organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (2Z)-3-[(4-nitro­phen­yl)carbamo­yl]prop-2-enoate

aDepartment of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 November 2010; accepted 5 December 2010; online 11 December 2010)

In the title compound, C11H10N2O5, the amide group is nearly coplanar and the ester group approximately perpendicular to the vinyl C—HC=CH—C group [dihedral angles of 5.0 (2) and 88.89 (5)°, respectively]. This results in a short intra­molecular O =C⋯O=C contact of 2.7201 (17) Å between the amide O atom and the ester carbonyl C atom. The prop-2-enamide fragment and the nitro group make dihedral angles of 20.42 (6) and 13.54 (17)°, respectively, with the benzene ring. An intra­molecular C—H⋯O inter­action between the benzene ring and the amide group generates an S(6) ring motif. Inter­molecular C—H⋯O and N—H⋯O hydrogen bonds complete R22(11) ring motifs and join mol­ecules into [100] chains.

Related literature

For crystal structures of N-substituted maleamic acids, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Wardell et al. (2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849-o3851.]). For the synthesis of (4-[(4-nitro­phen­yl)amino]-4-oxobut-2-enoic acid, see: Shahid et al. (2006[Shahid, K., Shahzadi, S., Ali, S. & Mazhar, M. (2006). Bull. Korean Chem. Soc. 27, 44-52.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O5

  • Mr = 250.21

  • Triclinic, [P \overline 1]

  • a = 6.8382 (2) Å

  • b = 7.7497 (2) Å

  • c = 11.8277 (5) Å

  • α = 97.805 (2)°

  • β = 92.119 (2)°

  • γ = 114.425 (1)°

  • V = 562.39 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.35 × 0.26 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.922

  • 8150 measured reflections

  • 2021 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.08

  • 2021 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.11 2.9467 (17) 164
C7—H7⋯O3 0.93 2.33 2.8983 (17) 119
C11—H12⋯O3i 0.93 2.45 3.3020 (19) 152
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been crystallized in an attempt to synthesize the vanadium complex of 3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid.

The crystal structure of N-phenylmaleamic acid (II) (Lo & Ng, 2009) and (E)-3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid (III) (Wardell et al., 2005) have been published which are related to (I).

In (I), the methyl formate and prop-2-enamide moieties A (C1/O1/C2/O2) and B (C3/C4/C5/N1/O3) are planar with r. m. s. deviations of 0.012 and 0.019 Å, respectively. The benzene ring C (C6—C11) is planar with r. m. s. deviation of 0.008 Å. The nitro group D (N2/O4/O5) is of course planar. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 88.78 (4), 86.03 (5), 80.82 (14), 20.42 (6), 12.62 (20) and 13.54 (17)°, respectively. In (I) the value of CC is 1.318 (2) Å. There exists an intramolecular hydrogen bonding of C—H···O type (Table 1, Fig. 1) completing an S(6) ring motif (Bernstein et al., 1995). There exist intermolecular hydrogen bondings of C—H···O and N—H···O types (Table 1, Fig. 2). Due to these H-bondings R22(11) ring motifs are formed and the molecules are finally stabilized in the form of one dimensional polymeric chains extending along the crystallographic a axis (Fig. 2).

Related literature top

For crystal structures of N-substituted maleamic acids, see: Lo & Ng (2009); Wardell et al. (2005). For the synthesis of (4-[(4-nitrophenyl)amino]-4-oxobut-2-enoic acid, see: Shahid et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid was prepared according to the procedure reported by Shahid et al. (2006). 3-(4-Nitrophenylaminocarbonyl)prop-2-enoic acid (3 mmol) and VCl3 (1 mmol) were refluxed in methanol for 4 h resulting in greenish solution. Light green prisms of the title compound were formed after two days.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.96 Å) and treated as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

The title compound (I, Fig. 1) has been crystallized in an attempt to synthesize the vanadium complex of 3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid.

The crystal structure of N-phenylmaleamic acid (II) (Lo & Ng, 2009) and (E)-3-(4-nitrophenylaminocarbonyl)prop-2-enoic acid (III) (Wardell et al., 2005) have been published which are related to (I).

In (I), the methyl formate and prop-2-enamide moieties A (C1/O1/C2/O2) and B (C3/C4/C5/N1/O3) are planar with r. m. s. deviations of 0.012 and 0.019 Å, respectively. The benzene ring C (C6—C11) is planar with r. m. s. deviation of 0.008 Å. The nitro group D (N2/O4/O5) is of course planar. The dihedral angle between A/B, A/C, A/D, B/C, B/D and C/D is 88.78 (4), 86.03 (5), 80.82 (14), 20.42 (6), 12.62 (20) and 13.54 (17)°, respectively. In (I) the value of CC is 1.318 (2) Å. There exists an intramolecular hydrogen bonding of C—H···O type (Table 1, Fig. 1) completing an S(6) ring motif (Bernstein et al., 1995). There exist intermolecular hydrogen bondings of C—H···O and N—H···O types (Table 1, Fig. 2). Due to these H-bondings R22(11) ring motifs are formed and the molecules are finally stabilized in the form of one dimensional polymeric chains extending along the crystallographic a axis (Fig. 2).

For crystal structures of N-substituted maleamic acids, see: Lo & Ng (2009); Wardell et al. (2005). For the synthesis of (4-[(4-nitrophenyl)amino]-4-oxobut-2-enoic acid, see: Shahid et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line shows intramolecular hydrogen bond.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows one dimensional polymeric chain of hydrogen-bonded molecules, extending along the a-axis.
Methyl (2Z)-3-[(4-nitrophenyl)carbamoyl]prop-2-enoate top
Crystal data top
C11H10N2O5Z = 2
Mr = 250.21F(000) = 260
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8382 (2) ÅCell parameters from 1754 reflections
b = 7.7497 (2) Åθ = 3.2–25.3°
c = 11.8277 (5) ŵ = 0.12 mm1
α = 97.805 (2)°T = 296 K
β = 92.119 (2)°Prism, light green
γ = 114.425 (1)°0.35 × 0.26 × 0.24 mm
V = 562.39 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2021 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.897, Tmax = 0.922l = 1414
8150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.101P]
where P = (Fo2 + 2Fc2)/3
2021 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C11H10N2O5γ = 114.425 (1)°
Mr = 250.21V = 562.39 (3) Å3
Triclinic, P1Z = 2
a = 6.8382 (2) ÅMo Kα radiation
b = 7.7497 (2) ŵ = 0.12 mm1
c = 11.8277 (5) ÅT = 296 K
α = 97.805 (2)°0.35 × 0.26 × 0.24 mm
β = 92.119 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1754 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.922Rint = 0.020
8150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
2021 reflectionsΔρmin = 0.15 e Å3
164 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14198 (15)0.84577 (15)0.41306 (9)0.0545 (3)
O20.10967 (16)1.06232 (16)0.31587 (9)0.0568 (4)
O30.34399 (14)0.84813 (15)0.17681 (8)0.0518 (3)
O40.5882 (2)0.46462 (19)0.33243 (11)0.0766 (5)
O50.92706 (19)0.55754 (18)0.28426 (12)0.0743 (5)
N10.70053 (17)0.91905 (18)0.16737 (10)0.0484 (4)
N20.7481 (2)0.54311 (18)0.26298 (12)0.0567 (5)
C10.0900 (3)0.7351 (3)0.39699 (17)0.0670 (6)
C20.2191 (2)1.0025 (2)0.36544 (11)0.0433 (4)
C30.4580 (2)1.1052 (2)0.39010 (12)0.0467 (4)
C40.5981 (2)1.0757 (2)0.32569 (12)0.0467 (4)
C50.5316 (2)0.9364 (2)0.21728 (12)0.0422 (4)
C60.6983 (2)0.8127 (2)0.06154 (12)0.0429 (4)
C70.5276 (2)0.7463 (2)0.02453 (12)0.0461 (5)
C80.5423 (2)0.6543 (2)0.12949 (12)0.0476 (4)
C90.7270 (2)0.6289 (2)0.14903 (13)0.0466 (4)
C100.8956 (2)0.6898 (2)0.06399 (14)0.0542 (5)
C110.8810 (2)0.7806 (2)0.04099 (14)0.0537 (5)
H10.825010.981880.206140.0581*
H1A0.159390.819260.414850.1005*
H1B0.130940.640570.446790.1005*
H1C0.133360.672040.318680.1005*
H30.512771.197370.456060.0560*
H40.744671.145180.349340.0560*
H70.403530.764070.010990.0553*
H80.428260.609440.187080.0571*
H111.018060.669400.077730.0651*
H120.993770.821180.098940.0644*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0396 (5)0.0613 (7)0.0579 (6)0.0170 (5)0.0001 (4)0.0103 (5)
O20.0425 (6)0.0708 (7)0.0618 (7)0.0301 (5)0.0034 (5)0.0087 (5)
O30.0288 (5)0.0674 (7)0.0542 (6)0.0187 (5)0.0003 (4)0.0006 (5)
O40.0659 (8)0.0831 (9)0.0654 (8)0.0238 (7)0.0026 (6)0.0111 (7)
O50.0610 (7)0.0715 (8)0.0904 (9)0.0299 (6)0.0290 (6)0.0013 (7)
N10.0273 (5)0.0678 (8)0.0473 (7)0.0184 (5)0.0002 (4)0.0069 (6)
N20.0524 (8)0.0481 (7)0.0670 (9)0.0186 (6)0.0162 (7)0.0070 (6)
C10.0427 (9)0.0682 (11)0.0792 (12)0.0157 (8)0.0089 (8)0.0018 (9)
C20.0382 (7)0.0559 (8)0.0360 (7)0.0230 (6)0.0007 (5)0.0013 (6)
C30.0389 (7)0.0549 (8)0.0425 (7)0.0184 (6)0.0043 (5)0.0032 (6)
C40.0312 (7)0.0570 (8)0.0477 (8)0.0145 (6)0.0022 (5)0.0103 (6)
C50.0318 (7)0.0542 (8)0.0432 (7)0.0194 (6)0.0025 (5)0.0134 (6)
C60.0301 (6)0.0509 (8)0.0476 (8)0.0154 (6)0.0051 (5)0.0133 (6)
C70.0318 (7)0.0601 (9)0.0507 (8)0.0225 (6)0.0045 (5)0.0130 (7)
C80.0369 (7)0.0543 (8)0.0500 (8)0.0175 (6)0.0005 (6)0.0100 (7)
C90.0399 (7)0.0435 (8)0.0553 (8)0.0151 (6)0.0115 (6)0.0110 (6)
C100.0334 (7)0.0630 (9)0.0693 (10)0.0233 (7)0.0100 (7)0.0101 (8)
C110.0306 (7)0.0705 (10)0.0599 (9)0.0217 (7)0.0005 (6)0.0103 (7)
Geometric parameters (Å, º) top
O1—C11.448 (2)C6—C71.392 (2)
O1—C21.3224 (18)C7—C81.374 (2)
O2—C21.2029 (19)C8—C91.379 (2)
O3—C51.2177 (18)C9—C101.378 (2)
O4—N21.220 (2)C10—C111.370 (2)
O5—N21.221 (2)C1—H1A0.9600
N1—C51.363 (2)C1—H1B0.9600
N1—C61.3980 (18)C1—H1C0.9600
N2—C91.459 (2)C3—H30.9300
N1—H10.8600C4—H40.9300
C2—C31.488 (2)C7—H70.9300
C3—C41.318 (2)C8—H80.9300
C4—C51.480 (2)C10—H110.9300
C6—C111.395 (2)C11—H120.9300
O1···O33.1615 (14)C1···C2ix3.595 (2)
O1···O5i3.1218 (17)C2···O32.7201 (17)
O1···C3ii3.3877 (18)C2···C1ix3.595 (2)
O1···C4ii3.3565 (18)C3···O1ii3.3877 (18)
O2···C9iii3.1785 (18)C3···C3ii3.400 (2)
O2···O33.1114 (16)C4···O1ii3.3565 (18)
O2···N1iv2.9467 (17)C5···O4i3.363 (2)
O2···N2iii2.9652 (17)C6···C8i3.523 (2)
O2···O5iii3.1282 (18)C7···O32.8983 (17)
O3···O13.1615 (14)C8···C6i3.523 (2)
O3···C11iv3.3020 (19)C9···O2iii3.1785 (18)
O3···C72.8983 (17)C11···C11vii3.404 (2)
O3···O23.1114 (16)C11···O3viii3.3020 (19)
O3···C22.7201 (17)C2···H1Aix2.9000
O3···N2i3.1522 (17)C5···H72.7800
O4···C5i3.363 (2)H1···O2viii2.1100
O4···C1v3.116 (3)H1···H42.2000
O5···O1i3.1218 (17)H1···H122.3100
O5···O2iii3.1282 (18)H1A···O22.4900
O5···C1i3.089 (3)H1A···O4v2.8700
O1···H4ii2.8700H1A···C2ix2.9000
O2···H1C2.7900H1C···O22.7900
O2···H1A2.4900H1C···O4v2.8600
O2···H12iv2.8300H1C···O5i2.6900
O2···H1iv2.1100H1C···H8v2.5400
O2···H4iv2.8500H3···O4x2.9000
O3···H12iv2.4500H4···O2viii2.8500
O3···H72.3300H4···H12.2000
O4···H1Av2.8700H4···O1ii2.8700
O4···H1Cv2.8600H4···O5vii2.7000
O4···H3vi2.9000H7···O32.3300
O4···H82.4600H7···C52.7800
O5···H112.4400H7···H11iv2.4900
O5···H1Ci2.6900H8···O42.4600
O5···H4vii2.7000H8···H1Cv2.5400
N1···O2viii2.9467 (17)H11···O52.4400
N2···O2iii2.9652 (17)H11···H7viii2.4900
N2···O3i3.1522 (17)H12···O2viii2.8300
C1···O4v3.116 (3)H12···O3viii2.4500
C1···O5i3.089 (3)H12···H12.3100
C1—O1—C2116.39 (13)C8—C9—C10121.14 (14)
C5—N1—C6128.61 (13)C9—C10—C11119.34 (14)
O4—N2—O5123.51 (15)C6—C11—C10120.46 (14)
O4—N2—C9118.66 (14)O1—C1—H1A109.00
O5—N2—C9117.81 (14)O1—C1—H1B109.00
C5—N1—H1116.00O1—C1—H1C109.00
C6—N1—H1116.00H1A—C1—H1B109.00
O2—C2—C3124.08 (13)H1A—C1—H1C109.00
O1—C2—O2124.52 (14)H1B—C1—H1C109.00
O1—C2—C3111.18 (12)C2—C3—H3117.00
C2—C3—C4125.07 (13)C4—C3—H3117.00
C3—C4—C5122.68 (14)C3—C4—H4119.00
O3—C5—C4122.79 (13)C5—C4—H4119.00
N1—C5—C4113.42 (13)C6—C7—H7120.00
O3—C5—N1123.79 (13)C8—C7—H7120.00
C7—C6—C11119.37 (13)C7—C8—H8120.00
N1—C6—C7122.98 (14)C9—C8—H8120.00
N1—C6—C11117.58 (13)C9—C10—H11120.00
C6—C7—C8119.98 (14)C11—C10—H11120.00
C7—C8—C9119.67 (14)C6—C11—H12120.00
N2—C9—C10119.33 (14)C10—C11—H12120.00
N2—C9—C8119.49 (13)
C1—O1—C2—O24.0 (2)C3—C4—C5—O34.5 (2)
C1—O1—C2—C3178.82 (13)C3—C4—C5—N1176.21 (14)
C5—N1—C6—C717.9 (2)N1—C6—C7—C8175.40 (14)
C5—N1—C6—C11165.10 (14)C11—C6—C7—C81.6 (2)
C6—N1—C5—O34.5 (2)N1—C6—C11—C10175.18 (13)
C6—N1—C5—C4174.85 (13)C7—C6—C11—C102.0 (2)
O5—N2—C9—C1012.0 (2)C6—C7—C8—C90.2 (2)
O5—N2—C9—C8165.51 (14)C7—C8—C9—N2175.78 (13)
O4—N2—C9—C10169.43 (14)C7—C8—C9—C101.7 (2)
O4—N2—C9—C813.0 (2)N2—C9—C10—C11176.17 (13)
O1—C2—C3—C490.27 (17)C8—C9—C10—C111.3 (2)
O2—C2—C3—C494.83 (19)C9—C10—C11—C60.5 (2)
C2—C3—C4—C51.5 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x, y1, z1; (vii) x+2, y+2, z; (viii) x+1, y, z; (ix) x, y+2, z+1; (x) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2viii0.862.112.9467 (17)164
C7—H7···O30.932.332.8983 (17)119
C11—H12···O3viii0.932.453.3020 (19)152
Symmetry code: (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H10N2O5
Mr250.21
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8382 (2), 7.7497 (2), 11.8277 (5)
α, β, γ (°)97.805 (2), 92.119 (2), 114.425 (1)
V3)562.39 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.26 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.897, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
8150, 2021, 1754
Rint0.020
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.08
No. of reflections2021
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.112.9467 (17)164
C7—H7···O30.932.332.8983 (17)119
C11—H12···O3i0.932.453.3020 (19)152
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

SA and KS Munawar are grateful to the Pakistan Science Foundation for financial support, project No. PSF/R and D/C–QU/CHEM (270).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahid, K., Shahzadi, S., Ali, S. & Mazhar, M. (2006). Bull. Korean Chem. Soc. 27, 44–52.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o3849–o3851.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds