organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Di­methyl­amino)­phen­yl]-1-(4a,8-di­methyl-1,2,3,4,4a,5,6,8a-octa­hydro­naphthalen-2-yl)prop-2-en-1-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22 BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: makssira@yahoo.com

(Received 14 December 2010; accepted 19 December 2010; online 24 December 2010)

The title compound, C23H31NO, was semisynthesized from isocostic acid, isolated from the aerial part of Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter]. The cyclo­hexene ring has a half-chair conformation, whereas the cyclo­hexane ring displays a chair conformation. The dihedral angle between the latter ring and its substituent is 83.6 (7)°.

Related literature

For background to the medicinal inter­est in Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Bohlman & Gupta (1982[Bohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443-1445.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlmann et al. (1977[Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-, 1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]). For the synthesis, see: Kutney & Singh (1984[Kutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407-1409.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H31NO

  • Mr = 337.49

  • Monoclinic, P 21

  • a = 6.0593 (4) Å

  • b = 7.2095 (7) Å

  • c = 21.8937 (19) Å

  • β = 91.860 (7)°

  • V = 955.91 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.6 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini ultra diffractometer

  • 8394 measured reflections

  • 2112 independent reflections

  • 1894 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.05

  • 2112 reflections

  • 230 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinals plants and concerning Inula Viscosa(L) Aiton or Dittrichia Viscosa (L) Greuter. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco It is a well known medicinal plant (Shtacher & Kasshman, 1970; Bohlman & Gupta, 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988). The isocostic acid is a major constituent of the dichloromethane extract of the Inula viscosa (L).The literature does not report any article on the transformation of this acid. In order to prepare products with high added value, we studied the reactivity of this acid. Thus, from this acid, we have prepared by reaction of Curtius the 1 - (4a, 8-dimethyl-1, 2,3,4,4 a, 5,6,8 a-octahydro- naphthalen-2-yl)-ethanone which was synthesized by Kutney et al.(1984). The Condensation of this ketone with 4-dimethylamino-benzaldehyde in the presence of sodium hydroxide allows us to obtain the title compound with a good yield of 80%. The structure of this new derivative of isocostic acid was established by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused six-membered rings, substituted by 4-dimethyl-amino-phenylpropanoyl. The molecular structure of (I),Fig.1, shows the cyclohexene ring to adopt a half chair conformation as indicated by the total puckering amplitude Q(T)= 0.506 (2)Å and spherical polar angle θ = 48.8 (2)° with φ = 18.5 (3)°. By contrast the cyclohexane ring has a chair conformation with Q(T)= 0.574 (2)Å and spherical polar angle θ = 173.9 (2)° with φ = 28.6 (18)° (Cremer and Pople,1975).

Related literature top

For background to the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlman & Gupta (1982); Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For the synthesis, see: Kutney & Singh (1984). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

In a flask was introduced a mixture of 500 mg (2.42 mmol), of 1 - (4a, 8-dimethyl-1, 2,3,4,4a,5,6,8 a-octahydro-naphthalen-2 -yl)-ethanone, 360 mg (2.42 mmol.) of 4-dimethylamino-benzaldehyde, 30 ml of anhydrous ethanol and 1 ml of a solution of sodium hydroxide(2 N). The mixture was stirred for three hours at room temperature. After neutralization followed by extraction three time with 20 ml of dichloromethane, the organic phase is dried over sodium sulfate, then evaporated under vacuum. Chromatography on a column of silica gel with hexane-ethyl acetate (98:2) as eluent of the residue allowed us to obtain 3-(4-dimethylamino-phenyl)(4a,8-dimethyl-1,2, 3,4,4a,5,6,8a-octahydro-naphthalene-2-yl)-propene-1-one with a yield of 80%. The title compound is recrystallized in hexane-ethyl acetate (95/5).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine and OH) or Uiso(H) = 1.5Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1783 Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

Our work lies within the framework of the valorization of medicinals plants and concerning Inula Viscosa(L) Aiton or Dittrichia Viscosa (L) Greuter. This plant is widespread in Mediterranean area and extends to the Atlantic cost of Morocco It is a well known medicinal plant (Shtacher & Kasshman, 1970; Bohlman & Gupta, 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988). The isocostic acid is a major constituent of the dichloromethane extract of the Inula viscosa (L).The literature does not report any article on the transformation of this acid. In order to prepare products with high added value, we studied the reactivity of this acid. Thus, from this acid, we have prepared by reaction of Curtius the 1 - (4a, 8-dimethyl-1, 2,3,4,4 a, 5,6,8 a-octahydro- naphthalen-2-yl)-ethanone which was synthesized by Kutney et al.(1984). The Condensation of this ketone with 4-dimethylamino-benzaldehyde in the presence of sodium hydroxide allows us to obtain the title compound with a good yield of 80%. The structure of this new derivative of isocostic acid was established by NMR spectral analysis of 1H, 13 C and mass spectroscopy and confirmed by its single-crystal X-ray structure. The molecule is built up from two fused six-membered rings, substituted by 4-dimethyl-amino-phenylpropanoyl. The molecular structure of (I),Fig.1, shows the cyclohexene ring to adopt a half chair conformation as indicated by the total puckering amplitude Q(T)= 0.506 (2)Å and spherical polar angle θ = 48.8 (2)° with φ = 18.5 (3)°. By contrast the cyclohexane ring has a chair conformation with Q(T)= 0.574 (2)Å and spherical polar angle θ = 173.9 (2)° with φ = 28.6 (18)° (Cremer and Pople,1975).

For background to the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlman & Gupta (1982); Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For the synthesis, see: Kutney & Singh (1984). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
3-[4-(Dimethylamino)phenyl]-1-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a- octahydronaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C23H31NOF(000) = 368
Mr = 337.49Dx = 1.173 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4058 reflections
a = 6.0593 (4) Åθ = 3.0–28.5°
b = 7.2095 (7) ŵ = 0.07 mm1
c = 21.8937 (19) ÅT = 298 K
β = 91.860 (7)°Prism, colourless
V = 955.91 (14) Å30.6 × 0.25 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
1894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
Detector resolution: 16.1978 pixels mm-1h = 77
φ and ω scansk = 97
8394 measured reflectionsl = 2727
2112 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0652P]
where P = (Fo2 + 2Fc2)/3
2112 reflections(Δ/σ)max = 0.002
230 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C23H31NOV = 955.91 (14) Å3
Mr = 337.49Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0593 (4) ŵ = 0.07 mm1
b = 7.2095 (7) ÅT = 298 K
c = 21.8937 (19) Å0.6 × 0.25 × 0.10 mm
β = 91.860 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
1894 reflections with I > 2σ(I)
8394 measured reflectionsRint = 0.028
2112 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2112 reflectionsΔρmin = 0.15 e Å3
230 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7303 (3)0.8137 (3)1.01854 (8)0.0250 (4)
C20.9300 (3)0.7287 (3)1.00424 (8)0.0278 (4)
H21.01810.67681.03530.033*
C30.9978 (3)0.7208 (3)0.94506 (8)0.0280 (4)
H31.13280.66560.93730.034*
C40.8718 (3)0.7923 (2)0.89613 (8)0.0263 (4)
C50.6725 (3)0.8750 (3)0.91030 (8)0.0287 (4)
H50.58350.92360.87880.034*
C60.6025 (3)0.8873 (3)0.96950 (8)0.0281 (4)
H60.46890.94500.97710.034*
C70.9359 (3)0.7711 (3)0.83304 (8)0.0295 (4)
H70.82570.78320.80270.035*
C81.1400 (3)0.7357 (3)0.81514 (9)0.0345 (4)
H81.25090.73210.84550.041*
C91.2066 (3)0.7020 (3)0.75226 (9)0.0371 (5)
C101.0332 (3)0.6566 (3)0.70325 (8)0.0321 (4)
H100.90570.73760.70890.038*
C111.1144 (4)0.6858 (3)0.63863 (9)0.0422 (5)
H11A1.13620.81740.63170.051*
H11B1.25560.62440.63480.051*
C120.9521 (4)0.6105 (3)0.59038 (8)0.0407 (5)
H12A0.81820.68430.59050.049*
H12B1.01550.62350.55050.049*
C130.8930 (3)0.4083 (3)0.60040 (8)0.0299 (4)
C140.7155 (3)0.3441 (4)0.55361 (8)0.0396 (5)
H14A0.58530.42120.55710.048*
H14B0.76990.35970.51270.048*
C150.6526 (3)0.1432 (4)0.56287 (9)0.0458 (6)
H15A0.51400.11850.54100.055*
H15B0.76460.06430.54570.055*
C160.6295 (3)0.0958 (3)0.62862 (9)0.0408 (5)
H160.56510.01740.63790.049*
C170.6948 (3)0.2044 (3)0.67505 (8)0.0317 (4)
C180.7946 (3)0.3924 (3)0.66407 (7)0.0265 (4)
H180.67230.48120.66460.032*
C190.9605 (3)0.4550 (3)0.71385 (8)0.0290 (4)
H19A1.08860.37440.71400.035*
H19B0.89400.44520.75340.035*
C201.0979 (3)0.2867 (3)0.59410 (9)0.0393 (5)
H20A1.06240.16070.60400.059*
H20B1.21340.33030.62150.059*
H20C1.14660.29290.55290.059*
C210.6499 (4)0.1524 (4)0.73956 (10)0.0524 (6)
H21A0.56330.04090.73990.079*
H21B0.57030.25080.75860.079*
H21C0.78710.13210.76170.079*
C220.8030 (3)0.7487 (3)1.12674 (9)0.0393 (5)
H22A0.81800.61741.12090.059*
H22B0.73600.77191.16510.059*
H22C0.94620.80581.12670.059*
C230.4516 (3)0.8908 (3)1.09306 (9)0.0374 (5)
H23A0.34300.79891.08190.056*
H23B0.41991.00371.07120.056*
H23C0.44820.91371.13620.056*
N10.6663 (2)0.8252 (2)1.07791 (7)0.0325 (4)
O11.4040 (2)0.6982 (3)0.74180 (8)0.0544 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (7)0.0172 (9)0.0354 (8)0.0036 (7)0.0016 (6)0.0015 (7)
C20.0252 (8)0.0228 (10)0.0352 (9)0.0016 (8)0.0042 (7)0.0000 (8)
C30.0235 (7)0.0214 (10)0.0389 (9)0.0023 (7)0.0001 (7)0.0031 (8)
C40.0273 (8)0.0171 (10)0.0342 (9)0.0033 (7)0.0014 (7)0.0016 (7)
C50.0267 (8)0.0229 (10)0.0361 (9)0.0011 (7)0.0059 (7)0.0015 (8)
C60.0230 (7)0.0206 (9)0.0406 (10)0.0026 (7)0.0027 (7)0.0002 (8)
C70.0353 (9)0.0189 (10)0.0339 (9)0.0044 (7)0.0025 (7)0.0009 (7)
C80.0334 (9)0.0317 (11)0.0382 (10)0.0077 (9)0.0016 (7)0.0066 (8)
C90.0374 (9)0.0279 (11)0.0463 (11)0.0089 (9)0.0073 (8)0.0057 (9)
C100.0379 (9)0.0269 (11)0.0318 (9)0.0051 (8)0.0072 (7)0.0005 (8)
C110.0544 (12)0.0335 (12)0.0396 (10)0.0104 (10)0.0152 (9)0.0056 (9)
C120.0547 (11)0.0415 (13)0.0267 (9)0.0020 (10)0.0115 (8)0.0086 (9)
C130.0314 (8)0.0349 (11)0.0237 (8)0.0046 (8)0.0054 (7)0.0005 (8)
C140.0383 (10)0.0566 (15)0.0239 (8)0.0093 (10)0.0009 (7)0.0053 (9)
C150.0403 (11)0.0575 (15)0.0395 (10)0.0011 (11)0.0006 (8)0.0215 (10)
C160.0335 (9)0.0391 (13)0.0499 (11)0.0039 (9)0.0004 (8)0.0091 (10)
C170.0278 (8)0.0328 (11)0.0346 (9)0.0028 (8)0.0021 (7)0.0024 (8)
C180.0271 (8)0.0292 (10)0.0233 (8)0.0029 (8)0.0036 (6)0.0010 (7)
C190.0349 (9)0.0278 (10)0.0244 (8)0.0059 (8)0.0027 (7)0.0008 (7)
C200.0306 (9)0.0467 (14)0.0410 (10)0.0038 (9)0.0069 (8)0.0074 (9)
C210.0661 (14)0.0480 (15)0.0433 (11)0.0277 (13)0.0041 (10)0.0073 (11)
C220.0369 (9)0.0459 (14)0.0350 (9)0.0075 (10)0.0017 (7)0.0030 (9)
C230.0329 (9)0.0344 (11)0.0452 (11)0.0081 (9)0.0050 (8)0.0013 (9)
N10.0264 (7)0.0366 (10)0.0347 (8)0.0037 (7)0.0020 (6)0.0032 (7)
O10.0352 (7)0.0667 (12)0.0619 (9)0.0137 (8)0.0125 (7)0.0192 (9)
Geometric parameters (Å, º) top
C1—N11.371 (2)C13—C181.538 (2)
C1—C21.401 (2)C14—C151.513 (4)
C1—C61.407 (2)C14—H14A0.9700
C2—C31.373 (2)C14—H14B0.9700
C2—H20.9300C15—C161.490 (3)
C3—C41.394 (2)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.390 (2)C16—C171.333 (3)
C4—C71.455 (2)C16—H160.9300
C5—C61.380 (2)C17—C211.495 (3)
C5—H50.9300C17—C181.507 (3)
C6—H60.9300C18—C191.527 (2)
C7—C81.334 (3)C18—H180.9800
C7—H70.9300C19—H19A0.9700
C8—C91.467 (3)C19—H19B0.9700
C8—H80.9300C20—H20A0.9600
C9—O11.226 (2)C20—H20B0.9600
C9—C101.513 (3)C20—H20C0.9600
C10—C111.527 (2)C21—H21A0.9600
C10—C191.538 (3)C21—H21B0.9600
C10—H100.9800C21—H21C0.9600
C11—C121.520 (3)C22—N11.441 (2)
C11—H11A0.9700C22—H22A0.9600
C11—H11B0.9700C22—H22B0.9600
C12—C131.519 (3)C22—H22C0.9600
C12—H12A0.9700C23—N11.433 (2)
C12—H12B0.9700C23—H23A0.9600
C13—C201.530 (3)C23—H23B0.9600
C13—C141.533 (2)C23—H23C0.9600
N1—C1—C2120.75 (15)C15—C14—H14B109.2
N1—C1—C6122.33 (15)C13—C14—H14B109.2
C2—C1—C6116.91 (15)H14A—C14—H14B107.9
C3—C2—C1121.08 (16)C16—C15—C14112.40 (17)
C3—C2—H2119.5C16—C15—H15A109.1
C1—C2—H2119.5C14—C15—H15A109.1
C2—C3—C4122.42 (16)C16—C15—H15B109.1
C2—C3—H3118.8C14—C15—H15B109.1
C4—C3—H3118.8H15A—C15—H15B107.9
C5—C4—C3116.43 (16)C17—C16—C15124.5 (2)
C5—C4—C7121.17 (15)C17—C16—H16117.7
C3—C4—C7122.26 (16)C15—C16—H16117.7
C6—C5—C4122.21 (16)C16—C17—C21120.97 (19)
C6—C5—H5118.9C16—C17—C18121.17 (17)
C4—C5—H5118.9C21—C17—C18117.56 (17)
C5—C6—C1120.93 (16)C17—C18—C19114.25 (15)
C5—C6—H6119.5C17—C18—C13112.40 (15)
C1—C6—H6119.5C19—C18—C13111.05 (13)
C8—C7—C4125.31 (16)C17—C18—H18106.2
C8—C7—H7117.3C19—C18—H18106.2
C4—C7—H7117.3C13—C18—H18106.2
C7—C8—C9126.40 (17)C18—C19—C10110.91 (16)
C7—C8—H8116.8C18—C19—H19A109.5
C9—C8—H8116.8C10—C19—H19A109.5
O1—C9—C8118.61 (18)C18—C19—H19B109.5
O1—C9—C10121.48 (17)C10—C19—H19B109.5
C8—C9—C10119.69 (16)H19A—C19—H19B108.0
C9—C10—C11112.96 (16)C13—C20—H20A109.5
C9—C10—C19107.05 (17)C13—C20—H20B109.5
C11—C10—C19111.88 (16)H20A—C20—H20B109.5
C9—C10—H10108.3C13—C20—H20C109.5
C11—C10—H10108.3H20A—C20—H20C109.5
C19—C10—H10108.3H20B—C20—H20C109.5
C12—C11—C10111.96 (16)C17—C21—H21A109.5
C12—C11—H11A109.2C17—C21—H21B109.5
C10—C11—H11A109.2H21A—C21—H21B109.5
C12—C11—H11B109.2C17—C21—H21C109.5
C10—C11—H11B109.2H21A—C21—H21C109.5
H11A—C11—H11B107.9H21B—C21—H21C109.5
C13—C12—C11113.12 (17)N1—C22—H22A109.5
C13—C12—H12A109.0N1—C22—H22B109.5
C11—C12—H12A109.0H22A—C22—H22B109.5
C13—C12—H12B109.0N1—C22—H22C109.5
C11—C12—H12B109.0H22A—C22—H22C109.5
H12A—C12—H12B107.8H22B—C22—H22C109.5
C12—C13—C20109.95 (17)N1—C23—H23A109.5
C12—C13—C14110.92 (17)N1—C23—H23B109.5
C20—C13—C14108.71 (16)H23A—C23—H23B109.5
C12—C13—C18107.62 (15)N1—C23—H23C109.5
C20—C13—C18112.25 (15)H23A—C23—H23C109.5
C14—C13—C18107.38 (14)H23B—C23—H23C109.5
C15—C14—C13111.95 (18)C1—N1—C23121.75 (15)
C15—C14—H14A109.2C1—N1—C22120.44 (15)
C13—C14—H14A109.2C23—N1—C22117.33 (15)

Experimental details

Crystal data
Chemical formulaC23H31NO
Mr337.49
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.0593 (4), 7.2095 (7), 21.8937 (19)
β (°) 91.860 (7)
V3)955.91 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini ultra
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8394, 2112, 1894
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.05
No. of reflections2112
No. of parameters230
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBohlman, F. & Gupta, R. K. (1982). Phytochemistry, 21, 1443–1445.  CrossRef Web of Science Google Scholar
First citationBohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–, 1334.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKutney, J. P. & Singh, A. (1984). Can. J. Chem. 62, 1407–1409.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds