metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,3-bis­­(2,4,6-tri­methyl­phen­yl)-2,3-di­hydro-1H-imidazol-2-yl­­idene]di­nitros­yl(tetra­hydro­borato-κ2H,H′)tungsten(0)

aInstitute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
*Correspondence e-mail: oblacque@aci.uzh.ch

(Received 6 December 2010; accepted 14 December 2010; online 18 December 2010)

In the title paramagnetic 19-electron neutral complex, [W(BH4)(C21H24N2)2(NO)2], the W(0) atom is coordinated by two 1,3-bis­(2,4,6-trimethyl­phen­yl)imidazol-2-yl­idene (IMes) carbene ligands, two NO groups and two H atoms of an η2-tetra­hydro­borate ligand. Depending on the number of coordination sites (n) assigned to the BH4 ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1) or as very distorted octa­hedral with the bridging H atoms filling two coordination positions (n = 2). In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å) form one octa­hedral plane, with mutually trans-oriented carbene ligands. In the crystal, mol­ecules are connected via C—H⋯O inter­actions.

Related literature

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007[Fraga-Hernández, J. (2007). PhD thesis, University of Zürich, Switzerland.]). For a related complex with the W(NO)(η2-BH4) core, see: van der Zeijden et al. (1991[Zeijden, A. A. H. van der, Shklover, V. & Berke, H. (1991). Inorg. Chem. 30, 4393-4396.]). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005[Nonnenmacher, M., Kunz, D., Rominger, F. & Oeser, T. (2005). J. Organomet. Chem. 690, 5647-5653.]); Hahn et al. (2005[Hahn, F. E., Langenhahn, V. & Pape, T. (2005). Chem. Commun. pp. 5390-5392.]); Wu et al. (2007[Wu, F., Dioumaev, V. K., Szalda, D. J., Hanson, J. & Bullock, R. M. (2007). Organometallics, 26, 5079-5090.]); Fraga-Hernández et al. (2011[Fraga-Hernández, J., Blacque, O. & Berke, H. (2011). Acta Cryst. E67, m31.]). For an overview of the first organometallic nitro­syls known, see: Enemark & Feltham (1974[Enemark, J. H. & Feltham, R. D. (1974). Coord. Chem. Rev. 13, 339-406.]); Richter-Addo & Legzdins (1988[Richter-Addo, G. B. & Legzdins, P. (1988). Chem. Rev. 88, 991-1010.]); Berke & Burger (1994[Berke, H. & Burger, P. (1994). Comments Inorg. Chem. 16, 279-312.]).

[Scheme 1]

Experimental

Crystal data
  • [W(BH4)(C21H24N2)2(NO)2]

  • Mr = 867.56

  • Monoclinic, P 21 /c

  • a = 24.7322 (13) Å

  • b = 11.2183 (5) Å

  • c = 15.0522 (8) Å

  • β = 97.643 (6)°

  • V = 4139.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 183 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.551, Tmax = 0.725

  • 48806 measured reflections

  • 9946 independent reflections

  • 5931 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.02

  • 9946 reflections

  • 490 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.07 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.32 3.040 (8) 134
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Stoe & Cie, Darmstadt, Germany.]); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of our efforts on the synthesis of novel dinitrosyl hydride and dihydride tungsten derivatives bearing sterically demanding and highly donating phosphine ligands or N-heterocyclic (NHC) carbene ligands (Fraga-Hernández, 2007), the title compound, C42H52BN6O2W, (I), was synthesized as an intermediate species.

The reaction of the recently reported compound W(NO)2Cl2(IMes)2 (Fraga-Hernández, 2011) with [NBu4][BH4] in THF furnished the title complex W(NO)2(IMes)2(η2-BH4). The one-electron reduction of the starting material to yield the title paramagnetic 19-electron neutral complex can be explained considering that [NBu4][BH4] can act as a hydride-transfer reagent, as well as a reducing agent. In (I), the oxidation number of the W atom is formally –I. Nevertheless, a density functional theory (DFT) study combined with EPR measurements (Fraga-Hernández, 2007) indicated that the unpaired electron is delocalized on the two N atoms of the nitrosyl groups (and not on the metal center) which become equivalent and the oxidation number of the W atom is in fact 0, considering BH4- and (NO)2+.

The W metal center is coordinated by two 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand (Fig. 1). Depending on the number of coordination sites (n) occupied by the BH4- ligand, the molecular structure of the title compound consists of an approximately trigonal bipyramidal arrangement of the ligands around the W atom (n = 1) or might be referred to a very distorted octahedral environment around the W center with the bridging H atoms filling two coordination positions (n = 2). In the latter case, the trans carbene ligands occupy axial positions, and the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å) form the equatorial plane of a pseudo octahedron. The two nitrosyl ligands with a N(2)—W(1)—N(1) bond angle of 100.4 (2)° are located trans to the bridging borohydride moiety. The N(1)—W(1)—C(1) and N(2)—W(1)—C(1) bond angles show that the carbene ligands are bent toward the bridging borohydride group (98.5 (2) and 96.1 (2)°) and away from the NO groups. This bending [C(1)—W(1)—C(22) = 158.4 (2)°] may be due to the electronic effects caused by the strong π-acceptor groups. In comparison with the dichlorido compound W(NO)2Cl2(IMes)2 (Fraga-Hernández, 2011) where the five-membered rings of the carbene ligands are almost perpendicular to each other, they would be coplanar in (I) without the bending. The W—N—O bond angles [177.1 (5)° for O(1)—N(1)—W(1), and 176.0 (5)° for O(2)—N(2)—W(1)] are almost linear and indicate the coordination in form of nitrosonium groups (NO+). In the structure the two NO ligands are equivalent and the W—N—O bond angles are not far from linearity (average of 176.6°).

In the crystal structure, molecules are connected via C—H···O interactions (Table 1).

Related literature top

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007). For a related complex with the W(NO)(η2-BH4) core, see: van der Zeijden et al. (1991). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005); Hahn et al. (2005); Wu et al. (2007); Fraga-Hernández et al. (2011). For an overview of the first organometallic nitrosyls known, see: Enemark & Feltham (1974); Richter-Addo & Legzdins (1988); Berke & Burger (1994).

Experimental top

A mixture of [W(NO)2Cl2(IMes)2] (90 mg, 0.097 mmol) (Fraga-Hernández, 2011) and [NBu4]BH4 (49.7 mg, 0.195 mmol) in 10 ml ether and 5 ml THF was stirred for 21 h. After this time, the black green solution was filtered over celite and dried under vacuum. The residue was extracted with 15 ml of ether/pentane (1:2) and filtered over celite again. Removal of the solvent left a dark green solid, which was extracted with pentane (3 x 8 ml) and dried under vacuum, affording 62 mg of the title compound (0.071 mmol, 74%). Green crystals were obtained from a pentane solution at room temperature. IR (ATR, 22°C, cm-1): 1597 (NO), 1537 (NO). Elemental analysis (%) calculated for C42H52BN6O2W: C (58.14), H (6.04), N (9.68); found: C (58.40), H (5.86), N (9.78).

Refinement top

The H atoms of the tetrahydroborate group were located in difference Fourier maps. Their coordinates were freely refined, except for H1D, with Uiso(H) = 1.2Ueq(B). All other H positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

In the course of our efforts on the synthesis of novel dinitrosyl hydride and dihydride tungsten derivatives bearing sterically demanding and highly donating phosphine ligands or N-heterocyclic (NHC) carbene ligands (Fraga-Hernández, 2007), the title compound, C42H52BN6O2W, (I), was synthesized as an intermediate species.

The reaction of the recently reported compound W(NO)2Cl2(IMes)2 (Fraga-Hernández, 2011) with [NBu4][BH4] in THF furnished the title complex W(NO)2(IMes)2(η2-BH4). The one-electron reduction of the starting material to yield the title paramagnetic 19-electron neutral complex can be explained considering that [NBu4][BH4] can act as a hydride-transfer reagent, as well as a reducing agent. In (I), the oxidation number of the W atom is formally –I. Nevertheless, a density functional theory (DFT) study combined with EPR measurements (Fraga-Hernández, 2007) indicated that the unpaired electron is delocalized on the two N atoms of the nitrosyl groups (and not on the metal center) which become equivalent and the oxidation number of the W atom is in fact 0, considering BH4- and (NO)2+.

The W metal center is coordinated by two 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand (Fig. 1). Depending on the number of coordination sites (n) occupied by the BH4- ligand, the molecular structure of the title compound consists of an approximately trigonal bipyramidal arrangement of the ligands around the W atom (n = 1) or might be referred to a very distorted octahedral environment around the W center with the bridging H atoms filling two coordination positions (n = 2). In the latter case, the trans carbene ligands occupy axial positions, and the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å) form the equatorial plane of a pseudo octahedron. The two nitrosyl ligands with a N(2)—W(1)—N(1) bond angle of 100.4 (2)° are located trans to the bridging borohydride moiety. The N(1)—W(1)—C(1) and N(2)—W(1)—C(1) bond angles show that the carbene ligands are bent toward the bridging borohydride group (98.5 (2) and 96.1 (2)°) and away from the NO groups. This bending [C(1)—W(1)—C(22) = 158.4 (2)°] may be due to the electronic effects caused by the strong π-acceptor groups. In comparison with the dichlorido compound W(NO)2Cl2(IMes)2 (Fraga-Hernández, 2011) where the five-membered rings of the carbene ligands are almost perpendicular to each other, they would be coplanar in (I) without the bending. The W—N—O bond angles [177.1 (5)° for O(1)—N(1)—W(1), and 176.0 (5)° for O(2)—N(2)—W(1)] are almost linear and indicate the coordination in form of nitrosonium groups (NO+). In the structure the two NO ligands are equivalent and the W—N—O bond angles are not far from linearity (average of 176.6°).

In the crystal structure, molecules are connected via C—H···O interactions (Table 1).

For the synthesis, characterization and reactivity of dinitrosyl tungsten complexes in various oxidation states, see: Fraga-Hernández (2007). For a related complex with the W(NO)(η2-BH4) core, see: van der Zeijden et al. (1991). For tungsten complexes with N-heterocyclic (NHC) carbenes, see: Nonnenmacher et al. (2005); Hahn et al. (2005); Wu et al. (2007); Fraga-Hernández et al. (2011). For an overview of the first organometallic nitrosyls known, see: Enemark & Feltham (1974); Richter-Addo & Legzdins (1988); Berke & Burger (1994).

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1999); cell refinement: CELL in IPDS Software (Stoe & Cie, 1999); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the labeling of the non-H atoms and 30% probability ellipsoids.
Bis[1,3-bis(2,4,6-trimethylphenyl)-2,3-dihydro-1H-imidazol-2- ylidene]dinitrosyl(tetrahydroborato-κ2H,H')tungsten(0) top
Crystal data top
[W(BH4)(C21H24N2)2(NO)2]F(000) = 1764
Mr = 867.56Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7998 reflections
a = 24.7322 (13) Åθ = 2.5–28°
b = 11.2183 (5) ŵ = 2.83 mm1
c = 15.0522 (8) ÅT = 183 K
β = 97.643 (6)°Irregular, dark green
V = 4139.2 (4) Å30.3 × 0.2 × 0.18 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
9946 independent reflections
Radiation source: fine-focus sealed tube5931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ oscillation scanθmax = 28.0°, θmin = 2.5°
Absorption correction: numerical
(Coppens et al., 1965)
h = 3232
Tmin = 0.551, Tmax = 0.725k = 014
48806 measured reflectionsl = 019
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.02Δρmax = 2.07 e Å3
9946 reflectionsΔρmin = 0.60 e Å3
490 parameters
Crystal data top
[W(BH4)(C21H24N2)2(NO)2]V = 4139.2 (4) Å3
Mr = 867.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 24.7322 (13) ŵ = 2.83 mm1
b = 11.2183 (5) ÅT = 183 K
c = 15.0522 (8) Å0.3 × 0.2 × 0.18 mm
β = 97.643 (6)°
Data collection top
Stoe IPDS
diffractometer
9946 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
5931 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.725Rint = 0.072
48806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 2.07 e Å3
9946 reflectionsΔρmin = 0.60 e Å3
490 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.252596 (11)0.46192 (2)0.731784 (16)0.03782 (8)
B10.2475 (4)0.5990 (9)0.6041 (6)0.058 (2)
H1A0.257 (3)0.567 (7)0.539 (5)0.07*
H1B0.208 (3)0.538 (8)0.629 (5)0.07*
H1C0.244 (3)0.698 (8)0.618 (5)0.07*
H1D0.27980.56320.65640.07*
N10.3114 (2)0.4285 (5)0.8134 (3)0.0415 (12)
O10.34901 (19)0.4039 (4)0.8701 (3)0.0474 (11)
N20.2018 (2)0.3667 (5)0.7721 (3)0.0433 (13)
O20.1703 (2)0.3013 (5)0.8032 (3)0.0550 (13)
N30.3202 (2)0.3248 (5)0.5926 (3)0.0419 (12)
N40.2357 (2)0.2813 (5)0.5619 (3)0.0425 (13)
C10.2711 (3)0.3409 (5)0.6230 (4)0.0370 (14)
C20.3145 (3)0.2579 (6)0.5145 (4)0.0492 (17)
H20.34230.23530.48210.059*
C30.2621 (3)0.2324 (7)0.4950 (4)0.0498 (18)
H30.2460.18960.44560.06*
C40.3720 (3)0.3646 (6)0.6380 (4)0.0447 (15)
C50.3978 (3)0.4602 (8)0.6032 (5)0.0566 (17)
C60.4463 (4)0.4984 (8)0.6517 (7)0.072 (2)
H60.46420.56350.63080.086*
C70.4687 (3)0.4438 (8)0.7288 (6)0.069 (2)
C80.4441 (3)0.3442 (8)0.7580 (5)0.059 (2)
H80.46040.30420.80870.071*
C90.3949 (3)0.3021 (7)0.7126 (5)0.0484 (16)
C100.3752 (4)0.5222 (8)0.5180 (6)0.075 (2)
H10A0.39690.50290.47180.112*
H10B0.33830.49670.50020.112*
H10C0.37580.60680.52770.112*
C110.5211 (4)0.4909 (10)0.7822 (8)0.105 (4)
H11A0.51510.57030.80260.157*
H11B0.53150.44010.83290.157*
H11C0.54960.49190.74470.157*
C120.3676 (3)0.1923 (7)0.7442 (5)0.0548 (18)
H12A0.33320.21410.76270.082*
H12B0.36160.13560.69620.082*
H12C0.39060.15760.79390.082*
C130.1794 (3)0.2590 (7)0.5674 (4)0.0476 (16)
C140.1395 (3)0.3205 (7)0.5122 (5)0.0569 (19)
C150.0857 (3)0.2897 (9)0.5158 (6)0.071 (2)
H150.05850.33120.47990.085*
C160.0707 (3)0.2005 (9)0.5702 (7)0.076 (2)
C170.1120 (4)0.1411 (8)0.6236 (5)0.068 (2)
H170.10260.08140.66170.081*
C180.1665 (3)0.1669 (7)0.6226 (5)0.0541 (18)
C190.1535 (3)0.4164 (8)0.4485 (5)0.066 (2)
H19A0.13370.48790.45820.099*
H19B0.19190.43220.45890.099*
H19C0.14360.390.38780.099*
C200.0121 (4)0.1635 (13)0.5706 (9)0.117 (4)
H20A0.01060.23310.56810.176*
H20B0.00090.1140.51940.176*
H20C0.00890.11970.62440.176*
C210.2104 (3)0.0944 (7)0.6778 (5)0.062 (2)
H21A0.230.14430.72290.092*
H21B0.19390.02960.70610.092*
H21C0.23510.06330.63950.092*
N50.2647 (3)0.7156 (5)0.8370 (3)0.0529 (15)
N60.1797 (3)0.6770 (6)0.7943 (4)0.0559 (16)
C220.2305 (3)0.6296 (6)0.7970 (4)0.0448 (16)
C230.2356 (5)0.8127 (8)0.8591 (5)0.077 (3)
H230.24980.88140.88780.092*
C240.1834 (4)0.7903 (8)0.8319 (5)0.074 (3)
H240.15440.84140.83710.089*
C250.3226 (3)0.7031 (6)0.8652 (4)0.0523 (18)
C260.3584 (4)0.7573 (7)0.8163 (5)0.060 (2)
C270.4138 (4)0.7520 (8)0.8493 (5)0.067 (2)
H270.43890.78610.8160.08*
C280.4325 (4)0.6977 (8)0.9301 (5)0.063 (2)
C290.3953 (3)0.6464 (7)0.9765 (4)0.058 (2)
H290.40780.60941.03070.07*
C300.3397 (3)0.6459 (6)0.9476 (4)0.0510 (18)
C310.3403 (4)0.8205 (9)0.7283 (6)0.081 (3)
H31A0.30330.79890.70680.122*
H31B0.34260.90520.73740.122*
H31C0.36360.79760.68510.122*
C320.4925 (4)0.7018 (10)0.9671 (6)0.084 (3)
H32A0.51360.71650.91910.127*
H32B0.49870.76461.01060.127*
H32C0.50320.6270.9950.127*
C330.2994 (4)0.5898 (7)1.0002 (4)0.062 (2)
H33A0.31840.54941.05130.093*
H33B0.27630.65031.02010.093*
H33C0.27760.53350.96320.093*
C340.1293 (3)0.6155 (8)0.7676 (5)0.0575 (19)
C350.0990 (4)0.6413 (9)0.6850 (6)0.074 (3)
C360.0511 (4)0.5790 (11)0.6639 (7)0.089 (3)
H360.03020.59410.6090.106*
C370.0321 (4)0.4949 (11)0.7199 (8)0.092 (3)
C380.0629 (4)0.4782 (10)0.8025 (7)0.082 (3)
H380.05040.42470.84230.098*
C390.1115 (3)0.5372 (10)0.8290 (5)0.068 (2)
C400.1164 (4)0.7322 (10)0.6218 (6)0.089 (3)
H40A0.11780.80930.64970.133*
H40B0.15180.71180.60710.133*
H40C0.09070.73370.56810.133*
C410.0214 (5)0.4306 (13)0.6941 (10)0.129 (5)
H41A0.05060.47730.71210.193*
H41B0.02740.41930.63030.193*
H41C0.02020.35450.72340.193*
C420.1424 (4)0.5191 (10)0.9213 (5)0.080 (3)
H42A0.13960.58960.95650.12*
H42B0.12710.45260.94960.12*
H42C0.180.50350.91650.12*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.04481 (14)0.03601 (12)0.03189 (11)0.00153 (16)0.00228 (8)0.00023 (13)
B10.080 (7)0.055 (5)0.037 (4)0.007 (5)0.000 (4)0.012 (4)
N10.051 (3)0.037 (3)0.037 (3)0.004 (2)0.010 (2)0.003 (2)
O10.053 (3)0.051 (3)0.036 (2)0.005 (2)0.005 (2)0.002 (2)
N20.045 (3)0.046 (3)0.036 (3)0.012 (3)0.004 (2)0.000 (2)
O20.053 (3)0.063 (3)0.050 (3)0.011 (3)0.012 (2)0.007 (2)
N30.045 (3)0.042 (3)0.039 (3)0.003 (2)0.007 (2)0.004 (2)
N40.052 (3)0.042 (3)0.032 (3)0.006 (3)0.002 (2)0.004 (2)
C10.042 (4)0.035 (3)0.034 (3)0.004 (3)0.006 (3)0.001 (2)
C20.062 (5)0.049 (4)0.038 (3)0.002 (4)0.015 (3)0.008 (3)
C30.059 (5)0.055 (5)0.034 (3)0.005 (4)0.003 (3)0.010 (3)
C40.043 (4)0.047 (4)0.045 (3)0.004 (3)0.011 (3)0.009 (3)
C50.053 (4)0.049 (4)0.070 (4)0.001 (4)0.017 (3)0.002 (4)
C60.055 (5)0.058 (5)0.105 (7)0.012 (4)0.020 (5)0.011 (4)
C70.046 (4)0.062 (6)0.098 (6)0.003 (4)0.006 (4)0.017 (5)
C80.045 (4)0.069 (5)0.063 (4)0.009 (4)0.000 (3)0.012 (4)
C90.045 (4)0.046 (4)0.054 (4)0.002 (3)0.009 (3)0.006 (3)
C100.083 (6)0.061 (6)0.084 (6)0.010 (5)0.023 (5)0.020 (5)
C110.051 (5)0.100 (9)0.154 (10)0.011 (5)0.019 (5)0.037 (7)
C120.059 (5)0.047 (4)0.057 (4)0.011 (4)0.000 (3)0.005 (3)
C130.048 (4)0.051 (4)0.043 (4)0.014 (3)0.004 (3)0.012 (3)
C140.051 (4)0.062 (5)0.054 (4)0.005 (4)0.005 (3)0.003 (4)
C150.045 (5)0.088 (7)0.076 (5)0.007 (4)0.007 (4)0.005 (5)
C160.049 (5)0.084 (7)0.093 (6)0.015 (5)0.004 (4)0.004 (5)
C170.081 (6)0.063 (5)0.062 (5)0.026 (5)0.021 (4)0.002 (4)
C180.060 (5)0.050 (4)0.053 (4)0.013 (4)0.010 (3)0.005 (3)
C190.069 (5)0.059 (5)0.065 (5)0.002 (4)0.013 (4)0.011 (4)
C200.059 (6)0.133 (12)0.160 (11)0.030 (7)0.016 (6)0.008 (9)
C210.073 (5)0.046 (4)0.067 (5)0.009 (4)0.014 (4)0.009 (4)
N50.075 (4)0.038 (3)0.042 (3)0.005 (3)0.007 (3)0.010 (2)
N60.072 (4)0.049 (4)0.044 (3)0.022 (3)0.004 (3)0.007 (3)
C220.064 (4)0.038 (4)0.033 (3)0.012 (3)0.007 (3)0.001 (3)
C230.118 (8)0.051 (5)0.055 (5)0.024 (5)0.009 (5)0.016 (4)
C240.096 (7)0.059 (5)0.062 (5)0.039 (5)0.006 (5)0.012 (4)
C250.067 (5)0.039 (4)0.046 (4)0.004 (4)0.009 (3)0.009 (3)
C260.081 (6)0.046 (4)0.048 (4)0.013 (4)0.014 (4)0.002 (3)
C270.083 (6)0.060 (5)0.054 (4)0.020 (5)0.001 (4)0.004 (4)
C280.073 (5)0.060 (5)0.051 (4)0.011 (4)0.011 (4)0.007 (4)
C290.080 (6)0.051 (5)0.038 (4)0.007 (4)0.013 (4)0.006 (3)
C300.076 (5)0.039 (4)0.035 (3)0.000 (4)0.002 (3)0.007 (3)
C310.091 (7)0.075 (6)0.070 (5)0.023 (5)0.017 (5)0.024 (5)
C320.077 (6)0.091 (7)0.078 (6)0.011 (6)0.014 (5)0.006 (5)
C330.089 (6)0.060 (5)0.034 (3)0.010 (4)0.003 (3)0.005 (3)
C340.051 (4)0.060 (5)0.061 (4)0.023 (4)0.005 (3)0.003 (4)
C350.067 (6)0.083 (7)0.067 (5)0.027 (5)0.003 (4)0.003 (5)
C360.064 (6)0.110 (9)0.086 (6)0.021 (6)0.013 (5)0.011 (6)
C370.052 (5)0.101 (9)0.120 (9)0.023 (5)0.003 (5)0.007 (7)
C380.067 (6)0.089 (7)0.094 (6)0.029 (6)0.026 (5)0.014 (6)
C390.054 (5)0.086 (6)0.065 (5)0.032 (5)0.013 (4)0.002 (5)
C400.085 (7)0.100 (8)0.075 (6)0.028 (6)0.016 (5)0.016 (5)
C410.068 (7)0.136 (14)0.177 (12)0.001 (7)0.001 (7)0.010 (9)
C420.085 (6)0.104 (8)0.055 (4)0.027 (6)0.025 (4)0.012 (5)
Geometric parameters (Å, º) top
W1—N11.813 (5)C20—H20A0.96
W1—N21.814 (6)C20—H20B0.96
W1—C12.221 (6)C20—H20C0.96
W1—C222.223 (6)C21—H21A0.96
W1—B12.451 (8)C21—H21B0.96
W1—H1B1.98 (8)C21—H21C0.96
W1—H1D1.8N5—C221.371 (9)
B1—H1A1.11 (8)N5—C231.371 (10)
B1—H1B1.29 (8)N5—C251.443 (10)
B1—H1C1.13 (9)N6—C221.358 (9)
B1—H1D1.12N6—C241.389 (10)
N1—O11.209 (6)N6—C341.436 (10)
N2—O21.207 (7)C23—C241.324 (13)
N3—C11.366 (8)C23—H230.93
N3—C21.385 (8)C24—H240.93
N3—C41.440 (8)C25—C261.368 (11)
N4—C11.359 (8)C25—C301.411 (9)
N4—C31.384 (9)C26—C271.395 (12)
N4—C131.428 (9)C26—C311.516 (10)
C2—C31.322 (10)C27—C281.383 (11)
C2—H20.93C27—H270.93
C3—H30.93C28—C291.356 (12)
C4—C91.379 (10)C28—C321.515 (12)
C4—C51.386 (10)C29—C301.387 (11)
C5—C61.386 (11)C29—H290.93
C5—C101.500 (11)C30—C331.492 (11)
C6—C71.363 (13)C31—H31A0.96
C6—H60.93C31—H31B0.96
C7—C81.372 (12)C31—H31C0.96
C7—C111.526 (11)C32—H32A0.96
C8—C91.396 (10)C32—H32B0.96
C8—H80.93C32—H32C0.96
C9—C121.512 (10)C33—H33A0.96
C10—H10A0.96C33—H33B0.96
C10—H10B0.96C33—H33C0.96
C10—H10C0.96C34—C391.387 (12)
C11—H11A0.96C34—C351.394 (11)
C11—H11B0.96C35—C361.377 (14)
C11—H11C0.96C35—C401.496 (14)
C12—H12A0.96C36—C371.387 (15)
C12—H12B0.96C36—H360.93
C12—H12C0.96C37—C381.382 (14)
C13—C141.386 (10)C37—C411.512 (15)
C13—C181.389 (10)C38—C391.384 (13)
C14—C151.380 (11)C38—H380.93
C14—C191.512 (11)C39—C421.507 (11)
C15—C161.375 (13)C40—H40A0.96
C15—H150.93C40—H40B0.96
C16—C171.384 (13)C40—H40C0.96
C16—C201.508 (13)C41—H41A0.96
C17—C181.382 (11)C41—H41B0.96
C17—H170.93C41—H41C0.96
C18—C211.514 (11)C42—H42A0.96
C19—H19A0.96C42—H42B0.96
C19—H19B0.96C42—H42C0.96
C19—H19C0.96
N1—W1—N2100.4 (2)H19A—C19—H19C109.5
N1—W1—C198.5 (2)H19B—C19—H19C109.5
N2—W1—C196.1 (2)C16—C20—H20A109.5
N1—W1—C2295.6 (2)C16—C20—H20B109.5
N2—W1—C2297.3 (3)H20A—C20—H20B109.5
C1—W1—C22158.4 (2)C16—C20—H20C109.5
N1—W1—B1127.9 (3)H20A—C20—H20C109.5
N2—W1—B1131.7 (3)H20B—C20—H20C109.5
C1—W1—B178.4 (3)C18—C21—H21A109.5
C22—W1—B180.0 (3)C18—C21—H21B109.5
N1—W1—H1B159 (2)H21A—C21—H21B109.5
N2—W1—H1B100 (2)C18—C21—H21C109.5
C1—W1—H1B80 (2)H21A—C21—H21C109.5
C22—W1—H1B81 (2)H21B—C21—H21C109.5
N1—W1—H1D103C22—N5—C23110.5 (7)
N2—W1—H1D156C22—N5—C25126.3 (6)
C1—W1—H1D78C23—N5—C25122.6 (7)
C22—W1—H1D83C22—N6—C24109.7 (7)
H1B—W1—H1D57C22—N6—C34125.8 (6)
W1—B1—H1A120 (4)C24—N6—C34124.1 (7)
H1A—B1—H1B110 (5)N6—C22—N5104.6 (6)
W1—B1—H1C118 (4)N6—C22—W1126.8 (5)
H1A—B1—H1C121 (6)N5—C22—W1128.0 (5)
H1B—B1—H1C112 (6)C24—C23—N5107.3 (8)
H1A—B1—H1D107C24—C23—H23126.3
H1B—B1—H1D96N5—C23—H23126.3
H1C—B1—H1D107C23—C24—N6107.9 (7)
O1—N1—W1177.1 (5)C23—C24—H24126.1
O2—N2—W1176.0 (5)N6—C24—H24126.1
C1—N3—C2111.2 (5)C26—C25—C30122.4 (7)
C1—N3—C4125.0 (5)C26—C25—N5119.1 (6)
C2—N3—C4123.7 (5)C30—C25—N5118.2 (7)
C1—N4—C3111.3 (5)C25—C26—C27117.7 (7)
C1—N4—C13126.3 (5)C25—C26—C31122.8 (8)
C3—N4—C13122.1 (5)C27—C26—C31119.5 (8)
N4—C1—N3103.3 (5)C28—C27—C26122.0 (8)
N4—C1—W1128.5 (5)C28—C27—H27119
N3—C1—W1127.4 (4)C26—C27—H27119
C3—C2—N3107.0 (6)C29—C28—C27118.0 (8)
C3—C2—H2126.5C29—C28—C32121.4 (7)
N3—C2—H2126.5C27—C28—C32120.5 (8)
C2—C3—N4107.3 (6)C28—C29—C30123.5 (7)
C2—C3—H3126.4C28—C29—H29118.2
N4—C3—H3126.4C30—C29—H29118.2
C9—C4—C5122.8 (6)C29—C30—C25116.3 (7)
C9—C4—N3118.2 (6)C29—C30—C33122.7 (6)
C5—C4—N3119.0 (6)C25—C30—C33121.0 (7)
C6—C5—C4116.7 (7)C26—C31—H31A109.5
C6—C5—C10120.3 (8)C26—C31—H31B109.5
C4—C5—C10122.9 (7)H31A—C31—H31B109.5
C7—C6—C5122.3 (8)C26—C31—H31C109.5
C7—C6—H6118.9H31A—C31—H31C109.5
C5—C6—H6118.9H31B—C31—H31C109.5
C6—C7—C8119.5 (8)C28—C32—H32A109.5
C6—C7—C11120.9 (9)C28—C32—H32B109.5
C8—C7—C11119.7 (9)H32A—C32—H32B109.5
C7—C8—C9120.8 (8)C28—C32—H32C109.5
C7—C8—H8119.6H32A—C32—H32C109.5
C9—C8—H8119.6H32B—C32—H32C109.5
C4—C9—C8117.6 (7)C30—C33—H33A109.5
C4—C9—C12121.2 (6)C30—C33—H33B109.5
C8—C9—C12121.2 (7)H33A—C33—H33B109.5
C5—C10—H10A109.5C30—C33—H33C109.5
C5—C10—H10B109.5H33A—C33—H33C109.5
H10A—C10—H10B109.5H33B—C33—H33C109.5
C5—C10—H10C109.5C39—C34—C35123.1 (8)
H10A—C10—H10C109.5C39—C34—N6117.2 (7)
H10B—C10—H10C109.5C35—C34—N6119.6 (8)
C7—C11—H11A109.5C36—C35—C34116.3 (9)
C7—C11—H11B109.5C36—C35—C40120.8 (8)
H11A—C11—H11B109.5C34—C35—C40122.9 (9)
C7—C11—H11C109.5C35—C36—C37123.7 (9)
H11A—C11—H11C109.5C35—C36—H36118.1
H11B—C11—H11C109.5C37—C36—H36118.1
C9—C12—H12A109.5C38—C37—C36116.6 (10)
C9—C12—H12B109.5C38—C37—C41121.7 (12)
H12A—C12—H12B109.5C36—C37—C41121.5 (11)
C9—C12—H12C109.5C37—C38—C39123.3 (10)
H12A—C12—H12C109.5C37—C38—H38118.4
H12B—C12—H12C109.5C39—C38—H38118.4
C14—C13—C18121.7 (7)C38—C39—C34116.8 (8)
C14—C13—N4120.0 (6)C38—C39—C42121.0 (9)
C18—C13—N4117.9 (6)C34—C39—C42122.3 (9)
C15—C14—C13117.7 (8)C35—C40—H40A109.5
C15—C14—C19120.3 (7)C35—C40—H40B109.5
C13—C14—C19121.9 (7)H40A—C40—H40B109.5
C16—C15—C14122.9 (8)C35—C40—H40C109.5
C16—C15—H15118.6H40A—C40—H40C109.5
C14—C15—H15118.6H40B—C40—H40C109.5
C15—C16—C17117.4 (8)C37—C41—H41A109.5
C15—C16—C20122.6 (9)C37—C41—H41B109.5
C17—C16—C20120.0 (10)H41A—C41—H41B109.5
C18—C17—C16122.5 (8)C37—C41—H41C109.5
C18—C17—H17118.7H41A—C41—H41C109.5
C16—C17—H17118.7H41B—C41—H41C109.5
C17—C18—C13117.7 (7)C39—C42—H42A109.5
C17—C18—C21120.7 (7)C39—C42—H42B109.5
C13—C18—C21121.5 (7)H42A—C42—H42B109.5
C14—C19—H19A109.5C39—C42—H42C109.5
C14—C19—H19B109.5H42A—C42—H42C109.5
H19A—C19—H19B109.5H42B—C42—H42C109.5
C14—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.323.040 (8)134
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[W(BH4)(C21H24N2)2(NO)2]
Mr867.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)183
a, b, c (Å)24.7322 (13), 11.2183 (5), 15.0522 (8)
β (°) 97.643 (6)
V3)4139.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.3 × 0.2 × 0.18
Data collection
DiffractometerStoe IPDS
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.551, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
48806, 9946, 5931
Rint0.072
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.02
No. of reflections9946
No. of parameters490
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.07, 0.60

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 1999), CELL in IPDS Software (Stoe & Cie, 1999), INTEGRATE in IPDS Software (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.323.040 (8)134
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

Financial support by the University of Zürich is gratefully acknowledged.

References

First citationBerke, H. & Burger, P. (1994). Comments Inorg. Chem. 16, 279–312.  CrossRef CAS Web of Science Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnemark, J. H. & Feltham, R. D. (1974). Coord. Chem. Rev. 13, 339–406.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFraga-Hernández, J. (2007). PhD thesis, University of Zürich, Switzerland.  Google Scholar
First citationFraga-Hernández, J., Blacque, O. & Berke, H. (2011). Acta Cryst. E67, m31.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHahn, F. E., Langenhahn, V. & Pape, T. (2005). Chem. Commun. pp. 5390–5392.  Web of Science CSD CrossRef Google Scholar
First citationNonnenmacher, M., Kunz, D., Rominger, F. & Oeser, T. (2005). J. Organomet. Chem. 690, 5647–5653.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichter-Addo, G. B. & Legzdins, P. (1988). Chem. Rev. 88, 991–1010.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, F., Dioumaev, V. K., Szalda, D. J., Hanson, J. & Bullock, R. M. (2007). Organometallics, 26, 5079–5090.  Web of Science CSD CrossRef CAS Google Scholar
First citationZeijden, A. A. H. van der, Shklover, V. & Berke, H. (1991). Inorg. Chem. 30, 4393–4396.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds