metal-organic compounds
Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6)nickel(II) dithiocyanate dihydrate
aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, bDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain, cDepartamento de Física Aplicada II, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain, and dDepartamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: gotzon.madariaga@ehu.es
In the title compound, [Ni(C24H16N6)2](NCS)2·2H2O, the central NiII ion is octahedrally coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligands (tppz). Two thiocyanate anions act as counter-ions and two water molecules act as solvation agents. O—H⋯N hydrogen bonds are observed in the crystral structure.
Related literature
For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990); Arana et al. (1992); Lainé et al. (1995); Allis et al. (2004); Burkholder & Zubieta (2004); Haines et al. (2000). For the aplication of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994, 1997).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810053419/fj2379sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810053419/fj2379Isup2.hkl
Crystals of [Ni(C24H16N6)2](NCS)2.2H2O were prepared by mixing an acetonitrile solution (10 ml) of NiCl2.6H2O (112 mg, 0.50 mmol) and another acetonitrile solution (10 ml) of 2,3,5,6-tetra-2-pyridylpirazine (97.1 mg, 0.25 mmol). After a vigorous stirring of about 30 minutes at a temperature of 303 K, an aqua/acetonitrile (50%) solution (10 ml) of sodium thiocyanate (101.3 mg, 1.25 mmol) was added. The resultant solution was stirred at 313 K for 25 minutes and at room temperature for the following two days. Then the precipitate that did form was filtered off. Finally, the resulting solution was maintained at room temperature until prismatic green crystals were formed by slow evaporation. These crystals were found to be stable to X-ray exposure.
Structure solution by
in the C2/c, followed by based on F2, of atomic coordinates and anisotropic displacement parameters, was performed using the programs SIR97 (Altomare et al., 1999) and SHELXL97 (Sheldrick, 2008) successively. H atoms bonded to C atoms were found in successive difference Fourier maps and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.5Ueq(C). H atoms of O1W (see Fig. 1 for labelling) were approximately located in a difference Fourier map. During the their positions were tightly restrained to the ideal geometry [O—H=0.85 (1) Å, H—O—H=107 (3)°] with Uiso(H) = 1.5Ueq(O). Also the distances H1W1—N9i (i= -x, y, -z + 1/2 and H1W2—N1ii (ii= -x + 1/2, y + 1/2,-z + 1/2 were forced to be equal (within 0.02 Å). The highest residual electron density is 0.02 Å from atom Ni1 and the deepest hole is 0.65 Å from atom S1.The combination of divalent cations of the second half of the transition series with the ligand tppz, gives coordination cations of the type [MII(tppz)2]2+, where the terminal nitrogen atoms of one extreme of the tppz ligand are directed towards the metallic atoms and the corresponding N atoms of the other extreme remain uncoordinated (Lainé et al., 1995). These tppz cations are part of diferent coordination compounds (Allis et al., 2004, Burkholder & Zubieta, 2004, Ruminski et al., 1990, Haines et al., 2000, Arana et al., 1992, Köningstein et al., 1997,, 1994). We here report the
of a new compound, [Ni(C24H16N6)2](NCS)2.2H2O, which is made up of NiII cations coordinated to six nitrogen atoms of two tridentate tppz ligands. These monomeric entities reach the neutrality with two thiocianate anions and two molecules of water act as solvent agents. The nitrogen atoms of each tppz, coordinated to the cation, are in the same plane. The NiII cation has a distorted octahedral environment, in which the bonds to the two pyrazine nitrogen atoms (Ni1—N3 and Ni1—N7) are significantly shorter than the bonds to the pyridyl nitrogen atoms (Ni1—N2 and Ni1—N6). The N—Ni1—N angles involving the atoms of the equatorial plane with respect to the short axis differ remarkably from the ideal octahedral values, the Ni1 atom not deviating significantly [0.0006 (2) Å] from the average plane.The individual pyridyl rings are planar (maximum average displacement with respect to the plane of the ring, 0.011 Å), while the two pyrazine rings are significantly puckered. Nitrogen atoms of the non-coordinated pyridyl rings of the two tppz ligands point to the ligand metalated side instead of the free nitrogen atom of the pyrazine ring. These structural features of the coordinated tppz ligand would account for its tendency to adopt bis-chelation in this type of complexes. Weak π-π interactions appear to occur due to overlap between the pyridyl rings labelled by N5 and N9iii (iii= -x,-1 + y,1/2 - z) with a distance between the ring centroids of 3.7713 (12) Å.
The crystal packing of the bulky building block units leaves cavities of 116 Å3 where water molecules and NCS anions are located (Fig. 2). The low density of the material reflects this open structure. Most relevant H bonds are listed in Table 1.
For related structures including [M(II)(tppz)2]2+ cations, see: Ruminski & Kiplinger (1990); Arana et al. (1992); Lainé et al. (1995); Allis et al. (2004); Burkholder & Zubieta (2004); Haines et al. (2000). For the aplication of a [Co(II)(tppz)2]2+ complex as a homogeneous catalyst, see: Königstein & Bauer (1994, 1997).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C24H16N6)2](NCS)2·2H2O | F(000) = 2040 |
Mr = 987.76 | Dx = 1.432 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9376 reflections |
a = 17.9091 (4) Å | θ = 3.0–32.2° |
b = 13.6851 (2) Å | µ = 0.57 mm−1 |
c = 19.4650 (4) Å | T = 293 K |
β = 106.161 (2)° | Prism, green |
V = 4582.11 (15) Å3 | 0.35 × 0.26 × 0.21 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire2 window diffractometer | 4946 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.031 |
Graphite monochromator | θmax = 32.2°, θmin = 3.0° |
Detector resolution: 8.3504 pixels mm-1 | h = −25→21 |
ω scans | k = −18→20 |
23806 measured reflections | l = −28→29 |
7385 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | w = 1/[σ2(Fo2) + (0.0771P)2] where P = (Fo2 + 2Fc2)/3 |
7385 reflections | (Δ/σ)max < 0.001 |
320 parameters | Δρmax = 0.56 e Å−3 |
4 restraints | Δρmin = −0.43 e Å−3 |
[Ni(C24H16N6)2](NCS)2·2H2O | V = 4582.11 (15) Å3 |
Mr = 987.76 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.9091 (4) Å | µ = 0.57 mm−1 |
b = 13.6851 (2) Å | T = 293 K |
c = 19.4650 (4) Å | 0.35 × 0.26 × 0.21 mm |
β = 106.161 (2)° |
Oxford Diffraction Xcalibur Sapphire2 window diffractometer | 4946 reflections with I > 2σ(I) |
23806 measured reflections | Rint = 0.031 |
7385 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 4 restraints |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | Δρmax = 0.56 e Å−3 |
7385 reflections | Δρmin = −0.43 e Å−3 |
320 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0 | 0.310758 (18) | 0.25 | 0.03035 (9) | |
N1 | 0.30210 (13) | 0.08495 (16) | 0.16393 (13) | 0.0748 (6) | |
C1 | 0.24787 (15) | 0.05532 (16) | 0.17858 (12) | 0.0613 (6) | |
S1 | 0.17309 (4) | 0.01597 (5) | 0.20104 (4) | 0.07129 (18) | |
N2 | 0.09989 (8) | 0.27794 (9) | 0.33345 (7) | 0.0357 (3) | |
N3 | 0 | 0.16447 (12) | 0.25 | 0.0275 (4) | |
N4 | 0 | −0.03295 (12) | 0.25 | 0.0297 (4) | |
N5 | 0.09070 (11) | −0.00169 (11) | 0.43264 (8) | 0.0519 (4) | |
N6 | 0.07402 (8) | 0.34349 (10) | 0.18698 (7) | 0.0346 (3) | |
N7 | 0 | 0.45723 (12) | 0.25 | 0.0282 (4) | |
N8 | 0 | 0.65503 (12) | 0.25 | 0.0287 (4) | |
N9 | 0.01006 (10) | 0.61824 (11) | 0.07513 (8) | 0.0450 (4) | |
C2 | 0.11628 (9) | 0.18165 (10) | 0.34250 (8) | 0.0318 (3) | |
C3 | 0.18842 (10) | 0.14902 (13) | 0.38158 (11) | 0.0451 (4) | |
H3 | 0.1988 | 0.0824 | 0.3867 | 0.068* | |
C4 | 0.24504 (12) | 0.21619 (16) | 0.41296 (13) | 0.0603 (6) | |
H4 | 0.2941 | 0.1955 | 0.4393 | 0.09* | |
C5 | 0.22787 (13) | 0.31443 (15) | 0.40478 (13) | 0.0631 (6) | |
H5 | 0.2649 | 0.3611 | 0.426 | 0.095* | |
C6 | 0.15514 (12) | 0.34205 (14) | 0.36470 (11) | 0.0500 (5) | |
H6 | 0.1438 | 0.4084 | 0.359 | 0.075* | |
C7 | 0.05337 (9) | 0.11697 (10) | 0.30076 (8) | 0.0279 (3) | |
C8 | 0.04567 (8) | 0.01515 (10) | 0.30544 (8) | 0.0284 (3) | |
C9 | 0.08377 (9) | −0.04437 (11) | 0.36910 (8) | 0.0327 (3) | |
C10 | 0.10704 (10) | −0.13895 (12) | 0.36186 (10) | 0.0399 (4) | |
H10 | 0.0997 | −0.1664 | 0.3168 | 0.06* | |
C11 | 0.14136 (11) | −0.19211 (14) | 0.42277 (12) | 0.0538 (5) | |
H11 | 0.1583 | −0.2557 | 0.4197 | 0.081* | |
C12 | 0.14968 (14) | −0.14892 (19) | 0.48751 (13) | 0.0686 (7) | |
H12 | 0.1729 | −0.1827 | 0.5295 | 0.103* | |
C13 | 0.12351 (16) | −0.05524 (19) | 0.49030 (11) | 0.0702 (7) | |
H13 | 0.129 | −0.0275 | 0.535 | 0.105* | |
C14 | 0.08424 (9) | 0.43995 (10) | 0.17709 (8) | 0.0299 (3) | |
C15 | 0.14292 (10) | 0.47369 (12) | 0.15021 (10) | 0.0405 (4) | |
H15 | 0.1486 | 0.5402 | 0.1433 | 0.061* | |
C16 | 0.19345 (11) | 0.40681 (14) | 0.13364 (11) | 0.0494 (5) | |
H16 | 0.2333 | 0.4279 | 0.1151 | 0.074* | |
C17 | 0.18406 (11) | 0.30917 (13) | 0.14488 (10) | 0.0452 (4) | |
H17 | 0.2184 | 0.2634 | 0.1355 | 0.068* | |
C18 | 0.12336 (11) | 0.28013 (12) | 0.17007 (9) | 0.0413 (4) | |
H18 | 0.116 | 0.2137 | 0.1757 | 0.062* | |
C19 | 0.03442 (9) | 0.50448 (10) | 0.20708 (8) | 0.0282 (3) | |
C20 | 0.02362 (9) | 0.60616 (10) | 0.20014 (8) | 0.0284 (3) | |
C21 | 0.03384 (9) | 0.66321 (11) | 0.13860 (8) | 0.0314 (3) | |
C22 | 0.06215 (11) | 0.75722 (12) | 0.14626 (10) | 0.0443 (4) | |
H22 | 0.078 | 0.7865 | 0.1911 | 0.066* | |
C23 | 0.06656 (12) | 0.80718 (14) | 0.08575 (12) | 0.0551 (5) | |
H23 | 0.0854 | 0.8708 | 0.0894 | 0.083* | |
C24 | 0.04322 (13) | 0.76275 (17) | 0.02107 (13) | 0.0601 (6) | |
H24 | 0.0457 | 0.7952 | −0.0202 | 0.09* | |
C25 | 0.01589 (13) | 0.66902 (18) | 0.01790 (11) | 0.0581 (5) | |
H25 | 0.0004 | 0.6387 | −0.0266 | 0.087* | |
O1W | 0.15572 (18) | 0.5266 (3) | 0.47152 (14) | 0.1363 (10) | |
H1W1 | 0.1090 (10) | 0.546 (3) | 0.465 (2) | 0.204* | |
H1W2 | 0.171 (2) | 0.545 (4) | 0.4359 (16) | 0.204* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.04230 (17) | 0.01832 (13) | 0.03170 (15) | 0 | 0.01241 (12) | 0 |
N1 | 0.0666 (13) | 0.0573 (12) | 0.1034 (17) | 0.0104 (10) | 0.0287 (12) | 0.0182 (11) |
C1 | 0.0809 (16) | 0.0431 (11) | 0.0536 (12) | 0.0199 (11) | 0.0083 (11) | 0.0009 (9) |
S1 | 0.0804 (4) | 0.0647 (4) | 0.0714 (4) | 0.0071 (3) | 0.0255 (3) | 0.0001 (3) |
N2 | 0.0454 (8) | 0.0242 (6) | 0.0360 (7) | −0.0069 (5) | 0.0086 (6) | −0.0026 (5) |
N3 | 0.0302 (9) | 0.0223 (8) | 0.0298 (9) | 0 | 0.0081 (7) | 0 |
N4 | 0.0345 (9) | 0.0217 (8) | 0.0317 (9) | 0 | 0.0073 (7) | 0 |
N5 | 0.0743 (11) | 0.0435 (9) | 0.0326 (8) | −0.0023 (8) | 0.0063 (8) | 0.0012 (6) |
N6 | 0.0471 (8) | 0.0250 (6) | 0.0346 (7) | 0.0031 (5) | 0.0160 (6) | −0.0022 (5) |
N7 | 0.0346 (9) | 0.0222 (8) | 0.0300 (9) | 0 | 0.0127 (7) | 0 |
N8 | 0.0363 (9) | 0.0219 (8) | 0.0295 (9) | 0 | 0.0117 (7) | 0 |
N9 | 0.0563 (9) | 0.0464 (9) | 0.0335 (7) | −0.0011 (7) | 0.0146 (7) | 0.0023 (6) |
C2 | 0.0375 (8) | 0.0254 (7) | 0.0310 (7) | −0.0036 (6) | 0.0072 (6) | −0.0017 (6) |
C3 | 0.0373 (9) | 0.0359 (9) | 0.0567 (11) | −0.0003 (7) | 0.0039 (8) | −0.0016 (8) |
C4 | 0.0395 (10) | 0.0553 (12) | 0.0736 (15) | −0.0079 (9) | −0.0048 (10) | −0.0044 (11) |
C5 | 0.0536 (12) | 0.0478 (12) | 0.0753 (15) | −0.0209 (9) | −0.0029 (11) | −0.0068 (10) |
C6 | 0.0578 (12) | 0.0305 (8) | 0.0548 (11) | −0.0128 (8) | 0.0042 (9) | −0.0058 (8) |
C7 | 0.0323 (7) | 0.0235 (7) | 0.0276 (7) | −0.0003 (5) | 0.0078 (6) | −0.0007 (5) |
C8 | 0.0315 (7) | 0.0231 (7) | 0.0296 (7) | 0.0012 (5) | 0.0070 (6) | 0.0010 (5) |
C9 | 0.0342 (8) | 0.0276 (7) | 0.0329 (8) | −0.0031 (6) | 0.0038 (6) | 0.0044 (6) |
C10 | 0.0397 (9) | 0.0313 (8) | 0.0464 (10) | 0.0011 (7) | 0.0081 (7) | 0.0075 (7) |
C11 | 0.0410 (10) | 0.0405 (10) | 0.0753 (14) | 0.0034 (8) | 0.0087 (10) | 0.0251 (10) |
C12 | 0.0684 (14) | 0.0713 (15) | 0.0527 (13) | −0.0042 (12) | −0.0056 (11) | 0.0324 (12) |
C13 | 0.0956 (18) | 0.0725 (16) | 0.0327 (10) | −0.0073 (13) | 0.0019 (11) | 0.0079 (10) |
C14 | 0.0380 (8) | 0.0244 (7) | 0.0287 (7) | 0.0027 (6) | 0.0117 (6) | −0.0017 (5) |
C15 | 0.0464 (10) | 0.0293 (8) | 0.0521 (10) | −0.0007 (7) | 0.0242 (8) | −0.0010 (7) |
C16 | 0.0466 (10) | 0.0456 (10) | 0.0650 (12) | −0.0007 (8) | 0.0306 (9) | −0.0082 (9) |
C17 | 0.0485 (10) | 0.0391 (9) | 0.0523 (10) | 0.0080 (7) | 0.0208 (9) | −0.0096 (8) |
C18 | 0.0550 (10) | 0.0281 (8) | 0.0444 (9) | 0.0078 (7) | 0.0197 (8) | −0.0051 (7) |
C19 | 0.0347 (7) | 0.0238 (7) | 0.0281 (7) | 0.0002 (5) | 0.0121 (6) | 0.0002 (5) |
C20 | 0.0346 (7) | 0.0222 (6) | 0.0300 (7) | 0.0002 (5) | 0.0119 (6) | 0.0021 (5) |
C21 | 0.0361 (8) | 0.0274 (7) | 0.0344 (8) | 0.0043 (6) | 0.0158 (6) | 0.0061 (6) |
C22 | 0.0557 (11) | 0.0321 (8) | 0.0523 (11) | −0.0023 (7) | 0.0267 (9) | 0.0037 (7) |
C23 | 0.0629 (13) | 0.0405 (10) | 0.0730 (14) | 0.0026 (9) | 0.0372 (11) | 0.0207 (10) |
C24 | 0.0595 (13) | 0.0712 (14) | 0.0579 (13) | 0.0129 (10) | 0.0300 (10) | 0.0339 (11) |
C25 | 0.0623 (13) | 0.0775 (15) | 0.0352 (10) | 0.0049 (11) | 0.0147 (9) | 0.0107 (9) |
O1W | 0.144 (2) | 0.167 (3) | 0.108 (2) | 0.035 (2) | 0.0506 (18) | −0.0268 (18) |
Ni1—N3 | 2.0019 (17) | C6—H6 | 0.93 |
Ni1—N7 | 2.0045 (17) | C7—C8 | 1.4057 (19) |
Ni1—N6i | 2.0899 (14) | C8—C9 | 1.481 (2) |
Ni1—N6 | 2.0899 (14) | C9—C10 | 1.379 (2) |
Ni1—N2i | 2.1030 (14) | C10—C11 | 1.381 (2) |
Ni1—N2 | 2.1030 (14) | C10—H10 | 0.93 |
N1—C1 | 1.159 (3) | C11—C12 | 1.362 (3) |
C1—S1 | 1.613 (3) | C11—H11 | 0.93 |
N2—C6 | 1.336 (2) | C12—C13 | 1.371 (4) |
N2—C2 | 1.3509 (19) | C12—H12 | 0.93 |
N3—C7i | 1.3366 (16) | C13—H13 | 0.93 |
N3—C7 | 1.3366 (16) | C14—C15 | 1.378 (2) |
N4—C8 | 1.3325 (16) | C14—C19 | 1.485 (2) |
N4—C8i | 1.3325 (16) | C15—C16 | 1.387 (2) |
N5—C13 | 1.332 (3) | C15—H15 | 0.93 |
N5—C9 | 1.342 (2) | C16—C17 | 1.372 (3) |
N6—C18 | 1.343 (2) | C16—H16 | 0.93 |
N6—C14 | 1.3538 (19) | C17—C18 | 1.370 (3) |
N7—C19 | 1.3353 (16) | C17—H17 | 0.93 |
N7—C19i | 1.3353 (16) | C18—H18 | 0.93 |
N8—C20 | 1.3404 (17) | C19—C20 | 1.4062 (19) |
N8—C20i | 1.3404 (17) | C20—C21 | 1.483 (2) |
N9—C21 | 1.339 (2) | C21—C22 | 1.376 (2) |
N9—C25 | 1.342 (2) | C22—C23 | 1.383 (3) |
C2—C3 | 1.378 (2) | C22—H22 | 0.93 |
C2—C7 | 1.484 (2) | C23—C24 | 1.355 (3) |
C3—C4 | 1.379 (3) | C23—H23 | 0.93 |
C3—H3 | 0.93 | C24—C25 | 1.368 (3) |
C4—C5 | 1.378 (3) | C24—H24 | 0.93 |
C4—H4 | 0.93 | C25—H25 | 0.93 |
C5—C6 | 1.372 (3) | O1W—H1W1 | 0.85 (2) |
C5—H5 | 0.93 | O1W—H1W2 | 0.85 (4) |
N3—Ni1—N7 | 180 | N5—C9—C10 | 123.34 (15) |
N3—Ni1—N6i | 102.38 (4) | N5—C9—C8 | 115.76 (14) |
N7—Ni1—N6i | 77.62 (4) | C10—C9—C8 | 120.84 (14) |
N3—Ni1—N6 | 102.38 (4) | C9—C10—C11 | 118.80 (18) |
N7—Ni1—N6 | 77.62 (4) | C9—C10—H10 | 120.6 |
N6i—Ni1—N6 | 155.25 (7) | C11—C10—H10 | 120.6 |
N3—Ni1—N2i | 77.67 (4) | C12—C11—C10 | 118.28 (19) |
N7—Ni1—N2i | 102.33 (4) | C12—C11—H11 | 120.9 |
N6i—Ni1—N2i | 87.53 (5) | C10—C11—H11 | 120.9 |
N6—Ni1—N2i | 97.74 (5) | C11—C12—C13 | 119.46 (18) |
N3—Ni1—N2 | 77.67 (4) | C11—C12—H12 | 120.3 |
N7—Ni1—N2 | 102.33 (4) | C13—C12—H12 | 120.3 |
N6i—Ni1—N2 | 97.74 (5) | N5—C13—C12 | 123.8 (2) |
N6—Ni1—N2 | 87.53 (5) | N5—C13—H13 | 118.1 |
N2i—Ni1—N2 | 155.34 (7) | C12—C13—H13 | 118.1 |
N1—C1—S1 | 178.4 (2) | N6—C14—C15 | 121.91 (14) |
C6—N2—C2 | 118.34 (15) | N6—C14—C19 | 113.83 (13) |
C6—N2—Ni1 | 125.08 (12) | C15—C14—C19 | 123.72 (14) |
C2—N2—Ni1 | 114.60 (10) | C14—C15—C16 | 118.90 (16) |
C7i—N3—C7 | 121.80 (17) | C14—C15—H15 | 120.5 |
C7i—N3—Ni1 | 119.10 (9) | C16—C15—H15 | 120.5 |
C7—N3—Ni1 | 119.10 (9) | C17—C16—C15 | 119.27 (17) |
C8—N4—C8i | 120.79 (17) | C17—C16—H16 | 120.4 |
C13—N5—C9 | 116.30 (17) | C15—C16—H16 | 120.4 |
C18—N6—C14 | 118.07 (14) | C18—C17—C16 | 118.97 (16) |
C18—N6—Ni1 | 125.01 (12) | C18—C17—H17 | 120.5 |
C14—N6—Ni1 | 115.18 (10) | C16—C17—H17 | 120.5 |
C19—N7—C19i | 122.07 (18) | N6—C18—C17 | 122.84 (16) |
C19—N7—Ni1 | 118.97 (9) | N6—C18—H18 | 118.6 |
C19i—N7—Ni1 | 118.97 (9) | C17—C18—H18 | 118.6 |
C20—N8—C20i | 120.13 (17) | N7—C19—C20 | 117.66 (13) |
C21—N9—C25 | 116.73 (17) | N7—C19—C14 | 112.97 (13) |
N2—C2—C3 | 121.62 (14) | C20—C19—C14 | 129.22 (13) |
N2—C2—C7 | 113.95 (13) | N8—C20—C19 | 119.14 (13) |
C3—C2—C7 | 124.12 (14) | N8—C20—C21 | 117.19 (13) |
C2—C3—C4 | 119.29 (17) | C19—C20—C21 | 123.62 (13) |
C2—C3—H3 | 120.4 | N9—C21—C22 | 122.87 (15) |
C4—C3—H3 | 120.4 | N9—C21—C20 | 115.10 (14) |
C5—C4—C3 | 119.08 (19) | C22—C21—C20 | 121.96 (15) |
C5—C4—H4 | 120.5 | C21—C22—C23 | 118.46 (18) |
C3—C4—H4 | 120.5 | C21—C22—H22 | 120.8 |
C6—C5—C4 | 118.71 (17) | C23—C22—H22 | 120.8 |
C6—C5—H5 | 120.6 | C24—C23—C22 | 119.57 (19) |
C4—C5—H5 | 120.6 | C24—C23—H23 | 120.2 |
N2—C6—C5 | 122.94 (18) | C22—C23—H23 | 120.2 |
N2—C6—H6 | 118.5 | C23—C24—C25 | 118.46 (18) |
C5—C6—H6 | 118.5 | C23—C24—H24 | 120.8 |
N3—C7—C8 | 117.85 (13) | C25—C24—H24 | 120.8 |
N3—C7—C2 | 113.09 (13) | N9—C25—C24 | 123.9 (2) |
C8—C7—C2 | 128.96 (13) | N9—C25—H25 | 118 |
N4—C8—C7 | 119.10 (13) | C24—C25—H25 | 118 |
N4—C8—C9 | 116.22 (13) | H1W1—O1W—H1W2 | 108 (4) |
C7—C8—C9 | 124.66 (13) | ||
N3—Ni1—N2—C6 | 167.18 (16) | C8i—N4—C8—C7 | −8.67 (10) |
N7—Ni1—N2—C6 | −12.82 (16) | C8i—N4—C8—C9 | 170.04 (15) |
N6i—Ni1—N2—C6 | −91.77 (16) | N3—C7—C8—N4 | 17.43 (19) |
N6—Ni1—N2—C6 | 63.94 (16) | C2—C7—C8—N4 | −158.78 (13) |
N2i—Ni1—N2—C6 | 167.18 (16) | N3—C7—C8—C9 | −161.16 (13) |
N3—Ni1—N2—C2 | 3.52 (10) | C2—C7—C8—C9 | 22.6 (2) |
N7—Ni1—N2—C2 | −176.48 (10) | C13—N5—C9—C10 | 1.5 (3) |
N6i—Ni1—N2—C2 | 104.58 (11) | C13—N5—C9—C8 | 178.73 (18) |
N6—Ni1—N2—C2 | −99.71 (11) | N4—C8—C9—N5 | −143.30 (14) |
N2i—Ni1—N2—C2 | 3.52 (10) | C7—C8—C9—N5 | 35.3 (2) |
N6i—Ni1—N3—C7i | 89.60 (8) | N4—C8—C9—C10 | 34.0 (2) |
N6—Ni1—N3—C7i | −90.40 (8) | C7—C8—C9—C10 | −147.32 (16) |
N2i—Ni1—N3—C7i | 4.94 (8) | N5—C9—C10—C11 | −2.0 (3) |
N2—Ni1—N3—C7i | −175.06 (8) | C8—C9—C10—C11 | −179.12 (16) |
N6i—Ni1—N3—C7 | −90.40 (8) | C9—C10—C11—C12 | 0.9 (3) |
N6—Ni1—N3—C7 | 89.60 (8) | C10—C11—C12—C13 | 0.5 (3) |
N2i—Ni1—N3—C7 | −175.06 (8) | C9—N5—C13—C12 | 0.1 (4) |
N2—Ni1—N3—C7 | 4.94 (8) | C11—C12—C13—N5 | −1.0 (4) |
N3—Ni1—N6—C18 | −16.09 (14) | C18—N6—C14—C15 | 0.3 (2) |
N7—Ni1—N6—C18 | 163.91 (14) | Ni1—N6—C14—C15 | 166.03 (13) |
N6i—Ni1—N6—C18 | 163.91 (14) | C18—N6—C14—C19 | −171.54 (14) |
N2i—Ni1—N6—C18 | −95.09 (14) | Ni1—N6—C14—C19 | −5.83 (16) |
N2—Ni1—N6—C18 | 60.72 (14) | N6—C14—C15—C16 | −0.8 (3) |
N3—Ni1—N6—C14 | 179.33 (10) | C19—C14—C15—C16 | 170.27 (16) |
N7—Ni1—N6—C14 | −0.67 (10) | C14—C15—C16—C17 | −0.5 (3) |
N6i—Ni1—N6—C14 | −0.67 (10) | C15—C16—C17—C18 | 2.1 (3) |
N2i—Ni1—N6—C14 | 100.33 (11) | C14—N6—C18—C17 | 1.4 (3) |
N2—Ni1—N6—C14 | −103.87 (11) | Ni1—N6—C18—C17 | −162.77 (14) |
N6i—Ni1—N7—C19 | −171.86 (8) | C16—C17—C18—N6 | −2.6 (3) |
N6—Ni1—N7—C19 | 8.14 (8) | C19i—N7—C19—C20 | −9.30 (10) |
N2i—Ni1—N7—C19 | −87.20 (8) | Ni1—N7—C19—C20 | 170.70 (10) |
N2—Ni1—N7—C19 | 92.80 (8) | C19i—N7—C19—C14 | 166.59 (14) |
N6i—Ni1—N7—C19i | 8.14 (8) | Ni1—N7—C19—C14 | −13.41 (14) |
N6—Ni1—N7—C19i | −171.86 (8) | N6—C14—C19—N7 | 12.20 (18) |
N2i—Ni1—N7—C19i | 92.80 (8) | C15—C14—C19—N7 | −159.49 (14) |
N2—Ni1—N7—C19i | −87.20 (8) | N6—C14—C19—C20 | −172.49 (15) |
C6—N2—C2—C3 | −1.4 (2) | C15—C14—C19—C20 | 15.8 (3) |
Ni1—N2—C2—C3 | 163.47 (14) | C20i—N8—C20—C19 | −9.49 (10) |
C6—N2—C2—C7 | −175.20 (15) | C20i—N8—C20—C21 | 168.10 (15) |
Ni1—N2—C2—C7 | −10.38 (17) | N7—C19—C20—N8 | 19.1 (2) |
N2—C2—C3—C4 | 0.8 (3) | C14—C19—C20—N8 | −156.03 (14) |
C7—C2—C3—C4 | 174.00 (18) | N7—C19—C20—C21 | −158.34 (13) |
C2—C3—C4—C5 | 0.4 (3) | C14—C19—C20—C21 | 26.5 (2) |
C3—C4—C5—C6 | −0.9 (4) | C25—N9—C21—C22 | 0.8 (3) |
C2—N2—C6—C5 | 0.8 (3) | C25—N9—C21—C20 | 177.73 (16) |
Ni1—N2—C6—C5 | −162.32 (18) | N8—C20—C21—N9 | −140.33 (14) |
C4—C5—C6—N2 | 0.4 (4) | C19—C20—C21—N9 | 37.1 (2) |
C7i—N3—C7—C8 | −8.50 (10) | N8—C20—C21—C22 | 36.6 (2) |
Ni1—N3—C7—C8 | 171.50 (10) | C19—C20—C21—C22 | −145.93 (17) |
C7i—N3—C7—C2 | 168.30 (14) | N9—C21—C22—C23 | −0.3 (3) |
Ni1—N3—C7—C2 | −11.70 (14) | C20—C21—C22—C23 | −177.02 (16) |
N2—C2—C7—N3 | 14.24 (18) | C21—C22—C23—C24 | −0.1 (3) |
C3—C2—C7—N3 | −159.43 (15) | C22—C23—C24—C25 | 0.0 (3) |
N2—C2—C7—C8 | −169.40 (15) | C21—N9—C25—C24 | −1.0 (3) |
C3—C2—C7—C8 | 16.9 (3) | C23—C24—C25—N9 | 0.6 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···N9i | 0.85 (2) | 2.28 (3) | 3.116 (4) | 166 (3) |
O1W—H1W2···N1ii | 0.85 (4) | 2.20 (3) | 3.044 (4) | 173 (4) |
C3—H3···N5 | 0.93 | 2.61 | 3.045 (3) | 109 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C24H16N6)2](NCS)2·2H2O |
Mr | 987.76 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.9091 (4), 13.6851 (2), 19.4650 (4) |
β (°) | 106.161 (2) |
V (Å3) | 4582.11 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.57 |
Crystal size (mm) | 0.35 × 0.26 × 0.21 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 window |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23806, 7385, 4946 |
Rint | 0.031 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.123, 0.94 |
No. of reflections | 7385 |
No. of parameters | 320 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.43 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···N9i | 0.85 (2) | 2.28 (3) | 3.116 (4) | 166 (3) |
O1W—H1W2···N1ii | 0.85 (4) | 2.20 (3) | 3.044 (4) | 173 (4) |
C3—H3···N5 | 0.93 | 2.61 | 3.045 (3) | 109 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Universidad del País Vasco (UPV 00169.125–13956/2004), the Basque Government (IT-282–07), and the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ). NDelaP thanks the UPV/EHU for financial support under the "Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)"
References
Allis, D. G., Burkholder, E. & Zubieta, J. (2004). Polyhedron, 23, 1145–1152. Web of Science CSD CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arana, C., Yan, S., Keshavarz, K. M., Potes, K. T. & Abruña, H. D. (1992). Inorg. Chem. 31, 3680–3682. CrossRef CAS Web of Science Google Scholar
Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 1229–1235. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Haines, R. I., Hutchings, D. R. & Strickland, D. W. (2000). Inorganic Reaction Mechanisms (Amsterdam), 2, 223–233. CAS Google Scholar
Königstein, C. & Bauer, R. (1994). Hydrogen Energy Prog. X, Proc. World Hydrogen Energy Conf. 10th, 2, 717–725. Google Scholar
Königstein, C. & Bauer, R. (1997). Int. Journal Hydrogen Energy, 22, 471–474. Google Scholar
Lainé, P., Gourdon, A. & Launay, J. P. (1995). Inorg. Chem. 34, 5156–5165. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Ruminski, R. R. & Kiplinger, J. L. (1990). Inorg. Chem. 29, 4581–4584. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The combination of divalent cations of the second half of the transition series with the ligand tppz, gives coordination cations of the type [MII(tppz)2]2+, where the terminal nitrogen atoms of one extreme of the tppz ligand are directed towards the metallic atoms and the corresponding N atoms of the other extreme remain uncoordinated (Lainé et al., 1995). These tppz cations are part of diferent coordination compounds (Allis et al., 2004, Burkholder & Zubieta, 2004, Ruminski et al., 1990, Haines et al., 2000, Arana et al., 1992, Köningstein et al., 1997,, 1994). We here report the crystal structure of a new compound, [Ni(C24H16N6)2](NCS)2.2H2O, which is made up of NiII cations coordinated to six nitrogen atoms of two tridentate tppz ligands. These monomeric entities reach the neutrality with two thiocianate anions and two molecules of water act as solvent agents. The nitrogen atoms of each tppz, coordinated to the cation, are in the same plane. The NiII cation has a distorted octahedral environment, in which the bonds to the two pyrazine nitrogen atoms (Ni1—N3 and Ni1—N7) are significantly shorter than the bonds to the pyridyl nitrogen atoms (Ni1—N2 and Ni1—N6). The N—Ni1—N angles involving the atoms of the equatorial plane with respect to the short axis differ remarkably from the ideal octahedral values, the Ni1 atom not deviating significantly [0.0006 (2) Å] from the average plane.
The individual pyridyl rings are planar (maximum average displacement with respect to the plane of the ring, 0.011 Å), while the two pyrazine rings are significantly puckered. Nitrogen atoms of the non-coordinated pyridyl rings of the two tppz ligands point to the ligand metalated side instead of the free nitrogen atom of the pyrazine ring. These structural features of the coordinated tppz ligand would account for its tendency to adopt bis-chelation in this type of complexes. Weak π-π interactions appear to occur due to overlap between the pyridyl rings labelled by N5 and N9iii (iii= -x,-1 + y,1/2 - z) with a distance between the ring centroids of 3.7713 (12) Å.
The crystal packing of the bulky building block units leaves cavities of 116 Å3 where water molecules and NCS anions are located (Fig. 2). The low density of the material reflects this open structure. Most relevant H bonds are listed in Table 1.