inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Silver trimagnesium phosphate bis­­(hydrogenphosphate), AgMg3(PO4)(HPO4)2, with an alluaudite-like structure

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr

(Received 29 November 2010; accepted 19 December 2010; online 24 December 2010)

The title compound, AgMg3(PO4)(HPO4)2, which has been synthesized by the hydro­thermal method, has an alluaudite-like structure which is formed by edge-sharing MgO6 octa­hedra (one of which has symmetry 2), resulting in chains linked together by phosphate groups and hydrogen bonds. The three-dimensional framework leads to two different channels along the c axis, one of which is occupied by Ag+ ions with a square-planar coordination. The Ag+ ions are disordered over two sites in a 0.89 (3):0.11 (3) ratio. The OH groups, which point into the other type of channel, are involved in strong O—H⋯O hydrogen bonds. The title compound is isotypic with the compounds AM3H2(XO4)(HXO4)2 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type.

Related literature

For applications of related compounds, see: Kacimi et al. (2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]); Korzenski et al. (1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142-160.]); Trad et al. (2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]). For compounds with the same structure type, see: Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]); Hatert (2008[Hatert, F. (2008). J. Solid State Chem. 181, 1258-1272.]); Hatert et al. (2000[Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847-857.]); Assani et al. (2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.]); Guesmi & Driss (2002[Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16-i17.]); Ben Smail & Jouini (2002[Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61-i62.]); Stock & Bein (2003[Stock, N. & Bein, T. (2003). Solid State Sci. 5, 1207-1210.]); Leroux et al. (1995[Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206-212.]).

Experimental

Crystal data
  • AgMg3(PO4)(HPO4)2

  • Mr = 467.73

  • Monoclinic, C 2/c

  • a = 11.9126 (5) Å

  • b = 12.1197 (6) Å

  • c = 6.4780 (3) Å

  • β = 113.812 (2)°

  • V = 855.66 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 296 K

  • 0.31 × 0.16 × 0.12 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.545, Tmax = 0.680

  • 10680 measured reflections

  • 2330 independent reflections

  • 1998 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.075

  • S = 1.08

  • 2330 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O1i 0.86 1.68 2.5266 (17) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).

In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)

By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.

The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).

Related literature top

For applications of related compounds, see: Kacimi et al. (2005); Korzenski et al. (1998); Trad et al. (2010). For compounds with the same structure type, see: Moore (1971); Hatert (2008); Hatert et al. (2000); Assani et al. (2010); Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003); Leroux et al. (1995).

Experimental top

The crystals of the title compound has been hydrothermally synthesized starting from a mixture of magnesium oxide (0,0605 g), silver nitrate (0,1699 g), 85 wt % phosphoric acid (0,10 ml), and 12 ml of water. The hydrothermal synthesis was carried out in 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K during 24 h. The product was filtered off, washed with deionized water and air dried. The reaction product consists yellow powder besides a colorless parallelepipedic crystals of the title compound.

Refinement top

The O-bound H atoms were initially located in a difference map and refined with O—H distance restraints of 0.86 (1), for the water molecule. In the last cycle they were refined in the riding model approximation with Uiso(H) set to 1.5Ueq(O).

In this model of the title compound, the atomic displacement parameters for Ag are higher than those of other atoms. This is due to the fact that Ag is in a channel. The same phenomenon is observed in the case of crystal structures of AgCo3(PO4)(HPO4)2; AgNi3(PO4)(HPO4)2 and AgMn3(AsO4)(HAsO4)2. However, Leroux et al. (1995) have proposed another model in the case of AgMn3(PO4)(HPO4)2 in which Ag is split into two very near sites with relatively weak atomic displacement parameters. The refinement is slightly better in this model.

Structure description top

Compounds belonging to the large structural family of alluaudite derivatives (Moore (1971); Hatert et al. (2000)) have been of continuing interest due to their structural properties, such as their open-framework architecture and their physical properties. Accordingly, the alluaudite structure exhibit an appropriate frameworks for a variety of applications, such as corrosion inhibition, passivation of metal surfaces, and catalysis (Hatert (2008); Korzenski et al. (1998); Kacimi et al. (2005)).

In addition, the accommodation of the monovalent cations in the one-dimensional channels of the alluaudite-like structures is strongly required for conductivity properties and have offered a great field of application as positive electrode in the lithium and sodium batteries (Trad et al. 2010)

By means of the powerful hydrothermal technique, our attempts to synthesize new monovalent divalent cations phosphate with alluaudite –like structure have successfully allowed to obtain a new silver magnesium phosphate phase. The present paper aims to report detailed hydrothermal synthesis and structural characterization of the title compound.

The structure is built up from MgO6 octahedra, PO4 and PO3(OH) tetrahedra, sharing corners and edges to form a three-dimensional framework as schown in Fig.1 and Fig.2. The three-dimensional network delimits two types of hexagonal channels which accommodate Ag+ cations and OH groups (see Fig.2). In the channels, each silver atoms is surrounded by four O atoms with Ag–O bond length varies between 2.3621 and 2.5150 Å. The same Ag+coordination sphere is observed in γ-AgZnPO4 (Assani et al. (2010)). Moreover the OH groups, pointing into one type of channel, are involved in strong hydrogen bonds. The silver trimagnesium phosphate bis-(hydrogenphosphate): AgMg3(PO4)(HPO4)2, is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Mn, Co or Ni, and X = P or As) of the alluaudite structure type (Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003).

For applications of related compounds, see: Kacimi et al. (2005); Korzenski et al. (1998); Trad et al. (2010). For compounds with the same structure type, see: Moore (1971); Hatert (2008); Hatert et al. (2000); Assani et al. (2010); Guesmi & Driss (2002); Ben Smail & Jouini (2002); Stock & Bein (2003); Leroux et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of AgMg3(PO4)(HPO4)2 crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered silver atom is shown. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x + 1/2, y - 1/2, z + 1; (iii) x + 1/2, -y + 1/2, z + 1/2; (iv) -x + 1/2, -y + 1/2, -z + 1; (v) -x + 1, y, -z + 3/2; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y, -z + 2; (viii) x + 1/2, -y + 1/2, z - 1/2; (ix) -x + 1/2, -y + 1/2, -z; (x) -x + 1, y, -z + 1/2; (xi) -x, y, -z + 1/2; (xii) -x + 1/2, y + 1/2, -z + 1/2; (xiii) x - 1/2, y + 1/2, z - 1.
[Figure 2] Fig. 2. A three-dimensional polyhedral view of the crystal structure of the AgMg3(PO4)(HPO4)2, showing the channels running along the c direction,at 0,0,z and 1/2,0,z. Hydrogen bonds are indicated by dashed lines.
Silver trimagnesium phosphate bis(hydrogenphosphate) top
Crystal data top
AgMg3(PO4)(HPO4)2F(000) = 904
Mr = 467.73Dx = 3.631 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2330 reflections
a = 11.9126 (5) Åθ = 2.5–38.0°
b = 12.1197 (6) ŵ = 3.21 mm1
c = 6.4780 (3) ÅT = 296 K
β = 113.812 (2)°Prism, colourless
V = 855.66 (7) Å30.31 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2330 independent reflections
Radiation source: fine-focus sealed tube1998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 38.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.545, Tmax = 0.680k = 2020
10680 measured reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.8049P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2330 reflectionsΔρmax = 0.63 e Å3
91 parametersΔρmin = 1.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (3)
Crystal data top
AgMg3(PO4)(HPO4)2V = 855.66 (7) Å3
Mr = 467.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.9126 (5) ŵ = 3.21 mm1
b = 12.1197 (6) ÅT = 296 K
c = 6.4780 (3) Å0.31 × 0.16 × 0.12 mm
β = 113.812 (2)°
Data collection top
Bruker X8 APEX
diffractometer
2330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1998 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.680Rint = 0.034
10680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.08Δρmax = 0.63 e Å3
2330 reflectionsΔρmin = 1.28 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag1A0.50000.0261 (4)0.75000.0192 (3)0.89 (3)
Ag1B0.50000.0047 (18)0.75000.0192 (3)0.11 (3)
Mg10.50000.27737 (7)0.25000.00765 (14)
Mg20.28999 (6)0.16182 (5)0.37691 (10)0.00621 (10)
P10.00000.18606 (5)0.25000.00545 (10)
P20.22298 (4)0.38713 (3)0.11567 (7)0.00508 (8)
O10.10721 (11)0.10964 (10)0.2643 (2)0.00793 (19)
O20.03617 (10)0.25753 (10)0.46302 (18)0.00686 (19)
O30.15657 (11)0.32826 (10)0.11097 (19)0.00676 (19)
O40.21721 (11)0.31920 (10)0.30907 (18)0.00623 (18)
O50.16491 (11)0.50095 (10)0.1050 (2)0.00777 (19)
O60.36178 (11)0.40491 (10)0.1603 (2)0.00812 (19)
H60.37470.47490.17050.012*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag1A0.00987 (9)0.0318 (8)0.01280 (10)0.0000.00135 (7)0.000
Ag1B0.00987 (9)0.0318 (8)0.01280 (10)0.0000.00135 (7)0.000
Mg10.0087 (3)0.0072 (3)0.0080 (3)0.0000.0044 (3)0.000
Mg20.0076 (2)0.0049 (2)0.0068 (2)0.00050 (17)0.00358 (18)0.00038 (17)
P10.0062 (2)0.0052 (2)0.0043 (2)0.0000.00141 (17)0.000
P20.00704 (15)0.00373 (16)0.00436 (15)0.00011 (11)0.00219 (12)0.00006 (11)
O10.0057 (4)0.0061 (5)0.0116 (5)0.0009 (3)0.0032 (4)0.0004 (4)
O20.0064 (4)0.0087 (5)0.0049 (4)0.0008 (3)0.0017 (3)0.0018 (3)
O30.0086 (5)0.0069 (5)0.0045 (4)0.0009 (3)0.0023 (3)0.0011 (3)
O40.0083 (4)0.0058 (4)0.0048 (4)0.0001 (3)0.0029 (3)0.0013 (3)
O50.0091 (5)0.0045 (4)0.0096 (5)0.0012 (3)0.0036 (4)0.0004 (3)
O60.0067 (4)0.0056 (5)0.0123 (5)0.0007 (3)0.0042 (4)0.0001 (4)
Geometric parameters (Å, º) top
Ag1A—O5i2.3649 (14)Mg2—O5i2.0132 (13)
Ag1A—O5ii2.3649 (14)Mg2—O3ix2.0672 (13)
Ag1A—O5iii2.5177 (14)Mg2—O42.0677 (13)
Ag1A—O5iv2.5177 (14)Mg2—O4iv2.0831 (13)
Ag1A—Mg23.150 (3)Mg2—O12.0954 (13)
Ag1A—Mg2v3.150 (3)Mg2—O2iv2.1414 (13)
Ag1A—Ag1Bvi3.260 (3)Mg2—Mg2iv3.0408 (12)
Ag1A—Ag1Bvii3.260 (3)Mg2—P23.1411 (7)
Ag1A—Ag1Avi3.3001 (19)Mg2—P2ix3.1874 (7)
Ag1A—Ag1Avii3.3001 (19)P1—O21.5363 (12)
Ag1B—O5i2.3457 (13)P1—O2xi1.5363 (12)
Ag1B—O5ii2.3457 (13)P1—O11.5497 (12)
Ag1B—O5iii2.4972 (14)P1—O1xi1.5497 (12)
Ag1B—O5iv2.4972 (14)P2—O41.5237 (12)
Ag1B—Ag1Bvi3.2410 (15)P2—O51.5322 (13)
Ag1B—Ag1Bvii3.2410 (15)P2—O31.5337 (12)
Ag1B—Ag1Avi3.260 (3)P2—O61.5742 (13)
Ag1B—Ag1Avii3.260 (3)P2—Mg2ix3.1874 (7)
Ag1B—Mg23.293 (12)O2—Mg1iv2.1136 (12)
Ag1B—Mg2v3.293 (12)O2—Mg2iv2.1414 (13)
Ag1B—Mg1vi3.42 (2)O3—Mg2ix2.0672 (13)
Mg1—O2viii2.1136 (12)O3—Mg1ix2.1384 (13)
Mg1—O2iv2.1136 (12)O4—Mg2iv2.0831 (13)
Mg1—O3ix2.1383 (13)O5—Mg2xii2.0133 (13)
Mg1—O3iii2.1383 (13)O5—Ag1Bxiii2.3457 (13)
Mg1—O62.1600 (14)O5—Ag1Axiii2.3649 (14)
Mg1—O6x2.1601 (14)O5—Ag1Biv2.4972 (14)
Mg1—Mg2x3.2491 (7)O5—Ag1Aiv2.5177 (14)
Mg1—Mg23.2492 (7)O6—H60.8600
Mg1—Ag1Bvi3.42 (2)
O5i—Ag1A—O5ii165.2 (2)O6x—Mg1—Mg2145.25 (4)
O5i—Ag1A—O5iii95.01 (5)Mg2x—Mg1—Mg2128.94 (3)
O5ii—Ag1A—O5iii83.06 (5)O2viii—Mg1—Ag1Bvi78.46 (4)
O5i—Ag1A—O5iv83.06 (5)O2iv—Mg1—Ag1Bvi78.46 (4)
O5ii—Ag1A—O5iv95.01 (5)O3ix—Mg1—Ag1Bvi53.22 (4)
O5iii—Ag1A—O5iv165.0 (2)O3iii—Mg1—Ag1Bvi53.22 (4)
O5i—Ag1A—Mg239.70 (5)O6—Mg1—Ag1Bvi135.69 (4)
O5ii—Ag1A—Mg2154.68 (19)O6x—Mg1—Ag1Bvi135.70 (4)
O5iii—Ag1A—Mg2106.22 (6)Mg2x—Mg1—Ag1Bvi64.468 (17)
O5iv—Ag1A—Mg281.75 (5)Mg2—Mg1—Ag1Bvi64.467 (17)
O5i—Ag1A—Mg2v154.68 (19)O5i—Mg2—O3ix86.56 (5)
O5ii—Ag1A—Mg2v39.70 (5)O5i—Mg2—O4170.04 (6)
O5iii—Ag1A—Mg2v81.75 (5)O3ix—Mg2—O490.74 (5)
O5iv—Ag1A—Mg2v106.22 (6)O5i—Mg2—O4iv99.52 (5)
Mg2—Ag1A—Mg2v117.04 (15)O3ix—Mg2—O4iv162.82 (6)
O5i—Ag1A—Ag1Bvi49.64 (5)O4—Mg2—O4iv85.79 (5)
O5ii—Ag1A—Ag1Bvi128.18 (15)O5i—Mg2—O186.75 (5)
O5iii—Ag1A—Ag1Bvi45.70 (5)O3ix—Mg2—O1110.73 (5)
O5iv—Ag1A—Ag1Bvi131.97 (16)O4—Mg2—O185.23 (5)
Mg2—Ag1A—Ag1Bvi67.4 (3)O4iv—Mg2—O185.78 (5)
Mg2v—Ag1A—Ag1Bvi120.2 (3)O5i—Mg2—O2iv103.34 (5)
O5i—Ag1A—Ag1Bvii128.18 (15)O3ix—Mg2—O2iv79.28 (5)
O5ii—Ag1A—Ag1Bvii49.64 (5)O4—Mg2—O2iv85.55 (5)
O5iii—Ag1A—Ag1Bvii131.97 (16)O4iv—Mg2—O2iv83.67 (5)
O5iv—Ag1A—Ag1Bvii45.70 (5)O1—Mg2—O2iv166.46 (6)
Mg2—Ag1A—Ag1Bvii120.2 (3)O5i—Mg2—Mg2iv141.54 (5)
Mg2v—Ag1A—Ag1Bvii67.4 (3)O3ix—Mg2—Mg2iv131.55 (5)
Ag1Bvi—Ag1A—Ag1Bvii166.9 (9)O4—Mg2—Mg2iv43.09 (3)
O5i—Ag1A—Ag1Avi49.46 (4)O4iv—Mg2—Mg2iv42.70 (3)
O5ii—Ag1A—Ag1Avi126.91 (10)O1—Mg2—Mg2iv83.86 (4)
O5iii—Ag1A—Ag1Avi45.55 (3)O2iv—Mg2—Mg2iv82.63 (4)
O5iv—Ag1A—Ag1Avi130.57 (10)O5i—Mg2—P2151.29 (4)
Mg2—Ag1A—Ag1Avi70.23 (7)O3ix—Mg2—P266.25 (4)
Mg2v—Ag1A—Ag1Avi122.57 (9)O4—Mg2—P224.50 (3)
Ag1Bvi—Ag1A—Ag1Avi4.5 (3)O4iv—Mg2—P2109.17 (4)
Ag1Bvii—Ag1A—Ag1Avi162.4 (6)O1—Mg2—P294.16 (4)
O5i—Ag1A—Ag1Avii126.91 (10)O2iv—Mg2—P281.36 (4)
O5ii—Ag1A—Ag1Avii49.46 (4)Mg2iv—Mg2—P266.81 (2)
O5iii—Ag1A—Ag1Avii130.57 (10)O5i—Mg2—Ag1A48.62 (8)
O5iv—Ag1A—Ag1Avii45.55 (3)O3ix—Mg2—Ag1A104.68 (4)
Mg2—Ag1A—Ag1Avii122.57 (9)O4—Mg2—Ag1A141.24 (8)
Mg2v—Ag1A—Ag1Avii70.23 (7)O4iv—Mg2—Ag1A68.99 (5)
Ag1Bvi—Ag1A—Ag1Avii162.4 (6)O1—Mg2—Ag1A120.08 (7)
Ag1Bvii—Ag1A—Ag1Avii4.5 (3)O2iv—Mg2—Ag1A63.49 (8)
Ag1Avi—Ag1A—Ag1Avii157.9 (3)Mg2iv—Mg2—Ag1A106.54 (6)
O5i—Ag1B—O5ii177.8 (10)P2—Mg2—Ag1A144.85 (7)
O5i—Ag1B—O5iii96.05 (5)O5i—Mg2—P2ix77.41 (4)
O5ii—Ag1B—O5iii83.89 (5)O3ix—Mg2—P2ix23.55 (3)
O5i—Ag1B—O5iv83.89 (5)O4—Mg2—P2ix96.44 (4)
O5ii—Ag1B—O5iv96.05 (5)O4iv—Mg2—P2ix173.57 (4)
O5iii—Ag1B—O5iv176.9 (10)O1—Mg2—P2ix88.39 (4)
O5i—Ag1B—Ag1Bvi50.02 (3)O2iv—Mg2—P2ix102.49 (4)
O5ii—Ag1B—Ag1Bvi129.88 (8)Mg2iv—Mg2—P2ix139.20 (3)
O5iii—Ag1B—Ag1Bvi46.03 (3)P2—Mg2—P2ix73.940 (17)
O5iv—Ag1B—Ag1Bvi133.82 (10)Ag1A—Mg2—P2ix111.92 (4)
O5i—Ag1B—Ag1Bvii129.88 (8)O5i—Mg2—Mg1102.56 (4)
O5ii—Ag1B—Ag1Bvii50.02 (3)O3ix—Mg2—Mg140.22 (3)
O5iii—Ag1B—Ag1Bvii133.82 (10)O4—Mg2—Mg181.27 (4)
O5iv—Ag1B—Ag1Bvii46.03 (3)O4iv—Mg2—Mg1122.61 (4)
Ag1Bvi—Ag1B—Ag1Bvii176.0 (15)O1—Mg2—Mg1147.15 (4)
O5i—Ag1B—Ag1Avi50.19 (5)O2iv—Mg2—Mg139.90 (3)
O5ii—Ag1B—Ag1Avi129.49 (14)Mg2iv—Mg2—Mg1105.43 (3)
O5iii—Ag1B—Ag1Avi46.19 (4)P2—Mg2—Mg162.814 (18)
O5iv—Ag1B—Ag1Avi133.32 (16)Ag1A—Mg2—Mg188.00 (4)
Ag1Bvi—Ag1B—Ag1Avi4.6 (3)P2ix—Mg2—Mg163.765 (15)
Ag1Bvii—Ag1B—Ag1Avi171.4 (12)O5i—Mg2—Ag1B44.9 (3)
O5i—Ag1B—Ag1Avii129.49 (14)O3ix—Mg2—Ag1B104.30 (5)
O5ii—Ag1B—Ag1Avii50.19 (5)O4—Mg2—Ag1B144.9 (3)
O5iii—Ag1B—Ag1Avii133.32 (16)O4iv—Mg2—Ag1B70.47 (13)
O5iv—Ag1B—Ag1Avii46.19 (4)O1—Mg2—Ag1B117.1 (2)
Ag1Bvi—Ag1B—Ag1Avii171.4 (12)O2iv—Mg2—Ag1B67.0 (3)
Ag1Bvii—Ag1B—Ag1Avii4.6 (3)Mg2iv—Mg2—Ag1B109.1 (2)
Ag1Avi—Ag1B—Ag1Avii166.9 (9)P2—Mg2—Ag1B148.3 (3)
O5i—Ag1B—Mg237.3 (2)Ag1A—Mg2—Ag1B3.9 (2)
O5ii—Ag1B—Mg2144.9 (8)P2ix—Mg2—Ag1B110.03 (15)
O5iii—Ag1B—Mg2102.7 (3)Mg1—Mg2—Ag1B90.03 (16)
O5iv—Ag1B—Mg279.2 (2)O2—P1—O2xi111.36 (10)
Ag1Bvi—Ag1B—Mg266.0 (4)O2—P1—O1110.96 (6)
Ag1Bvii—Ag1B—Mg2116.6 (6)O2xi—P1—O1108.44 (6)
Ag1Avi—Ag1B—Mg269.01 (18)O2—P1—O1xi108.44 (6)
Ag1Avii—Ag1B—Mg2119.4 (3)O2xi—P1—O1xi110.95 (6)
O5i—Ag1B—Mg2v144.9 (8)O1—P1—O1xi106.60 (10)
O5ii—Ag1B—Mg2v37.3 (2)O4—P2—O5110.74 (7)
O5iii—Ag1B—Mg2v79.2 (2)O4—P2—O3111.02 (7)
O5iv—Ag1B—Mg2v102.7 (3)O5—P2—O3109.06 (7)
Ag1Bvi—Ag1B—Mg2v116.6 (6)O4—P2—O6108.40 (7)
Ag1Bvii—Ag1B—Mg2v66.0 (4)O5—P2—O6107.86 (7)
Ag1Avi—Ag1B—Mg2v119.4 (3)O3—P2—O6109.70 (7)
Ag1Avii—Ag1B—Mg2v69.01 (18)O4—P2—Mg234.24 (5)
Mg2—Ag1B—Mg2v109.3 (6)O5—P2—Mg2144.97 (5)
O5i—Ag1B—Mg1vi88.9 (5)O3—P2—Mg291.84 (5)
O5ii—Ag1B—Mg1vi88.9 (5)O6—P2—Mg290.03 (5)
O5iii—Ag1B—Mg1vi88.4 (5)O4—P2—Mg2ix136.27 (5)
O5iv—Ag1B—Mg1vi88.4 (5)O5—P2—Mg2ix106.49 (5)
Ag1Bvi—Ag1B—Mg1vi88.0 (8)O3—P2—Mg2ix32.58 (5)
Ag1Bvii—Ag1B—Mg1vi88.0 (8)O6—P2—Mg2ix80.34 (5)
Ag1Avi—Ag1B—Mg1vi83.4 (5)Mg2—P2—Mg2ix106.060 (17)
Ag1Avii—Ag1B—Mg1vi83.4 (5)P1—O1—Mg2123.77 (7)
Mg2—Ag1B—Mg1vi125.3 (3)P1—O2—Mg1iv126.47 (7)
Mg2v—Ag1B—Mg1vi125.3 (3)P1—O2—Mg2iv123.92 (7)
O2viii—Mg1—O2iv156.91 (8)Mg1iv—O2—Mg2iv99.56 (5)
O2viii—Mg1—O3ix87.86 (5)P2—O3—Mg2ix123.87 (7)
O2iv—Mg1—O3ix78.33 (5)P2—O3—Mg1ix134.97 (7)
O2viii—Mg1—O3iii78.33 (5)Mg2ix—O3—Mg1ix101.16 (5)
O2iv—Mg1—O3iii87.86 (5)P2—O4—Mg2121.26 (7)
O3ix—Mg1—O3iii106.45 (7)P2—O4—Mg2iv140.95 (7)
O2viii—Mg1—O6108.09 (5)Mg2—O4—Mg2iv94.21 (5)
O2iv—Mg1—O688.61 (5)P2—O5—Mg2xii139.84 (8)
O3ix—Mg1—O682.80 (4)P2—O5—Ag1Bxiii104.2 (5)
O3iii—Mg1—O6169.20 (5)Mg2xii—O5—Ag1Bxiii97.9 (5)
O2viii—Mg1—O6x88.61 (5)P2—O5—Ag1Axiii110.03 (12)
O2iv—Mg1—O6x108.09 (5)Mg2xii—O5—Ag1Axiii91.67 (12)
O3ix—Mg1—O6x169.20 (5)Ag1Bxiii—O5—Ag1Axiii6.3 (4)
O3iii—Mg1—O6x82.80 (4)P2—O5—Ag1Biv111.6 (5)
O6—Mg1—O6x88.61 (7)Mg2xii—O5—Ag1Biv103.7 (5)
O2viii—Mg1—Mg2x40.53 (3)Ag1Bxiii—O5—Ag1Biv83.95 (5)
O2iv—Mg1—Mg2x125.98 (4)Ag1Axiii—O5—Ag1Biv84.17 (8)
O3ix—Mg1—Mg2x105.38 (4)P2—O5—Ag1Aiv105.79 (12)
O3iii—Mg1—Mg2x38.62 (3)Mg2xii—O5—Ag1Aiv109.53 (12)
O6—Mg1—Mg2x145.25 (4)Ag1Bxiii—O5—Ag1Aiv84.12 (8)
O6x—Mg1—Mg2x78.19 (3)Ag1Axiii—O5—Ag1Aiv84.99 (5)
O2viii—Mg1—Mg2125.98 (4)Ag1Biv—O5—Ag1Aiv5.9 (4)
O2iv—Mg1—Mg240.53 (3)P2—O6—Mg1125.56 (7)
O3ix—Mg1—Mg238.62 (3)P2—O6—H6106.9
O3iii—Mg1—Mg2105.38 (4)Mg1—O6—H6126.3
O6—Mg1—Mg278.19 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1, y, z+3/2; (vi) x+1, y, z+1; (vii) x+1, y, z+2; (viii) x+1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z; (x) x+1, y, z+1/2; (xi) x, y, z+1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1xii0.861.682.5266 (17)168
Symmetry code: (xii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaAgMg3(PO4)(HPO4)2
Mr467.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.9126 (5), 12.1197 (6), 6.4780 (3)
β (°) 113.812 (2)
V3)855.66 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.21
Crystal size (mm)0.31 × 0.16 × 0.12
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.545, 0.680
No. of measured, independent and
observed [I > 2σ(I)] reflections
10680, 2330, 1998
Rint0.034
(sin θ/λ)max1)0.866
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.08
No. of reflections2330
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 1.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1i0.861.682.5266 (17)168
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBen Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F. (2008). J. Solid State Chem. 181, 1258–1272.  Web of Science CrossRef CAS Google Scholar
First citationHatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847–857.  CAS Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 142–160.  Web of Science CrossRef Google Scholar
First citationLeroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206–212.  CrossRef CAS Web of Science Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. & Bein, T. (2003). Solid State Sci. 5, 1207–1210.  Web of Science CrossRef CAS Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds