metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,3,5,6-tetra-2-pyridyl­pyrazine-κ3N2,N1,N6)nickel(II) di­thio­cyanate dihydrate

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, bDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain, cDepartamento de Física Aplicada II, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain, and dDepartamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: gotzon.madariaga@ehu.es

(Received 14 December 2010; accepted 20 December 2010; online 24 December 2010)

In the title compound, [Ni(C24H16N6)2](NCS)2·2H2O, the central NiII ion is octahedrally coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine ligands (tppz). Two thio­cyanate anions act as counter-ions and two water mol­ecules act as solvation agents. O—H⋯N hydrogen bonds are observed in the crystral structure.

Related literature

For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990[Ruminski, R. R. & Kiplinger, J. L. (1990). Inorg. Chem. 29, 4581-4584.]); Arana et al. (1992[Arana, C., Yan, S., Keshavarz, K. M., Potes, K. T. & Abruña, H. D. (1992). Inorg. Chem. 31, 3680-3682.]); Lainé et al. (1995[Lainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem. 34, 5156-5165.]); Allis et al. (2004[Allis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145-1152.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1229-1235.]); Haines et al. (2000[Haines, R. I., Hutchings, D. R. & Strickland, D. W. (2000). Inorganic Reaction Mechanisms (Amsterdam), 2, 223-233.]). For the aplication of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994[Königstein, C. & Bauer, R. (1994). Hydrogen Energy Prog. X, Proc. World Hydrogen Energy Conf. 10th, 2, 717-725.], 1997[Königstein, C. & Bauer, R. (1997). Int. Journal Hydrogen Energy, 22, 471-474.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H16N6)2](NCS)2·2H2O

  • Mr = 987.76

  • Monoclinic, C 2/c

  • a = 17.9091 (4) Å

  • b = 13.6851 (2) Å

  • c = 19.4650 (4) Å

  • β = 106.161 (2)°

  • V = 4582.11 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 293 K

  • 0.35 × 0.26 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • 23806 measured reflections

  • 7385 independent reflections

  • 4946 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 0.94

  • 7385 reflections

  • 320 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N9i 0.85 (2) 2.28 (3) 3.116 (4) 166 (3)
O1W—H1W2⋯N1ii 0.85 (4) 2.20 (3) 3.044 (4) 173 (4)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The combination of divalent cations of the second half of the transition series with the ligand tppz, gives coordination cations of the type [MII(tppz)2]2+, where the terminal nitrogen atoms of one extreme of the tppz ligand are directed towards the metallic atoms and the corresponding N atoms of the other extreme remain uncoordinated (Lainé et al., 1995). These tppz cations are part of diferent coordination compounds (Allis et al., 2004, Burkholder & Zubieta, 2004, Ruminski et al., 1990, Haines et al., 2000, Arana et al., 1992, Köningstein et al., 1997,, 1994). We here report the crystal structure of a new compound, [Ni(C24H16N6)2](NCS)2.2H2O, which is made up of NiII cations coordinated to six nitrogen atoms of two tridentate tppz ligands. These monomeric entities reach the neutrality with two thiocianate anions and two molecules of water act as solvent agents. The nitrogen atoms of each tppz, coordinated to the cation, are in the same plane. The NiII cation has a distorted octahedral environment, in which the bonds to the two pyrazine nitrogen atoms (Ni1—N3 and Ni1—N7) are significantly shorter than the bonds to the pyridyl nitrogen atoms (Ni1—N2 and Ni1—N6). The N—Ni1—N angles involving the atoms of the equatorial plane with respect to the short axis differ remarkably from the ideal octahedral values, the Ni1 atom not deviating significantly [0.0006 (2) Å] from the average plane.

The individual pyridyl rings are planar (maximum average displacement with respect to the plane of the ring, 0.011 Å), while the two pyrazine rings are significantly puckered. Nitrogen atoms of the non-coordinated pyridyl rings of the two tppz ligands point to the ligand metalated side instead of the free nitrogen atom of the pyrazine ring. These structural features of the coordinated tppz ligand would account for its tendency to adopt bis-chelation in this type of complexes. Weak π-π interactions appear to occur due to overlap between the pyridyl rings labelled by N5 and N9iii (iii= -x,-1 + y,1/2 - z) with a distance between the ring centroids of 3.7713 (12) Å.

The crystal packing of the bulky building block units leaves cavities of 116 Å3 where water molecules and NCS anions are located (Fig. 2). The low density of the material reflects this open structure. Most relevant H bonds are listed in Table 1.

Related literature top

For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990); Arana et al. (1992); Lainé et al. (1995); Allis et al. (2004); Burkholder & Zubieta (2004); Haines et al. (2000). For the aplication of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994, 1997).

Experimental top

Crystals of [Ni(C24H16N6)2](NCS)2.2H2O were prepared by mixing an acetonitrile solution (10 ml) of NiCl2.6H2O (112 mg, 0.50 mmol) and another acetonitrile solution (10 ml) of 2,3,5,6-tetra-2-pyridylpirazine (97.1 mg, 0.25 mmol). After a vigorous stirring of about 30 minutes at a temperature of 303 K, an aqua/acetonitrile (50%) solution (10 ml) of sodium thiocyanate (101.3 mg, 1.25 mmol) was added. The resultant solution was stirred at 313 K for 25 minutes and at room temperature for the following two days. Then the precipitate that did form was filtered off. Finally, the resulting solution was maintained at room temperature until prismatic green crystals were formed by slow evaporation. These crystals were found to be stable to X-ray exposure.

Refinement top

Structure solution by direct methods in the space group C2/c, followed by refinement, based on F2, of atomic coordinates and anisotropic displacement parameters, was performed using the programs SIR97 (Altomare et al., 1999) and SHELXL97 (Sheldrick, 2008) successively. H atoms bonded to C atoms were found in successive difference Fourier maps and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.5Ueq(C). H atoms of O1W (see Fig. 1 for labelling) were approximately located in a difference Fourier map. During the refinement their positions were tightly restrained to the ideal geometry [O—H=0.85 (1) Å, H—O—H=107 (3)°] with Uiso(H) = 1.5Ueq(O). Also the distances H1W1—N9i (i= -x, y, -z + 1/2 and H1W2—N1ii (ii= -x + 1/2, y + 1/2,-z + 1/2 were forced to be equal (within 0.02 Å). The highest residual electron density is 0.02 Å from atom Ni1 and the deepest hole is 0.65 Å from atom S1.

Structure description top

The combination of divalent cations of the second half of the transition series with the ligand tppz, gives coordination cations of the type [MII(tppz)2]2+, where the terminal nitrogen atoms of one extreme of the tppz ligand are directed towards the metallic atoms and the corresponding N atoms of the other extreme remain uncoordinated (Lainé et al., 1995). These tppz cations are part of diferent coordination compounds (Allis et al., 2004, Burkholder & Zubieta, 2004, Ruminski et al., 1990, Haines et al., 2000, Arana et al., 1992, Köningstein et al., 1997,, 1994). We here report the crystal structure of a new compound, [Ni(C24H16N6)2](NCS)2.2H2O, which is made up of NiII cations coordinated to six nitrogen atoms of two tridentate tppz ligands. These monomeric entities reach the neutrality with two thiocianate anions and two molecules of water act as solvent agents. The nitrogen atoms of each tppz, coordinated to the cation, are in the same plane. The NiII cation has a distorted octahedral environment, in which the bonds to the two pyrazine nitrogen atoms (Ni1—N3 and Ni1—N7) are significantly shorter than the bonds to the pyridyl nitrogen atoms (Ni1—N2 and Ni1—N6). The N—Ni1—N angles involving the atoms of the equatorial plane with respect to the short axis differ remarkably from the ideal octahedral values, the Ni1 atom not deviating significantly [0.0006 (2) Å] from the average plane.

The individual pyridyl rings are planar (maximum average displacement with respect to the plane of the ring, 0.011 Å), while the two pyrazine rings are significantly puckered. Nitrogen atoms of the non-coordinated pyridyl rings of the two tppz ligands point to the ligand metalated side instead of the free nitrogen atom of the pyrazine ring. These structural features of the coordinated tppz ligand would account for its tendency to adopt bis-chelation in this type of complexes. Weak π-π interactions appear to occur due to overlap between the pyridyl rings labelled by N5 and N9iii (iii= -x,-1 + y,1/2 - z) with a distance between the ring centroids of 3.7713 (12) Å.

The crystal packing of the bulky building block units leaves cavities of 116 Å3 where water molecules and NCS anions are located (Fig. 2). The low density of the material reflects this open structure. Most relevant H bonds are listed in Table 1.

For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990); Arana et al. (1992); Lainé et al. (1995); Allis et al. (2004); Burkholder & Zubieta (2004); Haines et al. (2000). For the aplication of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994, 1997).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of [Ni(C24H16N6)2](NCS)2.2H2O showing the most relevant labels. H atoms excluded for clarity. Ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Projection of [Ni(C24H16N6)2](NCS)2.2H2O packing along the b axis showing the link between pyridyl and NCS groups through the N1—O1W—N9 H-bonds.
Bis(2,3,5,6-tetra-2-pyridylpyrazine- κ3N2,N1,N6)nickel(II) dithiocyanate dihydrate top
Crystal data top
[Ni(C24H16N6)2](NCS)2·2H2OF(000) = 2040
Mr = 987.76Dx = 1.432 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9376 reflections
a = 17.9091 (4) Åθ = 3.0–32.2°
b = 13.6851 (2) ŵ = 0.57 mm1
c = 19.4650 (4) ÅT = 293 K
β = 106.161 (2)°Prism, green
V = 4582.11 (15) Å30.35 × 0.26 × 0.21 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2 window
diffractometer
4946 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.031
Graphite monochromatorθmax = 32.2°, θmin = 3.0°
Detector resolution: 8.3504 pixels mm-1h = 2521
ω scansk = 1820
23806 measured reflectionsl = 2829
7385 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
7385 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C24H16N6)2](NCS)2·2H2OV = 4582.11 (15) Å3
Mr = 987.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.9091 (4) ŵ = 0.57 mm1
b = 13.6851 (2) ÅT = 293 K
c = 19.4650 (4) Å0.35 × 0.26 × 0.21 mm
β = 106.161 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 window
diffractometer
4946 reflections with I > 2σ(I)
23806 measured reflectionsRint = 0.031
7385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0484 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.56 e Å3
7385 reflectionsΔρmin = 0.43 e Å3
320 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni100.310758 (18)0.250.03035 (9)
N10.30210 (13)0.08495 (16)0.16393 (13)0.0748 (6)
C10.24787 (15)0.05532 (16)0.17858 (12)0.0613 (6)
S10.17309 (4)0.01597 (5)0.20104 (4)0.07129 (18)
N20.09989 (8)0.27794 (9)0.33345 (7)0.0357 (3)
N300.16447 (12)0.250.0275 (4)
N400.03295 (12)0.250.0297 (4)
N50.09070 (11)0.00169 (11)0.43264 (8)0.0519 (4)
N60.07402 (8)0.34349 (10)0.18698 (7)0.0346 (3)
N700.45723 (12)0.250.0282 (4)
N800.65503 (12)0.250.0287 (4)
N90.01006 (10)0.61824 (11)0.07513 (8)0.0450 (4)
C20.11628 (9)0.18165 (10)0.34250 (8)0.0318 (3)
C30.18842 (10)0.14902 (13)0.38158 (11)0.0451 (4)
H30.19880.08240.38670.068*
C40.24504 (12)0.21619 (16)0.41296 (13)0.0603 (6)
H40.29410.19550.43930.09*
C50.22787 (13)0.31443 (15)0.40478 (13)0.0631 (6)
H50.26490.36110.4260.095*
C60.15514 (12)0.34205 (14)0.36470 (11)0.0500 (5)
H60.14380.40840.3590.075*
C70.05337 (9)0.11697 (10)0.30076 (8)0.0279 (3)
C80.04567 (8)0.01515 (10)0.30544 (8)0.0284 (3)
C90.08377 (9)0.04437 (11)0.36910 (8)0.0327 (3)
C100.10704 (10)0.13895 (12)0.36186 (10)0.0399 (4)
H100.09970.16640.31680.06*
C110.14136 (11)0.19211 (14)0.42277 (12)0.0538 (5)
H110.15830.25570.41970.081*
C120.14968 (14)0.14892 (19)0.48751 (13)0.0686 (7)
H120.17290.18270.52950.103*
C130.12351 (16)0.05524 (19)0.49030 (11)0.0702 (7)
H130.1290.02750.5350.105*
C140.08424 (9)0.43995 (10)0.17709 (8)0.0299 (3)
C150.14292 (10)0.47369 (12)0.15021 (10)0.0405 (4)
H150.14860.54020.14330.061*
C160.19345 (11)0.40681 (14)0.13364 (11)0.0494 (5)
H160.23330.42790.11510.074*
C170.18406 (11)0.30917 (13)0.14488 (10)0.0452 (4)
H170.21840.26340.13550.068*
C180.12336 (11)0.28013 (12)0.17007 (9)0.0413 (4)
H180.1160.21370.17570.062*
C190.03442 (9)0.50448 (10)0.20708 (8)0.0282 (3)
C200.02362 (9)0.60616 (10)0.20014 (8)0.0284 (3)
C210.03384 (9)0.66321 (11)0.13860 (8)0.0314 (3)
C220.06215 (11)0.75722 (12)0.14626 (10)0.0443 (4)
H220.0780.78650.19110.066*
C230.06656 (12)0.80718 (14)0.08575 (12)0.0551 (5)
H230.08540.87080.08940.083*
C240.04322 (13)0.76275 (17)0.02107 (13)0.0601 (6)
H240.04570.79520.02020.09*
C250.01589 (13)0.66902 (18)0.01790 (11)0.0581 (5)
H250.00040.63870.02660.087*
O1W0.15572 (18)0.5266 (3)0.47152 (14)0.1363 (10)
H1W10.1090 (10)0.546 (3)0.465 (2)0.204*
H1W20.171 (2)0.545 (4)0.4359 (16)0.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.04230 (17)0.01832 (13)0.03170 (15)00.01241 (12)0
N10.0666 (13)0.0573 (12)0.1034 (17)0.0104 (10)0.0287 (12)0.0182 (11)
C10.0809 (16)0.0431 (11)0.0536 (12)0.0199 (11)0.0083 (11)0.0009 (9)
S10.0804 (4)0.0647 (4)0.0714 (4)0.0071 (3)0.0255 (3)0.0001 (3)
N20.0454 (8)0.0242 (6)0.0360 (7)0.0069 (5)0.0086 (6)0.0026 (5)
N30.0302 (9)0.0223 (8)0.0298 (9)00.0081 (7)0
N40.0345 (9)0.0217 (8)0.0317 (9)00.0073 (7)0
N50.0743 (11)0.0435 (9)0.0326 (8)0.0023 (8)0.0063 (8)0.0012 (6)
N60.0471 (8)0.0250 (6)0.0346 (7)0.0031 (5)0.0160 (6)0.0022 (5)
N70.0346 (9)0.0222 (8)0.0300 (9)00.0127 (7)0
N80.0363 (9)0.0219 (8)0.0295 (9)00.0117 (7)0
N90.0563 (9)0.0464 (9)0.0335 (7)0.0011 (7)0.0146 (7)0.0023 (6)
C20.0375 (8)0.0254 (7)0.0310 (7)0.0036 (6)0.0072 (6)0.0017 (6)
C30.0373 (9)0.0359 (9)0.0567 (11)0.0003 (7)0.0039 (8)0.0016 (8)
C40.0395 (10)0.0553 (12)0.0736 (15)0.0079 (9)0.0048 (10)0.0044 (11)
C50.0536 (12)0.0478 (12)0.0753 (15)0.0209 (9)0.0029 (11)0.0068 (10)
C60.0578 (12)0.0305 (8)0.0548 (11)0.0128 (8)0.0042 (9)0.0058 (8)
C70.0323 (7)0.0235 (7)0.0276 (7)0.0003 (5)0.0078 (6)0.0007 (5)
C80.0315 (7)0.0231 (7)0.0296 (7)0.0012 (5)0.0070 (6)0.0010 (5)
C90.0342 (8)0.0276 (7)0.0329 (8)0.0031 (6)0.0038 (6)0.0044 (6)
C100.0397 (9)0.0313 (8)0.0464 (10)0.0011 (7)0.0081 (7)0.0075 (7)
C110.0410 (10)0.0405 (10)0.0753 (14)0.0034 (8)0.0087 (10)0.0251 (10)
C120.0684 (14)0.0713 (15)0.0527 (13)0.0042 (12)0.0056 (11)0.0324 (12)
C130.0956 (18)0.0725 (16)0.0327 (10)0.0073 (13)0.0019 (11)0.0079 (10)
C140.0380 (8)0.0244 (7)0.0287 (7)0.0027 (6)0.0117 (6)0.0017 (5)
C150.0464 (10)0.0293 (8)0.0521 (10)0.0007 (7)0.0242 (8)0.0010 (7)
C160.0466 (10)0.0456 (10)0.0650 (12)0.0007 (8)0.0306 (9)0.0082 (9)
C170.0485 (10)0.0391 (9)0.0523 (10)0.0080 (7)0.0208 (9)0.0096 (8)
C180.0550 (10)0.0281 (8)0.0444 (9)0.0078 (7)0.0197 (8)0.0051 (7)
C190.0347 (7)0.0238 (7)0.0281 (7)0.0002 (5)0.0121 (6)0.0002 (5)
C200.0346 (7)0.0222 (6)0.0300 (7)0.0002 (5)0.0119 (6)0.0021 (5)
C210.0361 (8)0.0274 (7)0.0344 (8)0.0043 (6)0.0158 (6)0.0061 (6)
C220.0557 (11)0.0321 (8)0.0523 (11)0.0023 (7)0.0267 (9)0.0037 (7)
C230.0629 (13)0.0405 (10)0.0730 (14)0.0026 (9)0.0372 (11)0.0207 (10)
C240.0595 (13)0.0712 (14)0.0579 (13)0.0129 (10)0.0300 (10)0.0339 (11)
C250.0623 (13)0.0775 (15)0.0352 (10)0.0049 (11)0.0147 (9)0.0107 (9)
O1W0.144 (2)0.167 (3)0.108 (2)0.035 (2)0.0506 (18)0.0268 (18)
Geometric parameters (Å, º) top
Ni1—N32.0019 (17)C6—H60.93
Ni1—N72.0045 (17)C7—C81.4057 (19)
Ni1—N6i2.0899 (14)C8—C91.481 (2)
Ni1—N62.0899 (14)C9—C101.379 (2)
Ni1—N2i2.1030 (14)C10—C111.381 (2)
Ni1—N22.1030 (14)C10—H100.93
N1—C11.159 (3)C11—C121.362 (3)
C1—S11.613 (3)C11—H110.93
N2—C61.336 (2)C12—C131.371 (4)
N2—C21.3509 (19)C12—H120.93
N3—C7i1.3366 (16)C13—H130.93
N3—C71.3366 (16)C14—C151.378 (2)
N4—C81.3325 (16)C14—C191.485 (2)
N4—C8i1.3325 (16)C15—C161.387 (2)
N5—C131.332 (3)C15—H150.93
N5—C91.342 (2)C16—C171.372 (3)
N6—C181.343 (2)C16—H160.93
N6—C141.3538 (19)C17—C181.370 (3)
N7—C191.3353 (16)C17—H170.93
N7—C19i1.3353 (16)C18—H180.93
N8—C201.3404 (17)C19—C201.4062 (19)
N8—C20i1.3404 (17)C20—C211.483 (2)
N9—C211.339 (2)C21—C221.376 (2)
N9—C251.342 (2)C22—C231.383 (3)
C2—C31.378 (2)C22—H220.93
C2—C71.484 (2)C23—C241.355 (3)
C3—C41.379 (3)C23—H230.93
C3—H30.93C24—C251.368 (3)
C4—C51.378 (3)C24—H240.93
C4—H40.93C25—H250.93
C5—C61.372 (3)O1W—H1W10.85 (2)
C5—H50.93O1W—H1W20.85 (4)
N3—Ni1—N7180N5—C9—C10123.34 (15)
N3—Ni1—N6i102.38 (4)N5—C9—C8115.76 (14)
N7—Ni1—N6i77.62 (4)C10—C9—C8120.84 (14)
N3—Ni1—N6102.38 (4)C9—C10—C11118.80 (18)
N7—Ni1—N677.62 (4)C9—C10—H10120.6
N6i—Ni1—N6155.25 (7)C11—C10—H10120.6
N3—Ni1—N2i77.67 (4)C12—C11—C10118.28 (19)
N7—Ni1—N2i102.33 (4)C12—C11—H11120.9
N6i—Ni1—N2i87.53 (5)C10—C11—H11120.9
N6—Ni1—N2i97.74 (5)C11—C12—C13119.46 (18)
N3—Ni1—N277.67 (4)C11—C12—H12120.3
N7—Ni1—N2102.33 (4)C13—C12—H12120.3
N6i—Ni1—N297.74 (5)N5—C13—C12123.8 (2)
N6—Ni1—N287.53 (5)N5—C13—H13118.1
N2i—Ni1—N2155.34 (7)C12—C13—H13118.1
N1—C1—S1178.4 (2)N6—C14—C15121.91 (14)
C6—N2—C2118.34 (15)N6—C14—C19113.83 (13)
C6—N2—Ni1125.08 (12)C15—C14—C19123.72 (14)
C2—N2—Ni1114.60 (10)C14—C15—C16118.90 (16)
C7i—N3—C7121.80 (17)C14—C15—H15120.5
C7i—N3—Ni1119.10 (9)C16—C15—H15120.5
C7—N3—Ni1119.10 (9)C17—C16—C15119.27 (17)
C8—N4—C8i120.79 (17)C17—C16—H16120.4
C13—N5—C9116.30 (17)C15—C16—H16120.4
C18—N6—C14118.07 (14)C18—C17—C16118.97 (16)
C18—N6—Ni1125.01 (12)C18—C17—H17120.5
C14—N6—Ni1115.18 (10)C16—C17—H17120.5
C19—N7—C19i122.07 (18)N6—C18—C17122.84 (16)
C19—N7—Ni1118.97 (9)N6—C18—H18118.6
C19i—N7—Ni1118.97 (9)C17—C18—H18118.6
C20—N8—C20i120.13 (17)N7—C19—C20117.66 (13)
C21—N9—C25116.73 (17)N7—C19—C14112.97 (13)
N2—C2—C3121.62 (14)C20—C19—C14129.22 (13)
N2—C2—C7113.95 (13)N8—C20—C19119.14 (13)
C3—C2—C7124.12 (14)N8—C20—C21117.19 (13)
C2—C3—C4119.29 (17)C19—C20—C21123.62 (13)
C2—C3—H3120.4N9—C21—C22122.87 (15)
C4—C3—H3120.4N9—C21—C20115.10 (14)
C5—C4—C3119.08 (19)C22—C21—C20121.96 (15)
C5—C4—H4120.5C21—C22—C23118.46 (18)
C3—C4—H4120.5C21—C22—H22120.8
C6—C5—C4118.71 (17)C23—C22—H22120.8
C6—C5—H5120.6C24—C23—C22119.57 (19)
C4—C5—H5120.6C24—C23—H23120.2
N2—C6—C5122.94 (18)C22—C23—H23120.2
N2—C6—H6118.5C23—C24—C25118.46 (18)
C5—C6—H6118.5C23—C24—H24120.8
N3—C7—C8117.85 (13)C25—C24—H24120.8
N3—C7—C2113.09 (13)N9—C25—C24123.9 (2)
C8—C7—C2128.96 (13)N9—C25—H25118
N4—C8—C7119.10 (13)C24—C25—H25118
N4—C8—C9116.22 (13)H1W1—O1W—H1W2108 (4)
C7—C8—C9124.66 (13)
N3—Ni1—N2—C6167.18 (16)C8i—N4—C8—C78.67 (10)
N7—Ni1—N2—C612.82 (16)C8i—N4—C8—C9170.04 (15)
N6i—Ni1—N2—C691.77 (16)N3—C7—C8—N417.43 (19)
N6—Ni1—N2—C663.94 (16)C2—C7—C8—N4158.78 (13)
N2i—Ni1—N2—C6167.18 (16)N3—C7—C8—C9161.16 (13)
N3—Ni1—N2—C23.52 (10)C2—C7—C8—C922.6 (2)
N7—Ni1—N2—C2176.48 (10)C13—N5—C9—C101.5 (3)
N6i—Ni1—N2—C2104.58 (11)C13—N5—C9—C8178.73 (18)
N6—Ni1—N2—C299.71 (11)N4—C8—C9—N5143.30 (14)
N2i—Ni1—N2—C23.52 (10)C7—C8—C9—N535.3 (2)
N6i—Ni1—N3—C7i89.60 (8)N4—C8—C9—C1034.0 (2)
N6—Ni1—N3—C7i90.40 (8)C7—C8—C9—C10147.32 (16)
N2i—Ni1—N3—C7i4.94 (8)N5—C9—C10—C112.0 (3)
N2—Ni1—N3—C7i175.06 (8)C8—C9—C10—C11179.12 (16)
N6i—Ni1—N3—C790.40 (8)C9—C10—C11—C120.9 (3)
N6—Ni1—N3—C789.60 (8)C10—C11—C12—C130.5 (3)
N2i—Ni1—N3—C7175.06 (8)C9—N5—C13—C120.1 (4)
N2—Ni1—N3—C74.94 (8)C11—C12—C13—N51.0 (4)
N3—Ni1—N6—C1816.09 (14)C18—N6—C14—C150.3 (2)
N7—Ni1—N6—C18163.91 (14)Ni1—N6—C14—C15166.03 (13)
N6i—Ni1—N6—C18163.91 (14)C18—N6—C14—C19171.54 (14)
N2i—Ni1—N6—C1895.09 (14)Ni1—N6—C14—C195.83 (16)
N2—Ni1—N6—C1860.72 (14)N6—C14—C15—C160.8 (3)
N3—Ni1—N6—C14179.33 (10)C19—C14—C15—C16170.27 (16)
N7—Ni1—N6—C140.67 (10)C14—C15—C16—C170.5 (3)
N6i—Ni1—N6—C140.67 (10)C15—C16—C17—C182.1 (3)
N2i—Ni1—N6—C14100.33 (11)C14—N6—C18—C171.4 (3)
N2—Ni1—N6—C14103.87 (11)Ni1—N6—C18—C17162.77 (14)
N6i—Ni1—N7—C19171.86 (8)C16—C17—C18—N62.6 (3)
N6—Ni1—N7—C198.14 (8)C19i—N7—C19—C209.30 (10)
N2i—Ni1—N7—C1987.20 (8)Ni1—N7—C19—C20170.70 (10)
N2—Ni1—N7—C1992.80 (8)C19i—N7—C19—C14166.59 (14)
N6i—Ni1—N7—C19i8.14 (8)Ni1—N7—C19—C1413.41 (14)
N6—Ni1—N7—C19i171.86 (8)N6—C14—C19—N712.20 (18)
N2i—Ni1—N7—C19i92.80 (8)C15—C14—C19—N7159.49 (14)
N2—Ni1—N7—C19i87.20 (8)N6—C14—C19—C20172.49 (15)
C6—N2—C2—C31.4 (2)C15—C14—C19—C2015.8 (3)
Ni1—N2—C2—C3163.47 (14)C20i—N8—C20—C199.49 (10)
C6—N2—C2—C7175.20 (15)C20i—N8—C20—C21168.10 (15)
Ni1—N2—C2—C710.38 (17)N7—C19—C20—N819.1 (2)
N2—C2—C3—C40.8 (3)C14—C19—C20—N8156.03 (14)
C7—C2—C3—C4174.00 (18)N7—C19—C20—C21158.34 (13)
C2—C3—C4—C50.4 (3)C14—C19—C20—C2126.5 (2)
C3—C4—C5—C60.9 (4)C25—N9—C21—C220.8 (3)
C2—N2—C6—C50.8 (3)C25—N9—C21—C20177.73 (16)
Ni1—N2—C6—C5162.32 (18)N8—C20—C21—N9140.33 (14)
C4—C5—C6—N20.4 (4)C19—C20—C21—N937.1 (2)
C7i—N3—C7—C88.50 (10)N8—C20—C21—C2236.6 (2)
Ni1—N3—C7—C8171.50 (10)C19—C20—C21—C22145.93 (17)
C7i—N3—C7—C2168.30 (14)N9—C21—C22—C230.3 (3)
Ni1—N3—C7—C211.70 (14)C20—C21—C22—C23177.02 (16)
N2—C2—C7—N314.24 (18)C21—C22—C23—C240.1 (3)
C3—C2—C7—N3159.43 (15)C22—C23—C24—C250.0 (3)
N2—C2—C7—C8169.40 (15)C21—N9—C25—C241.0 (3)
C3—C2—C7—C816.9 (3)C23—C24—C25—N90.6 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N9i0.85 (2)2.28 (3)3.116 (4)166 (3)
O1W—H1W2···N1ii0.85 (4)2.20 (3)3.044 (4)173 (4)
C3—H3···N50.932.613.045 (3)109
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C24H16N6)2](NCS)2·2H2O
Mr987.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.9091 (4), 13.6851 (2), 19.4650 (4)
β (°) 106.161 (2)
V3)4582.11 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.35 × 0.26 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 window
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23806, 7385, 4946
Rint0.031
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 0.94
No. of reflections7385
No. of parameters320
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.43

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N9i0.85 (2)2.28 (3)3.116 (4)166 (3)
O1W—H1W2···N1ii0.85 (4)2.20 (3)3.044 (4)173 (4)
C3—H3···N50.932.613.045 (3)109
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Universidad del País Vasco (UPV 00169.125–13956/2004), the Basque Government (IT-282–07), and the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ). NDelaP thanks the UPV/EHU for financial support under the "Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)"

References

First citationAllis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145–1152.  Web of Science CSD CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArana, C., Yan, S., Keshavarz, K. M., Potes, K. T. & Abruña, H. D. (1992). Inorg. Chem. 31, 3680–3682.  CrossRef CAS Web of Science Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1229–1235.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaines, R. I., Hutchings, D. R. & Strickland, D. W. (2000). Inorganic Reaction Mechanisms (Amsterdam), 2, 223–233.  CAS Google Scholar
First citationKönigstein, C. & Bauer, R. (1994). Hydrogen Energy Prog. X, Proc. World Hydrogen Energy Conf. 10th, 2, 717–725.  Google Scholar
First citationKönigstein, C. & Bauer, R. (1997). Int. Journal Hydrogen Energy, 22, 471–474.  Google Scholar
First citationLainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem. 34, 5156–5165.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRuminski, R. R. & Kiplinger, J. L. (1990). Inorg. Chem. 29, 4581–4584.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds