metal-organic compounds
Chlorido(2-{1-[(2-morpholinoethyl)imino]ethyl}phenolato-κ3N,N′,O)copper(II)
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my
In the title compound, [CuCl(C14H19N2O2)], the CuII ion is four-coordinated by one deprotonated N,N′,O-tridentate Schiff base and one chloride ion in a distorted square-planar geometry. In the crystal, adjacent molecules are linked via C—H⋯Cl and C—H⋯O interactions, forming infinite layers parallel to the (100) plane. The structure was determined from a non-merohedrally twined crystal [twin ratio 0.777 (3):0.223 (3)].
Related literature
For the crystal structures of similar CuII complexes, see: Elias et al. (1982); Ikmal Hisham et al. (2009); Wang & You (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810051160/gk2329sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051160/gk2329Isup2.hkl
A mixture of 2-hydroxyacetophenone (0.5 g, 3.7 mmol) and 4-(2-aminoethyl)morpholine (0.48 g, 3.7 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of copper(II) chloride dihydrate (0.63 g, 3.7 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained after a few days.
The hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.99 Å) and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5 Ueq(C).The structure was a determined from a non-merohedrally twinned specimen;
in 1 0 0.168 0 - 1 0 0 0 - 1; SHELXL-97 (Sheldrick, 2008) BASF parameter 0.223 (3).The title compound was obtained through the reaction of the Schiff base ligand, prepared in situ, with copper(II) chloride. Upon complexation, the Schiff base loses its phenolic hydrogen to chelate the CuII ion as an anionic tridentate ligand. One chloride atom completes the distorted square-planar geometry of the complex. The deviation from the regular geometry is evident from the disposition of the metal atom 0.0494 (15) Å out of the N1—N2—O1—Cl1 coordination plane. The Cu—N, Cu—O and Cu—Cl bond lengths in the present complex are comparable with those in similar structures [Elias et al., 1982; Ikmal Hisham et al., 2009; Wang & You, 2007]. In the crystal, C—H···Cl and C—H···O interactions within the range for normal hydrogen bonds, link adjacent molecules into two-dimensional networks parallel to the bc plane (Fig. 2). In addition, intramolecular C—H···Cl hydrogen bonds occurs.
For the crystal structures of similar CuII complexes, see: Elias et al. (1982); Ikmal Hisham et al. (2009); Wang & You (2007).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).[CuCl(C14H19N2O2)] | F(000) = 716 |
Mr = 346.30 | Dx = 1.614 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4663 reflections |
a = 10.7122 (4) Å | θ = 2.4–28.8° |
b = 17.1657 (7) Å | µ = 1.72 mm−1 |
c = 7.7638 (3) Å | T = 100 K |
β = 93.493 (3)° | Plate, blue |
V = 1424.97 (10) Å3 | 0.31 × 0.22 × 0.07 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2506 independent reflections |
Radiation source: fine-focus sealed tube | 2313 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.617, Tmax = 0.889 | k = −20→20 |
10834 measured reflections | l = −6→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.P)2 + 6.7834P] where P = (Fo2 + 2Fc2)/3 |
2506 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −1.15 e Å−3 |
[CuCl(C14H19N2O2)] | V = 1424.97 (10) Å3 |
Mr = 346.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.7122 (4) Å | µ = 1.72 mm−1 |
b = 17.1657 (7) Å | T = 100 K |
c = 7.7638 (3) Å | 0.31 × 0.22 × 0.07 mm |
β = 93.493 (3)° |
Bruker APEXII CCD diffractometer | 2506 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2313 reflections with I > 2σ(I) |
Tmin = 0.617, Tmax = 0.889 | Rint = 0.034 |
10834 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.81 e Å−3 |
2506 reflections | Δρmin = −1.15 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.51091 (4) | 0.13385 (3) | 0.49248 (6) | 0.01131 (15) | |
Cl1 | 0.35700 (9) | 0.11054 (6) | 0.28748 (12) | 0.0166 (2) | |
O1 | 0.6167 (3) | 0.17572 (17) | 0.3321 (4) | 0.0177 (6) | |
O2 | 0.1491 (3) | 0.09423 (18) | 0.8080 (4) | 0.0209 (7) | |
N1 | 0.6497 (3) | 0.1116 (2) | 0.6556 (4) | 0.0152 (8) | |
N2 | 0.3974 (3) | 0.12315 (19) | 0.6943 (4) | 0.0125 (7) | |
C1 | 0.7370 (4) | 0.1654 (2) | 0.3291 (5) | 0.0138 (8) | |
C2 | 0.7957 (4) | 0.1964 (2) | 0.1849 (6) | 0.0169 (9) | |
H2 | 0.7470 | 0.2253 | 0.1008 | 0.020* | |
C3 | 0.9208 (4) | 0.1858 (2) | 0.1639 (6) | 0.0195 (10) | |
H3 | 0.9571 | 0.2063 | 0.0648 | 0.023* | |
C4 | 0.9953 (4) | 0.1448 (3) | 0.2879 (6) | 0.0224 (10) | |
H4 | 1.0816 | 0.1365 | 0.2722 | 0.027* | |
C5 | 0.9423 (4) | 0.1168 (2) | 0.4322 (6) | 0.0168 (9) | |
H5 | 0.9939 | 0.0903 | 0.5173 | 0.020* | |
C6 | 0.8129 (4) | 0.1261 (2) | 0.4589 (5) | 0.0140 (8) | |
C7 | 0.7669 (4) | 0.1010 (2) | 0.6241 (6) | 0.0141 (9) | |
C8 | 0.8561 (4) | 0.0640 (3) | 0.7551 (6) | 0.0217 (10) | |
H8A | 0.8092 | 0.0353 | 0.8391 | 0.033* | |
H8B | 0.9068 | 0.1044 | 0.8148 | 0.033* | |
H8C | 0.9110 | 0.0279 | 0.6974 | 0.033* | |
C9 | 0.6058 (4) | 0.0955 (3) | 0.8300 (5) | 0.0171 (9) | |
H9A | 0.6696 | 0.1123 | 0.9199 | 0.021* | |
H9B | 0.5911 | 0.0389 | 0.8440 | 0.021* | |
C10 | 0.4853 (4) | 0.1402 (3) | 0.8475 (6) | 0.0206 (9) | |
H10A | 0.4467 | 0.1245 | 0.9549 | 0.025* | |
H10B | 0.5030 | 0.1967 | 0.8539 | 0.025* | |
C11 | 0.3417 (4) | 0.0438 (2) | 0.6993 (5) | 0.0122 (8) | |
H11A | 0.4089 | 0.0052 | 0.7246 | 0.015* | |
H11B | 0.3010 | 0.0313 | 0.5847 | 0.015* | |
C12 | 0.2454 (4) | 0.0379 (2) | 0.8359 (5) | 0.0170 (9) | |
H12A | 0.2082 | −0.0149 | 0.8327 | 0.020* | |
H12B | 0.2875 | 0.0457 | 0.9517 | 0.020* | |
C13 | 0.2030 (4) | 0.1704 (3) | 0.8178 (6) | 0.0204 (10) | |
H13A | 0.2462 | 0.1780 | 0.9329 | 0.025* | |
H13B | 0.1359 | 0.2100 | 0.8033 | 0.025* | |
C14 | 0.2951 (4) | 0.1817 (2) | 0.6801 (6) | 0.0187 (9) | |
H14A | 0.2506 | 0.1775 | 0.5649 | 0.022* | |
H14B | 0.3315 | 0.2346 | 0.6906 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0114 (3) | 0.0124 (2) | 0.0102 (2) | −0.0004 (2) | 0.00097 (19) | 0.00130 (19) |
Cl1 | 0.0189 (5) | 0.0203 (5) | 0.0101 (5) | −0.0007 (4) | −0.0027 (4) | 0.0009 (4) |
O1 | 0.0153 (15) | 0.0196 (16) | 0.0184 (16) | −0.0014 (12) | 0.0031 (12) | 0.0058 (13) |
O2 | 0.0119 (15) | 0.0287 (17) | 0.0220 (17) | 0.0000 (13) | 0.0014 (13) | 0.0008 (14) |
N1 | 0.0170 (18) | 0.0164 (18) | 0.0122 (18) | −0.0036 (14) | 0.0004 (15) | 0.0011 (14) |
N2 | 0.0171 (17) | 0.0128 (17) | 0.0073 (17) | −0.0002 (14) | −0.0006 (13) | 0.0012 (13) |
C1 | 0.015 (2) | 0.0110 (19) | 0.015 (2) | −0.0025 (16) | 0.0002 (16) | −0.0040 (16) |
C2 | 0.022 (2) | 0.012 (2) | 0.017 (2) | −0.0015 (17) | 0.0020 (18) | 0.0000 (17) |
C3 | 0.025 (2) | 0.016 (2) | 0.018 (2) | −0.0056 (18) | 0.0070 (18) | −0.0009 (18) |
C4 | 0.016 (2) | 0.020 (2) | 0.032 (3) | −0.0030 (18) | 0.0042 (19) | −0.004 (2) |
C5 | 0.015 (2) | 0.014 (2) | 0.021 (2) | 0.0006 (16) | 0.0000 (18) | −0.0024 (17) |
C6 | 0.016 (2) | 0.011 (2) | 0.015 (2) | 0.0001 (16) | 0.0013 (17) | −0.0023 (16) |
C7 | 0.015 (2) | 0.0091 (19) | 0.018 (2) | −0.0009 (16) | −0.0015 (17) | −0.0016 (16) |
C8 | 0.013 (2) | 0.031 (3) | 0.021 (2) | 0.0014 (19) | 0.0002 (18) | 0.006 (2) |
C9 | 0.018 (2) | 0.026 (2) | 0.007 (2) | −0.0061 (18) | −0.0030 (17) | 0.0033 (17) |
C10 | 0.020 (2) | 0.022 (2) | 0.020 (2) | −0.0029 (19) | 0.0016 (19) | −0.0059 (19) |
C11 | 0.017 (2) | 0.0096 (19) | 0.010 (2) | −0.0004 (16) | 0.0003 (16) | 0.0004 (15) |
C12 | 0.018 (2) | 0.020 (2) | 0.014 (2) | −0.0048 (17) | −0.0005 (17) | 0.0006 (17) |
C13 | 0.017 (2) | 0.022 (2) | 0.022 (2) | 0.0066 (18) | 0.0015 (18) | −0.0004 (19) |
C14 | 0.026 (2) | 0.013 (2) | 0.016 (2) | 0.0030 (18) | 0.0002 (18) | 0.0008 (17) |
Cu1—O1 | 1.877 (3) | C5—H5 | 0.9500 |
Cu1—N1 | 1.932 (3) | C6—C7 | 1.466 (6) |
Cu1—N2 | 2.050 (3) | C7—C8 | 1.495 (6) |
Cu1—Cl1 | 2.2565 (11) | C8—H8A | 0.9800 |
O1—C1 | 1.302 (5) | C8—H8B | 0.9800 |
O2—C12 | 1.422 (5) | C8—H8C | 0.9800 |
O2—C13 | 1.430 (5) | C9—C10 | 1.515 (6) |
N1—C7 | 1.306 (5) | C9—H9A | 0.9900 |
N1—C9 | 1.486 (5) | C9—H9B | 0.9900 |
N2—C14 | 1.485 (5) | C10—H10A | 0.9900 |
N2—C11 | 1.488 (5) | C10—H10B | 0.9900 |
N2—C10 | 1.500 (5) | C11—C12 | 1.527 (6) |
C1—C2 | 1.421 (6) | C11—H11A | 0.9900 |
C1—C6 | 1.426 (6) | C11—H11B | 0.9900 |
C2—C3 | 1.373 (6) | C12—H12A | 0.9900 |
C2—H2 | 0.9500 | C12—H12B | 0.9900 |
C3—C4 | 1.401 (6) | C13—C14 | 1.511 (6) |
C3—H3 | 0.9500 | C13—H13A | 0.9900 |
C4—C5 | 1.374 (6) | C13—H13B | 0.9900 |
C4—H4 | 0.9500 | C14—H14A | 0.9900 |
C5—C6 | 1.423 (6) | C14—H14B | 0.9900 |
O1—Cu1—N1 | 92.21 (14) | H8A—C8—H8B | 109.5 |
O1—Cu1—N2 | 162.15 (13) | C7—C8—H8C | 109.5 |
N1—Cu1—N2 | 87.14 (14) | H8A—C8—H8C | 109.5 |
O1—Cu1—Cl1 | 92.57 (10) | H8B—C8—H8C | 109.5 |
N1—Cu1—Cl1 | 158.07 (11) | N1—C9—C10 | 107.8 (3) |
N2—Cu1—Cl1 | 94.66 (10) | N1—C9—H9A | 110.1 |
C1—O1—Cu1 | 126.7 (3) | C10—C9—H9A | 110.1 |
C12—O2—C13 | 109.1 (3) | N1—C9—H9B | 110.1 |
C7—N1—C9 | 120.4 (4) | C10—C9—H9B | 110.1 |
C7—N1—Cu1 | 127.9 (3) | H9A—C9—H9B | 108.5 |
C9—N1—Cu1 | 111.1 (3) | N2—C10—C9 | 109.1 (3) |
C14—N2—C11 | 109.0 (3) | N2—C10—H10A | 109.9 |
C14—N2—C10 | 110.6 (3) | C9—C10—H10A | 109.9 |
C11—N2—C10 | 113.0 (3) | N2—C10—H10B | 109.9 |
C14—N2—Cu1 | 110.6 (2) | C9—C10—H10B | 109.9 |
C11—N2—Cu1 | 111.1 (2) | H10A—C10—H10B | 108.3 |
C10—N2—Cu1 | 102.4 (2) | N2—C11—C12 | 111.6 (3) |
O1—C1—C2 | 116.7 (4) | N2—C11—H11A | 109.3 |
O1—C1—C6 | 125.1 (4) | C12—C11—H11A | 109.3 |
C2—C1—C6 | 118.2 (4) | N2—C11—H11B | 109.3 |
C3—C2—C1 | 121.8 (4) | C12—C11—H11B | 109.3 |
C3—C2—H2 | 119.1 | H11A—C11—H11B | 108.0 |
C1—C2—H2 | 119.1 | O2—C12—C11 | 111.3 (3) |
C2—C3—C4 | 120.3 (4) | O2—C12—H12A | 109.4 |
C2—C3—H3 | 119.9 | C11—C12—H12A | 109.4 |
C4—C3—H3 | 119.9 | O2—C12—H12B | 109.4 |
C5—C4—C3 | 119.3 (4) | C11—C12—H12B | 109.4 |
C5—C4—H4 | 120.3 | H12A—C12—H12B | 108.0 |
C3—C4—H4 | 120.3 | O2—C13—C14 | 111.0 (4) |
C4—C5—C6 | 122.3 (4) | O2—C13—H13A | 109.4 |
C4—C5—H5 | 118.9 | C14—C13—H13A | 109.4 |
C6—C5—H5 | 118.9 | O2—C13—H13B | 109.4 |
C5—C6—C1 | 118.0 (4) | C14—C13—H13B | 109.4 |
C5—C6—C7 | 118.5 (4) | H13A—C13—H13B | 108.0 |
C1—C6—C7 | 123.3 (4) | N2—C14—C13 | 111.8 (3) |
N1—C7—C6 | 120.1 (4) | N2—C14—H14A | 109.3 |
N1—C7—C8 | 120.9 (4) | C13—C14—H14A | 109.3 |
C6—C7—C8 | 119.0 (4) | N2—C14—H14B | 109.3 |
C7—C8—H8A | 109.5 | C13—C14—H14B | 109.3 |
C7—C8—H8B | 109.5 | H14A—C14—H14B | 107.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···Cl1 | 0.99 | 2.75 | 3.386 (4) | 123 |
C11—H11B···Cl1 | 0.99 | 2.78 | 3.409 (4) | 122 |
C14—H14B···Cl1i | 0.99 | 2.77 | 3.713 (4) | 159 |
C10—H10B···O1i | 0.99 | 2.52 | 3.465 (5) | 160 |
C9—H9B···Cl1ii | 0.99 | 2.83 | 3.680 (5) | 144 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(C14H19N2O2)] |
Mr | 346.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.7122 (4), 17.1657 (7), 7.7638 (3) |
β (°) | 93.493 (3) |
V (Å3) | 1424.97 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.72 |
Crystal size (mm) | 0.31 × 0.22 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.617, 0.889 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10834, 2506, 2313 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.096, 1.10 |
No. of reflections | 2506 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.81, −1.15 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).
Cu1—O1 | 1.877 (3) | Cu1—N2 | 2.050 (3) |
Cu1—N1 | 1.932 (3) | Cu1—Cl1 | 2.2565 (11) |
O1—Cu1—N1 | 92.21 (14) | O1—Cu1—Cl1 | 92.57 (10) |
O1—Cu1—N2 | 162.15 (13) | N1—Cu1—Cl1 | 158.07 (11) |
N1—Cu1—N2 | 87.14 (14) | N2—Cu1—Cl1 | 94.66 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···Cl1 | 0.99 | 2.75 | 3.386 (4) | 123 |
C11—H11B···Cl1 | 0.99 | 2.78 | 3.409 (4) | 122 |
C14—H14B···Cl1i | 0.99 | 2.77 | 3.713 (4) | 159 |
C10—H10B···O1i | 0.99 | 2.52 | 3.465 (5) | 160 |
C9—H9B···Cl1ii | 0.99 | 2.83 | 3.680 (5) | 144 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elias, H., Hilms, E. & Paulus, H. (1982). Z. Naturforsch. Teil B, 37, 1266–1273. Google Scholar
Ikmal Hisham, N. A., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m870. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J. & You, Z. (2007). Acta Cryst. E63, m1200–m1201. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was obtained through the reaction of the Schiff base ligand, prepared in situ, with copper(II) chloride. Upon complexation, the Schiff base loses its phenolic hydrogen to chelate the CuII ion as an anionic tridentate ligand. One chloride atom completes the distorted square-planar geometry of the complex. The deviation from the regular geometry is evident from the disposition of the metal atom 0.0494 (15) Å out of the N1—N2—O1—Cl1 coordination plane. The Cu—N, Cu—O and Cu—Cl bond lengths in the present complex are comparable with those in similar structures [Elias et al., 1982; Ikmal Hisham et al., 2009; Wang & You, 2007]. In the crystal, C—H···Cl and C—H···O interactions within the range for normal hydrogen bonds, link adjacent molecules into two-dimensional networks parallel to the bc plane (Fig. 2). In addition, intramolecular C—H···Cl hydrogen bonds occurs.