 0.0047 (18) | 0.7500 | 0.0192 (3) | 0.11 (3) |
Mg1 | 0.5000 | 0.27737 (7) | 0.2500 | 0.00765 (14) | |
Mg2 | 0.28999 (6) | 0.16182 (5) | 0.37691 (10) | 0.00621 (10) | |
P1 | 0.0000 | 0.18606 (5) | 0.2500 | 0.00545 (10) | |
P2 | 0.22298 (4) | 0.38713 (3) | 0.11567 (7) | 0.00508 (8) | |
O1 | 0.10721 (11) | 0.10964 (10) | 0.2643 (2) | 0.00793 (19) | |
O2 | 0.03617 (10) | 0.25753 (10) | 0.46302 (18) | 0.00686 (19) | |
O3 | 0.15657 (11) | 0.32826 (10) | −0.11097 (19) | 0.00676 (19) | |
O4 | 0.21721 (11) | 0.31920 (10) | 0.30907 (18) | 0.00623 (18) | |
O5 | 0.16491 (11) | 0.50095 (10) | 0.1050 (2) | 0.00777 (19) | |
O6 | 0.36178 (11) | 0.40491 (10) | 0.1603 (2) | 0.00812 (19) | |
H6 | 0.3747 | 0.4749 | 0.1705 | 0.012* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1A | 0.00987 (9) | 0.0318 (8) | 0.01280 (10) | 0.000 | 0.00135 (7) | 0.000 |
Ag1B | 0.00987 (9) | 0.0318 (8) | 0.01280 (10) | 0.000 | 0.00135 (7) | 0.000 |
Mg1 | 0.0087 (3) | 0.0072 (3) | 0.0080 (3) | 0.000 | 0.0044 (3) | 0.000 |
Mg2 | 0.0076 (2) | 0.0049 (2) | 0.0068 (2) | 0.00050 (17) | 0.00358 (18) | 0.00038 (17) |
P1 | 0.0062 (2) | 0.0052 (2) | 0.0043 (2) | 0.000 | 0.00141 (17) | 0.000 |
P2 | 0.00704 (15) | 0.00373 (16) | 0.00436 (15) | 0.00011 (11) | 0.00219 (12) | 0.00006 (11) |
O1 | 0.0057 (4) | 0.0061 (5) | 0.0116 (5) | 0.0009 (3) | 0.0032 (4) | −0.0004 (4) |
O2 | 0.0064 (4) | 0.0087 (5) | 0.0049 (4) | −0.0008 (3) | 0.0017 (3) | −0.0018 (3) |
O3 | 0.0086 (5) | 0.0069 (5) | 0.0045 (4) | −0.0009 (3) | 0.0023 (3) | −0.0011 (3) |
O4 | 0.0083 (4) | 0.0058 (4) | 0.0048 (4) | 0.0001 (3) | 0.0029 (3) | 0.0013 (3) |
O5 | 0.0091 (5) | 0.0045 (4) | 0.0096 (5) | 0.0012 (3) | 0.0036 (4) | −0.0004 (3) |
O6 | 0.0067 (4) | 0.0056 (5) | 0.0123 (5) | −0.0007 (3) | 0.0042 (4) | −0.0001 (4) |
Ag1A—O5i | 2.3649 (14) | Mg2—O5i | 2.0132 (13) |
Ag1A—O5ii | 2.3649 (14) | Mg2—O3ix | 2.0672 (13) |
Ag1A—O5iii | 2.5177 (14) | Mg2—O4 | 2.0677 (13) |
Ag1A—O5iv | 2.5177 (14) | Mg2—O4iv | 2.0831 (13) |
Ag1A—Mg2 | 3.150 (3) | Mg2—O1 | 2.0954 (13) |
Ag1A—Mg2v | 3.150 (3) | Mg2—O2iv | 2.1414 (13) |
Ag1A—Ag1Bvi | 3.260 (3) | Mg2—Mg2iv | 3.0408 (12) |
Ag1A—Ag1Bvii | 3.260 (3) | Mg2—P2 | 3.1411 (7) |
Ag1A—Ag1Avi | 3.3001 (19) | Mg2—P2ix | 3.1874 (7) |
Ag1A—Ag1Avii | 3.3001 (19) | P1—O2 | 1.5363 (12) |
Ag1B—O5i | 2.3457 (13) | P1—O2xi | 1.5363 (12) |
Ag1B—O5ii | 2.3457 (13) | P1—O1 | 1.5497 (12) |
Ag1B—O5iii | 2.4972 (14) | P1—O1xi | 1.5497 (12) |
Ag1B—O5iv | 2.4972 (14) | P2—O4 | 1.5237 (12) |
Ag1B—Ag1Bvi | 3.2410 (15) | P2—O5 | 1.5322 (13) |
Ag1B—Ag1Bvii | 3.2410 (15) | P2—O3 | 1.5337 (12) |
Ag1B—Ag1Avi | 3.260 (3) | P2—O6 | 1.5742 (13) |
Ag1B—Ag1Avii | 3.260 (3) | P2—Mg2ix | 3.1874 (7) |
Ag1B—Mg2 | 3.293 (12) | O2—Mg1iv | 2.1136 (12) |
Ag1B—Mg2v | 3.293 (12) | O2—Mg2iv | 2.1414 (13) |
Ag1B—Mg1vi | 3.42 (2) | O3—Mg2ix | 2.0672 (13) |
Mg1—O2viii | 2.1136 (12) | O3—Mg1ix | 2.1384 (13) |
Mg1—O2iv | 2.1136 (12) | O4—Mg2iv | 2.0831 (13) |
Mg1—O3ix | 2.1383 (13) | O5—Mg2xii | 2.0133 (13) |
Mg1—O3iii | 2.1383 (13) | O5—Ag1Bxiii | 2.3457 (13) |
Mg1—O6 | 2.1600 (14) | O5—Ag1Axiii | 2.3649 (14) |
Mg1—O6x | 2.1601 (14) | O5—Ag1Biv | 2.4972 (14) |
Mg1—Mg2x | 3.2491 (7) | O5—Ag1Aiv | 2.5177 (14) |
Mg1—Mg2 | 3.2492 (7) | O6—H6 | 0.8600 |
Mg1—Ag1Bvi | 3.42 (2) | ||
O5i—Ag1A—O5ii | 165.2 (2) | O6x—Mg1—Mg2 | 145.25 (4) |
O5i—Ag1A—O5iii | 95.01 (5) | Mg2x—Mg1—Mg2 | 128.94 (3) |
O5ii—Ag1A—O5iii | 83.06 (5) | O2viii—Mg1—Ag1Bvi | 78.46 (4) |
O5i—Ag1A—O5iv | 83.06 (5) | O2iv—Mg1—Ag1Bvi | 78.46 (4) |
O5ii—Ag1A—O5iv | 95.01 (5) | O3ix—Mg1—Ag1Bvi | 53.22 (4) |
O5iii—Ag1A—O5iv | 165.0 (2) | O3iii—Mg1—Ag1Bvi | 53.22 (4) |
O5i—Ag1A—Mg2 | 39.70 (5) | O6—Mg1—Ag1Bvi | 135.69 (4) |
O5ii—Ag1A—Mg2 | 154.68 (19) | O6x—Mg1—Ag1Bvi | 135.70 (4) |
O5iii—Ag1A—Mg2 | 106.22 (6) | Mg2x—Mg1—Ag1Bvi | 64.468 (17) |
O5iv—Ag1A—Mg2 | 81.75 (5) | Mg2—Mg1—Ag1Bvi | 64.467 (17) |
O5i—Ag1A—Mg2v | 154.68 (19) | O5i—Mg2—O3ix | 86.56 (5) |
O5ii—Ag1A—Mg2v | 39.70 (5) | O5i—Mg2—O4 | 170.04 (6) |
O5iii—Ag1A—Mg2v | 81.75 (5) | O3ix—Mg2—O4 | 90.74 (5) |
O5iv—Ag1A—Mg2v | 106.22 (6) | O5i—Mg2—O4iv | 99.52 (5) |
Mg2—Ag1A—Mg2v | 117.04 (15) | O3ix—Mg2—O4iv | 162.82 (6) |
O5i—Ag1A—Ag1Bvi | 49.64 (5) | O4—Mg2—O4iv | 85.79 (5) |
O5ii—Ag1A—Ag1Bvi | 128.18 (15) | O5i—Mg2—O1 | 86.75 (5) |
O5iii—Ag1A—Ag1Bvi | 45.70 (5) | O3ix—Mg2—O1 | 110.73 (5) |
O5iv—Ag1A—Ag1Bvi | 131.97 (16) | O4—Mg2—O1 | 85.23 (5) |
Mg2—Ag1A—Ag1Bvi | 67.4 (3) | O4iv—Mg2—O1 | 85.78 (5) |
Mg2v—Ag1A—Ag1Bvi | 120.2 (3) | O5i—Mg2—O2iv | 103.34 (5) |
O5i—Ag1A—Ag1Bvii | 128.18 (15) | O3ix—Mg2—O2iv | 79.28 (5) |
O5ii—Ag1A—Ag1Bvii | 49.64 (5) | O4—Mg2—O2iv | 85.55 (5) |
O5iii—Ag1A—Ag1Bvii | 131.97 (16) | O4iv—Mg2—O2iv | 83.67 (5) |
O5iv—Ag1A—Ag1Bvii | 45.70 (5) | O1—Mg2—O2iv | 166.46 (6) |
Mg2—Ag1A—Ag1Bvii | 120.2 (3) | O5i—Mg2—Mg2iv | 141.54 (5) |
Mg2v—Ag1A—Ag1Bvii | 67.4 (3) | O3ix—Mg2—Mg2iv | 131.55 (5) |
Ag1Bvi—Ag1A—Ag1Bvii | 166.9 (9) | O4—Mg2—Mg2iv | 43.09 (3) |
O5i—Ag1A—Ag1Avi | 49.46 (4) | O4iv—Mg2—Mg2iv | 42.70 (3) |
O5ii—Ag1A—Ag1Avi | 126.91 (10) | O1—Mg2—Mg2iv | 83.86 (4) |
O5iii—Ag1A—Ag1Avi | 45.55 (3) | O2iv—Mg2—Mg2iv | 82.63 (4) |
O5iv—Ag1A—Ag1Avi | 130.57 (10) | O5i—Mg2—P2 | 151.29 (4) |
Mg2—Ag1A—Ag1Avi | 70.23 (7) | O3ix—Mg2—P2 | 66.25 (4) |
Mg2v—Ag1A—Ag1Avi | 122.57 (9) | O4—Mg2—P2 | 24.50 (3) |
Ag1Bvi—Ag1A—Ag1Avi | 4.5 (3) | O4iv—Mg2—P2 | 109.17 (4) |
Ag1Bvii—Ag1A—Ag1Avi | 162.4 (6) | O1—Mg2—P2 | 94.16 (4) |
O5i—Ag1A—Ag1Avii | 126.91 (10) | O2iv—Mg2—P2 | 81.36 (4) |
O5ii—Ag1A—Ag1Avii | 49.46 (4) | Mg2iv—Mg2—P2 | 66.81 (2) |
O5iii—Ag1A—Ag1Avii | 130.57 (10) | O5i—Mg2—Ag1A | 48.62 (8) |
O5iv—Ag1A—Ag1Avii | 45.55 (3) | O3ix—Mg2—Ag1A | 104.68 (4) |
Mg2—Ag1A—Ag1Avii | 122.57 (9) | O4—Mg2—Ag1A | 141.24 (8) |
Mg2v—Ag1A—Ag1Avii | 70.23 (7) | O4iv—Mg2—Ag1A | 68.99 (5) |
Ag1Bvi—Ag1A—Ag1Avii | 162.4 (6) | O1—Mg2—Ag1A | 120.08 (7) |
Ag1Bvii—Ag1A—Ag1Avii | 4.5 (3) | O2iv—Mg2—Ag1A | 63.49 (8) |
Ag1Avi—Ag1A—Ag1Avii | 157.9 (3) | Mg2iv—Mg2—Ag1A | 106.54 (6) |
O5i—Ag1B—O5ii | 177.8 (10) | P2—Mg2—Ag1A | 144.85 (7) |
O5i—Ag1B—O5iii | 96.05 (5) | O5i—Mg2—P2ix | 77.41 (4) |
O5ii—Ag1B—O5iii | 83.89 (5) | O3ix—Mg2—P2ix | 23.55 (3) |
O5i—Ag1B—O5iv | 83.89 (5) | O4—Mg2—P2ix | 96.44 (4) |
O5ii—Ag1B—O5iv | 96.05 (5) | O4iv—Mg2—P2ix | 173.57 (4) |
O5iii—Ag1B—O5iv | 176.9 (10) | O1—Mg2—P2ix | 88.39 (4) |
O5i—Ag1B—Ag1Bvi | 50.02 (3) | O2iv—Mg2—P2ix | 102.49 (4) |
O5ii—Ag1B—Ag1Bvi | 129.88 (8) | Mg2iv—Mg2—P2ix | 139.20 (3) |
O5iii—Ag1B—Ag1Bvi | 46.03 (3) | P2—Mg2—P2ix | 73.940 (17) |
O5iv—Ag1B—Ag1Bvi | 133.82 (10) | Ag1A—Mg2—P2ix | 111.92 (4) |
O5i—Ag1B—Ag1Bvii | 129.88 (8) | O5i—Mg2—Mg1 | 102.56 (4) |
O5ii—Ag1B—Ag1Bvii | 50.02 (3) | O3ix—Mg2—Mg1 | 40.22 (3) |
O5iii—Ag1B—Ag1Bvii | 133.82 (10) | O4—Mg2—Mg1 | 81.27 (4) |
O5iv—Ag1B—Ag1Bvii | 46.03 (3) | O4iv—Mg2—Mg1 | 122.61 (4) |
Ag1Bvi—Ag1B—Ag1Bvii | 176.0 (15) | O1—Mg2—Mg1 | 147.15 (4) |
O5i—Ag1B—Ag1Avi | 50.19 (5) | O2iv—Mg2—Mg1 | 39.90 (3) |
O5ii—Ag1B—Ag1Avi | 129.49 (14) | Mg2iv—Mg2—Mg1 | 105.43 (3) |
O5iii—Ag1B—Ag1Avi | 46.19 (4) | P2—Mg2—Mg1 | 62.814 (18) |
O5iv—Ag1B—Ag1Avi | 133.32 (16) | Ag1A—Mg2—Mg1 | 88.00 (4) |
Ag1Bvi—Ag1B—Ag1Avi | 4.6 (3) | P2ix—Mg2—Mg1 | 63.765 (15) |
Ag1Bvii—Ag1B—Ag1Avi | 171.4 (12) | O5i—Mg2—Ag1B | 44.9 (3) |
O5i—Ag1B—Ag1Avii | 129.49 (14) | O3ix—Mg2—Ag1B | 104.30 (5) |
O5ii—Ag1B—Ag1Avii | 50.19 (5) | O4—Mg2—Ag1B | 144.9 (3) |
O5iii—Ag1B—Ag1Avii | 133.32 (16) | O4iv—Mg2—Ag1B | 70.47 (13) |
O5iv—Ag1B—Ag1Avii | 46.19 (4) | O1—Mg2—Ag1B | 117.1 (2) |
Ag1Bvi—Ag1B—Ag1Avii | 171.4 (12) | O2iv—Mg2—Ag1B | 67.0 (3) |
Ag1Bvii—Ag1B—Ag1Avii | 4.6 (3) | Mg2iv—Mg2—Ag1B | 109.1 (2) |
Ag1Avi—Ag1B—Ag1Avii | 166.9 (9) | P2—Mg2—Ag1B | 148.3 (3) |
O5i—Ag1B—Mg2 | 37.3 (2) | Ag1A—Mg2—Ag1B | 3.9 (2) |
O5ii—Ag1B—Mg2 | 144.9 (8) | P2ix—Mg2—Ag1B | 110.03 (15) |
O5iii—Ag1B—Mg2 | 102.7 (3) | Mg1—Mg2—Ag1B | 90.03 (16) |
O5iv—Ag1B—Mg2 | 79.2 (2) | O2—P1—O2xi | 111.36 (10) |
Ag1Bvi—Ag1B—Mg2 | 66.0 (4) | O2—P1—O1 | 110.96 (6) |
Ag1Bvii—Ag1B—Mg2 | 116.6 (6) | O2xi—P1—O1 | 108.44 (6) |
Ag1Avi—Ag1B—Mg2 | 69.01 (18) | O2—P1—O1xi | 108.44 (6) |
Ag1Avii—Ag1B—Mg2 | 119.4 (3) | O2xi—P1—O1xi | 110.95 (6) |
O5i—Ag1B—Mg2v | 144.9 (8) | O1—P1—O1xi | 106.60 (10) |
O5ii—Ag1B—Mg2v | 37.3 (2) | O4—P2—O5 | 110.74 (7) |
O5iii—Ag1B—Mg2v | 79.2 (2) | O4—P2—O3 | 111.02 (7) |
O5iv—Ag1B—Mg2v | 102.7 (3) | O5—P2—O3 | 109.06 (7) |
Ag1Bvi—Ag1B—Mg2v | 116.6 (6) | O4—P2—O6 | 108.40 (7) |
Ag1Bvii—Ag1B—Mg2v | 66.0 (4) | O5—P2—O6 | 107.86 (7) |
Ag1Avi—Ag1B—Mg2v | 119.4 (3) | O3—P2—O6 | 109.70 (7) |
Ag1Avii—Ag1B—Mg2v | 69.01 (18) | O4—P2—Mg2 | 34.24 (5) |
Mg2—Ag1B—Mg2v | 109.3 (6) | O5—P2—Mg2 | 144.97 (5) |
O5i—Ag1B—Mg1vi | 88.9 (5) | O3—P2—Mg2 | 91.84 (5) |
O5ii—Ag1B—Mg1vi | 88.9 (5) | O6—P2—Mg2 | 90.03 (5) |
O5iii—Ag1B—Mg1vi | 88.4 (5) | O4—P2—Mg2ix | 136.27 (5) |
O5iv—Ag1B—Mg1vi | 88.4 (5) | O5—P2—Mg2ix | 106.49 (5) |
Ag1Bvi—Ag1B—Mg1vi | 88.0 (8) | O3—P2—Mg2ix | 32.58 (5) |
Ag1Bvii—Ag1B—Mg1vi | 88.0 (8) | O6—P2—Mg2ix | 80.34 (5) |
Ag1Avi—Ag1B—Mg1vi | 83.4 (5) | Mg2—P2—Mg2ix | 106.060 (17) |
Ag1Avii—Ag1B—Mg1vi | 83.4 (5) | P1—O1—Mg2 | 123.77 (7) |
Mg2—Ag1B—Mg1vi | 125.3 (3) | P1—O2—Mg1iv | 126.47 (7) |
Mg2v—Ag1B—Mg1vi | 125.3 (3) | P1—O2—Mg2iv | 123.92 (7) |
O2viii—Mg1—O2iv | 156.91 (8) | Mg1iv—O2—Mg2iv | 99.56 (5) |
O2viii—Mg1—O3ix | 87.86 (5) | P2—O3—Mg2ix | 123.87 (7) |
O2iv—Mg1—O3ix | 78.33 (5) | P2—O3—Mg1ix | 134.97 (7) |
O2viii—Mg1—O3iii | 78.33 (5) | Mg2ix—O3—Mg1ix | 101.16 (5) |
O2iv—Mg1—O3iii | 87.86 (5) | P2—O4—Mg2 | 121.26 (7) |
O3ix—Mg1—O3iii | 106.45 (7) | P2—O4—Mg2iv | 140.95 (7) |
O2viii—Mg1—O6 | 108.09 (5) | Mg2—O4—Mg2iv | 94.21 (5) |
O2iv—Mg1—O6 | 88.61 (5) | P2—O5—Mg2xii | 139.84 (8) |
O3ix—Mg1—O6 | 82.80 (4) | P2—O5—Ag1Bxiii | 104.2 (5) |
O3iii—Mg1—O6 | 169.20 (5) | Mg2xii—O5—Ag1Bxiii | 97.9 (5) |
O2viii—Mg1—O6x | 88.61 (5) | P2—O5—Ag1Axiii | 110.03 (12) |
O2iv—Mg1—O6x | 108.09 (5) | Mg2xii—O5—Ag1Axiii | 91.67 (12) |
O3ix—Mg1—O6x | 169.20 (5) | Ag1Bxiii—O5—Ag1Axiii | 6.3 (4) |
O3iii—Mg1—O6x | 82.80 (4) | P2—O5—Ag1Biv | 111.6 (5) |
O6—Mg1—O6x | 88.61 (7) | Mg2xii—O5—Ag1Biv | 103.7 (5) |
O2viii—Mg1—Mg2x | 40.53 (3) | Ag1Bxiii—O5—Ag1Biv | 83.95 (5) |
O2iv—Mg1—Mg2x | 125.98 (4) | Ag1Axiii—O5—Ag1Biv | 84.17 (8) |
O3ix—Mg1—Mg2x | 105.38 (4) | P2—O5—Ag1Aiv | 105.79 (12) |
O3iii—Mg1—Mg2x | 38.62 (3) | Mg2xii—O5—Ag1Aiv | 109.53 (12) |
O6—Mg1—Mg2x | 145.25 (4) | Ag1Bxiii—O5—Ag1Aiv | 84.12 (8) |
O6x—Mg1—Mg2x | 78.19 (3) | Ag1Axiii—O5—Ag1Aiv | 84.99 (5) |
O2viii—Mg1—Mg2 | 125.98 (4) | Ag1Biv—O5—Ag1Aiv | 5.9 (4) |
O2iv—Mg1—Mg2 | 40.53 (3) | P2—O6—Mg1 | 125.56 (7) |
O3ix—Mg1—Mg2 | 38.62 (3) | P2—O6—H6 | 106.9 |
O3iii—Mg1—Mg2 | 105.38 (4) | Mg1—O6—H6 | 126.3 |
O6—Mg1—Mg2 | 78.19 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, y−1/2, z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1, y, −z+3/2; (vi) −x+1, −y, −z+1; (vii) −x+1, −y, −z+2; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+1/2, −y+1/2, −z; (x) −x+1, y, −z+1/2; (xi) −x, y, −z+1/2; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) x−1/2, y+1/2, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O1xii | 0.86 | 1.68 | 2.5266 (17) | 168 |
Symmetry code: (xii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | AgMg3(PO4)(HPO4)2 |
Mr | 467.73 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 11.9126 (5), 12.1197 (6), 6.4780 (3) |
β (°) | 113.812 (2) |
V (Å3) | 855.66 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.21 |
Crystal size (mm) | 0.31 × 0.16 × 0.12 |
Data collection | |
Diffractometer | Bruker X8 APEX |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.545, 0.680 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10680, 2330, 1998 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.866 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.075, 1.08 |
No. of reflections | 2330 |
No. of parameters | 91 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −1.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6···O1i | 0.86 | 1.68 | 2.5266 (17) | 168 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74. Web of Science CrossRef IUCr Journals Google Scholar
Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hatert, F. (2008). J. Solid State Chem. 181, 1258–1272. Web of Science CrossRef CAS Google Scholar
Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857. CAS Google Scholar
Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693. Web of Science CrossRef CAS Google Scholar
Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142–160. Web of Science CrossRef Google Scholar
Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212. CrossRef CAS Web of Science Google Scholar
Moore, P. B. (1971). Am. Mineral. 56, 1955–1975. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stock, N. & Bein, T. (2003). Solid State Sci. 5, 1207–1210. Web of Science CrossRef CAS Google Scholar
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).
In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)
By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.
The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).