metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(2-{1-[(2-morpholino­eth­yl)imino]­eth­yl}phenolato-κ3N,N′,O)copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 2 December 2010; accepted 6 December 2010; online 11 December 2010)

In the title compound, [CuCl(C14H19N2O2)], the CuII ion is four-coordinated by one deprotonated N,N′,O-tridentate Schiff base and one chloride ion in a distorted square-planar geometry. In the crystal, adjacent mol­ecules are linked via C—H⋯Cl and C—H⋯O inter­actions, forming infinite layers parallel to the (100) plane. The structure was determined from a non-merohedrally twined crystal [twin ratio 0.777 (3):0.223 (3)].

Related literature

For the crystal structures of similar CuII complexes, see: Elias et al. (1982[Elias, H., Hilms, E. & Paulus, H. (1982). Z. Naturforsch. Teil B, 37, 1266-1273.]); Ikmal Hisham et al. (2009[Ikmal Hisham, N. A., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m870.]); Wang & You (2007[Wang, J. & You, Z. (2007). Acta Cryst. E63, m1200-m1201.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C14H19N2O2)]

  • Mr = 346.30

  • Monoclinic, P 21 /c

  • a = 10.7122 (4) Å

  • b = 17.1657 (7) Å

  • c = 7.7638 (3) Å

  • β = 93.493 (3)°

  • V = 1424.97 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 100 K

  • 0.31 × 0.22 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.617, Tmax = 0.889

  • 10834 measured reflections

  • 2506 independent reflections

  • 2313 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.096

  • S = 1.10

  • 2506 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.877 (3)
Cu1—N1 1.932 (3)
Cu1—N2 2.050 (3)
Cu1—Cl1 2.2565 (11)
O1—Cu1—N1 92.21 (14)
O1—Cu1—N2 162.15 (13)
N1—Cu1—N2 87.14 (14)
O1—Cu1—Cl1 92.57 (10)
N1—Cu1—Cl1 158.07 (11)
N2—Cu1—Cl1 94.66 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯Cl1 0.99 2.75 3.386 (4) 123
C11—H11B⋯Cl1 0.99 2.78 3.409 (4) 122
C14—H14B⋯Cl1i 0.99 2.77 3.713 (4) 159
C10—H10B⋯O1i 0.99 2.52 3.465 (5) 160
C9—H9B⋯Cl1ii 0.99 2.83 3.680 (5) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained through the reaction of the Schiff base ligand, prepared in situ, with copper(II) chloride. Upon complexation, the Schiff base loses its phenolic hydrogen to chelate the CuII ion as an anionic tridentate ligand. One chloride atom completes the distorted square-planar geometry of the complex. The deviation from the regular geometry is evident from the disposition of the metal atom 0.0494 (15) Å out of the N1—N2—O1—Cl1 coordination plane. The Cu—N, Cu—O and Cu—Cl bond lengths in the present complex are comparable with those in similar structures [Elias et al., 1982; Ikmal Hisham et al., 2009; Wang & You, 2007]. In the crystal, C—H···Cl and C—H···O interactions within the range for normal hydrogen bonds, link adjacent molecules into two-dimensional networks parallel to the bc plane (Fig. 2). In addition, intramolecular C—H···Cl hydrogen bonds occurs.

Related literature top

For the crystal structures of similar CuII complexes, see: Elias et al. (1982); Ikmal Hisham et al. (2009); Wang & You (2007).

Experimental top

A mixture of 2-hydroxyacetophenone (0.5 g, 3.7 mmol) and 4-(2-aminoethyl)morpholine (0.48 g, 3.7 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of copper(II) chloride dihydrate (0.63 g, 3.7 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained after a few days.

Refinement top

The hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.99 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5 Ueq(C).The structure was a determined from a non-merohedrally twinned specimen; twin law in reciprocal space 1 0 0.168 0 - 1 0 0 0 - 1; SHELXL-97 (Sheldrick, 2008) BASF parameter 0.223 (3).

Structure description top

The title compound was obtained through the reaction of the Schiff base ligand, prepared in situ, with copper(II) chloride. Upon complexation, the Schiff base loses its phenolic hydrogen to chelate the CuII ion as an anionic tridentate ligand. One chloride atom completes the distorted square-planar geometry of the complex. The deviation from the regular geometry is evident from the disposition of the metal atom 0.0494 (15) Å out of the N1—N2—O1—Cl1 coordination plane. The Cu—N, Cu—O and Cu—Cl bond lengths in the present complex are comparable with those in similar structures [Elias et al., 1982; Ikmal Hisham et al., 2009; Wang & You, 2007]. In the crystal, C—H···Cl and C—H···O interactions within the range for normal hydrogen bonds, link adjacent molecules into two-dimensional networks parallel to the bc plane (Fig. 2). In addition, intramolecular C—H···Cl hydrogen bonds occurs.

For the crystal structures of similar CuII complexes, see: Elias et al. (1982); Ikmal Hisham et al. (2009); Wang & You (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound down the crystallographic a axis.
Chlorido(2-{1-[(2-morpholinoethyl)imino]ethyl}phenolato- κ3N,N',O)copper(II) top
Crystal data top
[CuCl(C14H19N2O2)]F(000) = 716
Mr = 346.30Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4663 reflections
a = 10.7122 (4) Åθ = 2.4–28.8°
b = 17.1657 (7) ŵ = 1.72 mm1
c = 7.7638 (3) ÅT = 100 K
β = 93.493 (3)°Plate, blue
V = 1424.97 (10) Å30.31 × 0.22 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2506 independent reflections
Radiation source: fine-focus sealed tube2313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.617, Tmax = 0.889k = 2020
10834 measured reflectionsl = 69
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 6.7834P]
where P = (Fo2 + 2Fc2)/3
2506 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[CuCl(C14H19N2O2)]V = 1424.97 (10) Å3
Mr = 346.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7122 (4) ŵ = 1.72 mm1
b = 17.1657 (7) ÅT = 100 K
c = 7.7638 (3) Å0.31 × 0.22 × 0.07 mm
β = 93.493 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2313 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.889Rint = 0.034
10834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.10Δρmax = 0.81 e Å3
2506 reflectionsΔρmin = 1.15 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51091 (4)0.13385 (3)0.49248 (6)0.01131 (15)
Cl10.35700 (9)0.11054 (6)0.28748 (12)0.0166 (2)
O10.6167 (3)0.17572 (17)0.3321 (4)0.0177 (6)
O20.1491 (3)0.09423 (18)0.8080 (4)0.0209 (7)
N10.6497 (3)0.1116 (2)0.6556 (4)0.0152 (8)
N20.3974 (3)0.12315 (19)0.6943 (4)0.0125 (7)
C10.7370 (4)0.1654 (2)0.3291 (5)0.0138 (8)
C20.7957 (4)0.1964 (2)0.1849 (6)0.0169 (9)
H20.74700.22530.10080.020*
C30.9208 (4)0.1858 (2)0.1639 (6)0.0195 (10)
H30.95710.20630.06480.023*
C40.9953 (4)0.1448 (3)0.2879 (6)0.0224 (10)
H41.08160.13650.27220.027*
C50.9423 (4)0.1168 (2)0.4322 (6)0.0168 (9)
H50.99390.09030.51730.020*
C60.8129 (4)0.1261 (2)0.4589 (5)0.0140 (8)
C70.7669 (4)0.1010 (2)0.6241 (6)0.0141 (9)
C80.8561 (4)0.0640 (3)0.7551 (6)0.0217 (10)
H8A0.80920.03530.83910.033*
H8B0.90680.10440.81480.033*
H8C0.91100.02790.69740.033*
C90.6058 (4)0.0955 (3)0.8300 (5)0.0171 (9)
H9A0.66960.11230.91990.021*
H9B0.59110.03890.84400.021*
C100.4853 (4)0.1402 (3)0.8475 (6)0.0206 (9)
H10A0.44670.12450.95490.025*
H10B0.50300.19670.85390.025*
C110.3417 (4)0.0438 (2)0.6993 (5)0.0122 (8)
H11A0.40890.00520.72460.015*
H11B0.30100.03130.58470.015*
C120.2454 (4)0.0379 (2)0.8359 (5)0.0170 (9)
H12A0.20820.01490.83270.020*
H12B0.28750.04570.95170.020*
C130.2030 (4)0.1704 (3)0.8178 (6)0.0204 (10)
H13A0.24620.17800.93290.025*
H13B0.13590.21000.80330.025*
C140.2951 (4)0.1817 (2)0.6801 (6)0.0187 (9)
H14A0.25060.17750.56490.022*
H14B0.33150.23460.69060.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0114 (3)0.0124 (2)0.0102 (2)0.0004 (2)0.00097 (19)0.00130 (19)
Cl10.0189 (5)0.0203 (5)0.0101 (5)0.0007 (4)0.0027 (4)0.0009 (4)
O10.0153 (15)0.0196 (16)0.0184 (16)0.0014 (12)0.0031 (12)0.0058 (13)
O20.0119 (15)0.0287 (17)0.0220 (17)0.0000 (13)0.0014 (13)0.0008 (14)
N10.0170 (18)0.0164 (18)0.0122 (18)0.0036 (14)0.0004 (15)0.0011 (14)
N20.0171 (17)0.0128 (17)0.0073 (17)0.0002 (14)0.0006 (13)0.0012 (13)
C10.015 (2)0.0110 (19)0.015 (2)0.0025 (16)0.0002 (16)0.0040 (16)
C20.022 (2)0.012 (2)0.017 (2)0.0015 (17)0.0020 (18)0.0000 (17)
C30.025 (2)0.016 (2)0.018 (2)0.0056 (18)0.0070 (18)0.0009 (18)
C40.016 (2)0.020 (2)0.032 (3)0.0030 (18)0.0042 (19)0.004 (2)
C50.015 (2)0.014 (2)0.021 (2)0.0006 (16)0.0000 (18)0.0024 (17)
C60.016 (2)0.011 (2)0.015 (2)0.0001 (16)0.0013 (17)0.0023 (16)
C70.015 (2)0.0091 (19)0.018 (2)0.0009 (16)0.0015 (17)0.0016 (16)
C80.013 (2)0.031 (3)0.021 (2)0.0014 (19)0.0002 (18)0.006 (2)
C90.018 (2)0.026 (2)0.007 (2)0.0061 (18)0.0030 (17)0.0033 (17)
C100.020 (2)0.022 (2)0.020 (2)0.0029 (19)0.0016 (19)0.0059 (19)
C110.017 (2)0.0096 (19)0.010 (2)0.0004 (16)0.0003 (16)0.0004 (15)
C120.018 (2)0.020 (2)0.014 (2)0.0048 (17)0.0005 (17)0.0006 (17)
C130.017 (2)0.022 (2)0.022 (2)0.0066 (18)0.0015 (18)0.0004 (19)
C140.026 (2)0.013 (2)0.016 (2)0.0030 (18)0.0002 (18)0.0008 (17)
Geometric parameters (Å, º) top
Cu1—O11.877 (3)C5—H50.9500
Cu1—N11.932 (3)C6—C71.466 (6)
Cu1—N22.050 (3)C7—C81.495 (6)
Cu1—Cl12.2565 (11)C8—H8A0.9800
O1—C11.302 (5)C8—H8B0.9800
O2—C121.422 (5)C8—H8C0.9800
O2—C131.430 (5)C9—C101.515 (6)
N1—C71.306 (5)C9—H9A0.9900
N1—C91.486 (5)C9—H9B0.9900
N2—C141.485 (5)C10—H10A0.9900
N2—C111.488 (5)C10—H10B0.9900
N2—C101.500 (5)C11—C121.527 (6)
C1—C21.421 (6)C11—H11A0.9900
C1—C61.426 (6)C11—H11B0.9900
C2—C31.373 (6)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.401 (6)C13—C141.511 (6)
C3—H30.9500C13—H13A0.9900
C4—C51.374 (6)C13—H13B0.9900
C4—H40.9500C14—H14A0.9900
C5—C61.423 (6)C14—H14B0.9900
O1—Cu1—N192.21 (14)H8A—C8—H8B109.5
O1—Cu1—N2162.15 (13)C7—C8—H8C109.5
N1—Cu1—N287.14 (14)H8A—C8—H8C109.5
O1—Cu1—Cl192.57 (10)H8B—C8—H8C109.5
N1—Cu1—Cl1158.07 (11)N1—C9—C10107.8 (3)
N2—Cu1—Cl194.66 (10)N1—C9—H9A110.1
C1—O1—Cu1126.7 (3)C10—C9—H9A110.1
C12—O2—C13109.1 (3)N1—C9—H9B110.1
C7—N1—C9120.4 (4)C10—C9—H9B110.1
C7—N1—Cu1127.9 (3)H9A—C9—H9B108.5
C9—N1—Cu1111.1 (3)N2—C10—C9109.1 (3)
C14—N2—C11109.0 (3)N2—C10—H10A109.9
C14—N2—C10110.6 (3)C9—C10—H10A109.9
C11—N2—C10113.0 (3)N2—C10—H10B109.9
C14—N2—Cu1110.6 (2)C9—C10—H10B109.9
C11—N2—Cu1111.1 (2)H10A—C10—H10B108.3
C10—N2—Cu1102.4 (2)N2—C11—C12111.6 (3)
O1—C1—C2116.7 (4)N2—C11—H11A109.3
O1—C1—C6125.1 (4)C12—C11—H11A109.3
C2—C1—C6118.2 (4)N2—C11—H11B109.3
C3—C2—C1121.8 (4)C12—C11—H11B109.3
C3—C2—H2119.1H11A—C11—H11B108.0
C1—C2—H2119.1O2—C12—C11111.3 (3)
C2—C3—C4120.3 (4)O2—C12—H12A109.4
C2—C3—H3119.9C11—C12—H12A109.4
C4—C3—H3119.9O2—C12—H12B109.4
C5—C4—C3119.3 (4)C11—C12—H12B109.4
C5—C4—H4120.3H12A—C12—H12B108.0
C3—C4—H4120.3O2—C13—C14111.0 (4)
C4—C5—C6122.3 (4)O2—C13—H13A109.4
C4—C5—H5118.9C14—C13—H13A109.4
C6—C5—H5118.9O2—C13—H13B109.4
C5—C6—C1118.0 (4)C14—C13—H13B109.4
C5—C6—C7118.5 (4)H13A—C13—H13B108.0
C1—C6—C7123.3 (4)N2—C14—C13111.8 (3)
N1—C7—C6120.1 (4)N2—C14—H14A109.3
N1—C7—C8120.9 (4)C13—C14—H14A109.3
C6—C7—C8119.0 (4)N2—C14—H14B109.3
C7—C8—H8A109.5C13—C14—H14B109.3
C7—C8—H8B109.5H14A—C14—H14B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl10.992.753.386 (4)123
C11—H11B···Cl10.992.783.409 (4)122
C14—H14B···Cl1i0.992.773.713 (4)159
C10—H10B···O1i0.992.523.465 (5)160
C9—H9B···Cl1ii0.992.833.680 (5)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuCl(C14H19N2O2)]
Mr346.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.7122 (4), 17.1657 (7), 7.7638 (3)
β (°) 93.493 (3)
V3)1424.97 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.31 × 0.22 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.617, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
10834, 2506, 2313
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.096, 1.10
No. of reflections2506
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—O11.877 (3)Cu1—N22.050 (3)
Cu1—N11.932 (3)Cu1—Cl12.2565 (11)
O1—Cu1—N192.21 (14)O1—Cu1—Cl192.57 (10)
O1—Cu1—N2162.15 (13)N1—Cu1—Cl1158.07 (11)
N1—Cu1—N287.14 (14)N2—Cu1—Cl194.66 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl10.992.753.386 (4)123
C11—H11B···Cl10.992.783.409 (4)122
C14—H14B···Cl1i0.992.773.713 (4)159
C10—H10B···O1i0.992.523.465 (5)160
C9—H9B···Cl1ii0.992.833.680 (5)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElias, H., Hilms, E. & Paulus, H. (1982). Z. Naturforsch. Teil B, 37, 1266–1273.  Google Scholar
First citationIkmal Hisham, N. A., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. & You, Z. (2007). Acta Cryst. E63, m1200–m1201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds