organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R,4S)-1-[(Benzyl­amino)­meth­yl]-4-(prop-1-en-2-yl)cyclo­hexane-1,2-diol

aEquipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it

(Received 6 December 2010; accepted 13 December 2010; online 18 December 2010)

The title compound, C17H25NO2, was synthesized by epoxidation of the double bond of (S)-perillyl alcohol [(S)-4-isopropenyl-1-cyclo­hexenyl­methanol], followed by the oxirane ring-opening by benzyl­amine using [Ca(CF3CO2)2] as catalyst under solvent-free condition at 313 K. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains parallel to the a axis, which are further connected by O—H⋯O hydrogen bonds into sheets parallel to (010). The absolute configuration of the mol­ecule is known from the synthetic procedure.

Related literature

For the biological activity and applications of amino­diols, see: Alexander & Liotta (1996[Alexander, C. W. & Liotta, D. C. (1996). Tetrahedron Lett. 37, 1961-1964.]); Allepuz et al. (2010[Allepuz, A. C., Badorrey, R., Díaz-de-Villegas, M. D. & Gálvez, J. A. (2010). Tetrahedron Asymmetry, 21, 503-506.]); Beaulieu et al. (1999[Beaulieu, P. L., Gillard, J., Bailey, M., Beaulieu, C., Duceppe, J., Lavallee, P. & Wernic, D. (1999). J. Org. Chem. 64, 6622-6634.]); Braga et al. (2003[Braga, A. L., Rubim, R. M., Schrekker, H. S., Wessjohann, L. A., de Bolster, M. W. G., Zeni, G. & Sehnem, J. A. (2003). Tetrahedron Asymmetry, 14, 3291-3295.]); Chen et al. (1996[Chen, P., Cheng, P. T. W., Alam, M., Beyer, B. D., Bisacchi, G. S., Dejneka, T., Evans, A. J., Greytok, J. A., Hermsmeier, M. A., Humphreys, W. G., Jacobs, G. A., Kocy, O., Lin, P., Lis, K. A., Marella, M. A., et al. (1996). J. Med. Chem. 39, 1991-2007.]); Cherng et al. (1995[Cherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1995). Tetrahedron Asymmetry, 6, 89-92.], 1999[Cherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1999). J. Org. Chem. 64, 3207-3212.]); Gondela & Walczak (2010[Gondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993-3997.]); Kempf et al. (1992[Kempf, D. J., Sowin, T. J., Doherty, E. M., Hannick, S. M., Codavoci, L., Henry, R. F., Green, B. E., Spanton, S. G. & Norbeck, D. W. (1992). J. Org. Chem. 57, 5692-5700.]); Panev et al. (2001[Panev, S., Linden, A. & Dimitrov, V. (2001). Tetrahedron Asymmetry, 12, 1313-1321.]); Pastó et al. (1996[Pastó, M., Castejón, P., Moyano, A., Pericàs, M. A. & Riera, A. (1996). J. Org. Chem. 61, 6033-6037.]); Wang et al. (1995[Wang, G. T., Li, S., Wideburg, N., Krafft, G. A. & Kempf, D. J. (1995). J. Med. Chem. 38, 2995-3002.]). For the synthesis of amidiol derivatives, see: Ager et al. (1996[Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-876.]); Bergmeier (2000[Bergmeier, S. C. (2000). Tetrahedron, 56, 2561-2576.]); Canas et al. (1991[Canas, M., Poch, M., Verdaguer, X., Moyano, A., Pericàs, M. A. & Riera, A. (1991). Tetrahedron Lett. 32, 6931-6934.]); Carree et al. (2004[Carree, F., Gil, R. & Collin, J. (2004). Tetrahedron Lett. 45, 7749-7751.]); Dias et al. (2008[Dias, L. C., Fattori, J., Perez, C. C., de Oliveira, V. M. & Aguilar, A. M. (2008). Tetrahedron, 64, 5891-5903.]); Fan & Hou (2003[Fan, R. H. & Hou, X. L. (2003). J. Org. Chem. 68, 726-730.]); Kamal et al. (2005[Kamal, A., Ramu, R., Amerudin, M., Azhar, G. B. & Khanna, R. (2005). Tetrahedron Lett. 46, 2675-2677.]); Kwon & Ko (2003[Kwon, S. J. & Ko, S. Y. (2003). Bull. Korean Chem. Soc. 24, 1053-1054.]); Lee & Kang (2004[Lee, H. S. & Kang, S. H. (2004). Synlett, pp. 1673-1685.]); Szakonyi et al. (2008[Szakonyi, Z., Hetényi, A. & Fulöp, F. (2008). Tetrahedron, 64, 1034-1039.]); Zhao et al. (2004[Zhao, P.-Q., Xu, L.-W. & Xia, C.-G. (2004). Synlett, pp. 846-850.]). For the use of [Ca(CF3CO2)2] as catalyst, see: Harrad et al. (2010[Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442-446.]). For the synthesis of (S)-1,2-ep­oxy­perillyl alcohol, see: Bach et al. (1979[Bach, R. D., Klein, M. W., Ryntz, R. A. & Holubka, J. W. (1979). J. Org. Chem. 44, 2569-2571.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H25NO2

  • Mr = 275.38

  • Monoclinic, P 21

  • a = 5.8281 (4) Å

  • b = 24.5421 (16) Å

  • c = 5.8776 (4) Å

  • β = 105.908 (4)°

  • V = 808.50 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 294 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Siemens AED diffractometer

  • 3041 measured reflections

  • 1567 independent reflections

  • 1477 reflections with I > 2σ(I)

  • Rint = 0.010

  • 3 standard reflections every 100 reflections intensity decay: 0.02%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.092

  • S = 1.08

  • 1567 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N1 0.90 (3) 1.88 (3) 2.676 (2) 147 (3)
O1—H1O⋯O2i 0.83 (3) 1.89 (3) 2.721 (2) 171 (3)
N1—H1N⋯O1ii 0.92 (2) 2.15 (2) 3.037 (2) 164 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Data collection: AED (Belletti et al., 1993[Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.]); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL97 (Keller, 1997[Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Aminodiols play important roles in drug therapy and drug research. For example, 5-(ω-hydroxyalkylamino) derivatives of mucochloric acids (2,3-dichloro-4-oxo-2-butenoic acid) have antibacterial and antiprotozoal activities (Gondela & Walczak, 2010). Other aminodiols have been found to act as HIV protease inhibitors (Kempf et al., 1992; Wang et al., 1995; Chen et al., 1996), or to exert renin inhibitor activity (Alexander & Liotta, 1996; Beaulieu et al., 1999). Furthermore, aminodiols may serve as useful starting materials for the synthesis of biologically active compounds, e. g. 3-amino-1,2-butanediol derivatives, which are key intermediates in the synthesis of the anticancer agent ES-285 (Allepuz et al., 2010). Chiral aminodiols and their derivatives also find excellent applications as catalysts for enantioselective transformations (Panev et al., 2001; Cherng et al., 1995, 1999; Pastó et al., 1996; Braga et al., 2003).

Among many different approaches developed for the synthesis of aminodiol derivatives (Canas et al., 1991; Panev et al., 2001; Kwon & Ko, 2003; Dias et al., 2008; Szakonyi et al., 2008), aminolysis of 1,2-epoxides represents one of the most valuable pathway to produce commercially important aminoalcohols and aminodiols from olefins (Ager et al., 1996; Bergmeier, 2000; Lee & Kang, 2004; Zhao et al., 2004; Fan & Hou, 2003; Kamal et al., 2005; Carree et al., 2004). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title new aminodiol derivative of perillyl alcohol. The synthetic methodology involves an epoxidation of the double bond, followed by the oxirane ring-opening by using benzylamine and Ca(CF3CO2)2 as catalyst (Harrad et al., 2010) under solvent-free condition at 40°C.

The molecular structure of the title compound is shown in Fig. 1. The cyclohexane ring is in a chair conformation, with puckering parameters Q, θ and φ of 0.560 (2) Å, 2.6 (2)° and -167 (4)°, respectively (Cremer & Pople, 1975). The hydroxy groups at atoms C1 and C2 are both in axial positions. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1), generating a ring of S(6) graph set motif (Bernstein et al., 1995). In the crystal structure (Fig. 2), molecules are linked into chains parallel to the a axis by intermolecular N—H···O hydrogen bonds. The chains are further connected via O—H···O hydrogen bonding interactions to form sheets parallel to (010).

Related literature top

For the biological activity and applications of aminodiols, see: Alexander & Liotta (1996); Allepuz et al. (2010); Beaulieu et al. (1999); Braga et al. (2003); Chen et al. (1996); Cherng et al. (1995, 1999); Gondela & Walczak (2010); Kempf et al. (1992); Panev et al. (2001); Pastó et al. (1996); Wang et al. (1995). For the synthesis of amidiol derivatives, see: Ager et al. (1996); Bergmeier (2000); Canas et al. (1991); Carree et al. (2004); Dias et al. (2008); Fan & Hou (2003); Kamal et al. (2005); Kwon & Ko (2003); Lee & Kang (2004); Szakonyi et al. (2008); Zhao et al. (2004). For the use of [Ca(CF3CO2)2] as catalyst, see: Harrad et al. (2010). For the synthesis of (S)-1,2-epoxyperillyl alcohol, see: Bach et al. (1979). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

(S)-1,2-Epoxyperillyl alcohol was prepared from commercially available (S)-perillyl alcohol [(S)-4-isopropenyl-1-cyclohexenylmethanol, Fluka] using the procedure described in the literature (Bach et al., 1979). A mixture of benzylamine (5.1 mmol) and (S)-1,2-epoxyperillyl alcohol (5 mmol) was added to Ca(CF3CO2)2 (0.25 mmol) under solvent-free conditions. The mixture was stirred at 40 °C for 72 h, then it was extracted with ethyl acetate (3 × 10 ml), dried over Na2SO4 and the solvent was removed under reduced pressure. Column chromatography (column 60 x 2.5 cm, hexane) of the residue on silica gel gave the title aminodiol in 52% yield (m. p. 429-430 K). Colourless crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent.

Refinement top

The hydroxy and amine H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, the 1237 Friedel pairs were merged in the last cycles of refinement. The absolute configuration was assigned on the basis of the known configuration of the perillyl alcohol employed in the synthesis.

Structure description top

Aminodiols play important roles in drug therapy and drug research. For example, 5-(ω-hydroxyalkylamino) derivatives of mucochloric acids (2,3-dichloro-4-oxo-2-butenoic acid) have antibacterial and antiprotozoal activities (Gondela & Walczak, 2010). Other aminodiols have been found to act as HIV protease inhibitors (Kempf et al., 1992; Wang et al., 1995; Chen et al., 1996), or to exert renin inhibitor activity (Alexander & Liotta, 1996; Beaulieu et al., 1999). Furthermore, aminodiols may serve as useful starting materials for the synthesis of biologically active compounds, e. g. 3-amino-1,2-butanediol derivatives, which are key intermediates in the synthesis of the anticancer agent ES-285 (Allepuz et al., 2010). Chiral aminodiols and their derivatives also find excellent applications as catalysts for enantioselective transformations (Panev et al., 2001; Cherng et al., 1995, 1999; Pastó et al., 1996; Braga et al., 2003).

Among many different approaches developed for the synthesis of aminodiol derivatives (Canas et al., 1991; Panev et al., 2001; Kwon & Ko, 2003; Dias et al., 2008; Szakonyi et al., 2008), aminolysis of 1,2-epoxides represents one of the most valuable pathway to produce commercially important aminoalcohols and aminodiols from olefins (Ager et al., 1996; Bergmeier, 2000; Lee & Kang, 2004; Zhao et al., 2004; Fan & Hou, 2003; Kamal et al., 2005; Carree et al., 2004). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title new aminodiol derivative of perillyl alcohol. The synthetic methodology involves an epoxidation of the double bond, followed by the oxirane ring-opening by using benzylamine and Ca(CF3CO2)2 as catalyst (Harrad et al., 2010) under solvent-free condition at 40°C.

The molecular structure of the title compound is shown in Fig. 1. The cyclohexane ring is in a chair conformation, with puckering parameters Q, θ and φ of 0.560 (2) Å, 2.6 (2)° and -167 (4)°, respectively (Cremer & Pople, 1975). The hydroxy groups at atoms C1 and C2 are both in axial positions. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1), generating a ring of S(6) graph set motif (Bernstein et al., 1995). In the crystal structure (Fig. 2), molecules are linked into chains parallel to the a axis by intermolecular N—H···O hydrogen bonds. The chains are further connected via O—H···O hydrogen bonding interactions to form sheets parallel to (010).

For the biological activity and applications of aminodiols, see: Alexander & Liotta (1996); Allepuz et al. (2010); Beaulieu et al. (1999); Braga et al. (2003); Chen et al. (1996); Cherng et al. (1995, 1999); Gondela & Walczak (2010); Kempf et al. (1992); Panev et al. (2001); Pastó et al. (1996); Wang et al. (1995). For the synthesis of amidiol derivatives, see: Ager et al. (1996); Bergmeier (2000); Canas et al. (1991); Carree et al. (2004); Dias et al. (2008); Fan & Hou (2003); Kamal et al. (2005); Kwon & Ko (2003); Lee & Kang (2004); Szakonyi et al. (2008); Zhao et al. (2004). For the use of [Ca(CF3CO2)2] as catalyst, see: Harrad et al. (2010). For the synthesis of (S)-1,2-epoxyperillyl alcohol, see: Bach et al. (1979). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: AED (Belletti et al., 1993); cell refinement: AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound viewed approximately along the a axis. Intra- and intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings are omitted for clarity.
(1S,2R,4S)-1-[(Benzylamino)methyl]-4-(prop-1-en-2- yl)cyclohexane-1,2-diol top
Crystal data top
C17H25NO2F(000) = 300
Mr = 275.38Dx = 1.131 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 48 reflections
a = 5.8281 (4) Åθ = 12.6–38.8°
b = 24.5421 (16) ŵ = 0.58 mm1
c = 5.8776 (4) ÅT = 294 K
β = 105.908 (4)°Block, colourless
V = 808.50 (10) Å30.20 × 0.17 × 0.15 mm
Z = 2
Data collection top
Siemens AED
diffractometer
Rint = 0.010
Radiation source: fine-focus sealed tubeθmax = 69.8°, θmin = 3.6°
Graphite monochromatorh = 77
θ/2θ scansk = 2829
3041 measured reflectionsl = 71
1567 independent reflections3 standard reflections every 100 reflections
1477 reflections with I > 2σ(I) intensity decay: 0.02%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0328P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1567 reflectionsΔρmax = 0.16 e Å3
195 parametersΔρmin = 0.09 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (17)
Crystal data top
C17H25NO2V = 808.50 (10) Å3
Mr = 275.38Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.8281 (4) ŵ = 0.58 mm1
b = 24.5421 (16) ÅT = 294 K
c = 5.8776 (4) Å0.20 × 0.17 × 0.15 mm
β = 105.908 (4)°
Data collection top
Siemens AED
diffractometer
Rint = 0.010
3041 measured reflections3 standard reflections every 100 reflections
1567 independent reflections intensity decay: 0.02%
1477 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.16 e Å3
1567 reflectionsΔρmin = 0.09 e Å3
195 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0402 (2)0.20566 (7)0.8285 (2)0.0523 (3)
H1O0.114 (5)0.2089 (13)0.971 (5)0.075 (7)*
O20.2514 (2)0.20737 (7)0.3026 (2)0.0573 (4)
H2O0.379 (6)0.1870 (13)0.371 (6)0.090 (9)*
N10.5565 (3)0.15127 (7)0.6459 (3)0.0519 (4)
H1N0.688 (4)0.1715 (10)0.719 (4)0.055 (6)*
C10.2235 (3)0.20879 (8)0.7095 (2)0.0432 (4)
C20.0876 (3)0.21090 (9)0.4445 (3)0.0451 (4)
H20.02190.17980.40750.054*
C30.0551 (3)0.26297 (9)0.3798 (3)0.0501 (4)
H3A0.18180.26340.45780.060*
H3B0.12840.26360.21040.060*
C40.0993 (4)0.31396 (9)0.4509 (4)0.0551 (5)
H40.22320.31270.36690.066*
C50.2265 (4)0.31182 (9)0.7172 (4)0.0580 (5)
H5A0.33080.34320.76020.070*
H5B0.10870.31370.80590.070*
C60.3724 (3)0.25995 (9)0.7830 (3)0.0509 (4)
H6A0.50090.26020.70730.061*
H6B0.44330.25930.95270.061*
C70.0400 (5)0.36592 (11)0.3773 (5)0.0715 (6)
C80.2383 (6)0.37780 (15)0.4831 (8)0.1137 (13)
H8A0.30430.41300.43110.170*
H8B0.17910.37760.65240.170*
H8C0.35990.35050.43420.170*
C90.0179 (7)0.40014 (13)0.2250 (6)0.0967 (10)
H9A0.06690.43240.18280.116*
H9B0.14310.39170.16130.116*
C100.3697 (3)0.15611 (9)0.7684 (3)0.0519 (5)
H10A0.44310.15470.93770.062*
H10B0.26280.12520.72640.062*
C110.6236 (4)0.09492 (10)0.6142 (4)0.0654 (6)
H11A0.75940.09550.54870.078*
H11B0.49250.07780.49790.078*
C120.6868 (4)0.05945 (9)0.8337 (4)0.0606 (5)
C130.9001 (5)0.06545 (13)1.0055 (6)0.0835 (8)
H131.00820.09180.98710.100*
C140.9548 (6)0.03319 (17)1.2024 (6)0.1002 (10)
H141.10060.03771.31520.120*
C150.8001 (7)0.00523 (12)1.2363 (6)0.0908 (9)
H150.84030.02741.36980.109*
C160.5866 (7)0.01100 (13)1.0734 (7)0.1009 (10)
H160.47750.03661.09660.121*
C170.5310 (6)0.02089 (12)0.8739 (6)0.0914 (9)
H170.38420.01630.76290.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0435 (6)0.0846 (9)0.0303 (6)0.0047 (7)0.0128 (5)0.0006 (6)
O20.0604 (7)0.0859 (10)0.0274 (5)0.0089 (8)0.0153 (5)0.0031 (7)
N10.0461 (8)0.0652 (10)0.0451 (8)0.0007 (7)0.0137 (6)0.0022 (7)
C10.0379 (7)0.0653 (10)0.0260 (7)0.0025 (8)0.0085 (5)0.0020 (8)
C20.0444 (8)0.0633 (10)0.0261 (7)0.0068 (8)0.0070 (6)0.0051 (8)
C30.0436 (8)0.0705 (11)0.0320 (7)0.0022 (8)0.0033 (6)0.0000 (8)
C40.0514 (9)0.0625 (11)0.0504 (10)0.0026 (9)0.0121 (8)0.0001 (9)
C50.0557 (10)0.0649 (12)0.0496 (11)0.0066 (9)0.0079 (8)0.0123 (9)
C60.0421 (8)0.0730 (12)0.0337 (8)0.0071 (9)0.0037 (6)0.0057 (9)
C70.0732 (14)0.0707 (14)0.0665 (14)0.0036 (11)0.0122 (11)0.0052 (11)
C80.089 (2)0.092 (2)0.169 (4)0.0326 (18)0.051 (2)0.028 (2)
C90.134 (3)0.0738 (17)0.084 (2)0.0154 (17)0.0331 (19)0.0160 (15)
C100.0495 (10)0.0702 (12)0.0365 (9)0.0002 (8)0.0126 (7)0.0074 (8)
C110.0692 (13)0.0728 (14)0.0557 (11)0.0016 (10)0.0196 (10)0.0077 (10)
C120.0617 (11)0.0563 (11)0.0642 (13)0.0049 (9)0.0179 (9)0.0071 (10)
C130.0620 (13)0.103 (2)0.0823 (17)0.0091 (13)0.0138 (12)0.0109 (15)
C140.0825 (18)0.120 (3)0.086 (2)0.0014 (18)0.0019 (15)0.0123 (19)
C150.115 (2)0.0723 (16)0.0830 (19)0.0220 (16)0.0235 (17)0.0135 (13)
C160.107 (2)0.0737 (17)0.116 (3)0.0139 (16)0.021 (2)0.0218 (17)
C170.0863 (17)0.0703 (16)0.102 (2)0.0157 (13)0.0009 (15)0.0099 (15)
Geometric parameters (Å, º) top
O1—C11.4301 (18)C7—C91.336 (4)
O1—H1O0.83 (3)C7—C81.484 (5)
O2—C21.4319 (19)C8—H8A0.9600
O2—H2O0.89 (3)C8—H8B0.9600
N1—C111.463 (3)C8—H8C0.9600
N1—C101.465 (2)C9—H9A0.9300
N1—H1N0.92 (2)C9—H9B0.9300
C1—C61.520 (3)C10—H10A0.9700
C1—C101.535 (3)C10—H10B0.9700
C1—C21.5426 (19)C11—C121.516 (3)
C2—C31.515 (3)C11—H11A0.9700
C2—H20.9800C11—H11B0.9700
C3—C41.531 (3)C12—C171.376 (4)
C3—H3A0.9700C12—C131.378 (4)
C3—H3B0.9700C13—C141.366 (5)
C4—C71.510 (3)C13—H130.9300
C4—C51.538 (3)C14—C151.356 (5)
C4—H40.9800C14—H140.9300
C5—C61.521 (3)C15—C161.354 (5)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700C16—C171.373 (5)
C6—H6A0.9700C16—H160.9300
C6—H6B0.9700C17—H170.9300
C1—O1—H1O103.5 (18)C9—C7—C4120.5 (3)
C2—O2—H2O112 (2)C8—C7—C4117.7 (2)
C11—N1—C10113.58 (17)C7—C8—H8A109.5
C11—N1—H1N110.8 (14)C7—C8—H8B109.5
C10—N1—H1N111.3 (15)H8A—C8—H8B109.5
O1—C1—C6110.51 (15)C7—C8—H8C109.5
O1—C1—C10106.71 (15)H8A—C8—H8C109.5
C6—C1—C10113.15 (13)H8B—C8—H8C109.5
O1—C1—C2104.49 (11)C7—C9—H9A120.0
C6—C1—C2110.73 (15)C7—C9—H9B120.0
C10—C1—C2110.82 (15)H9A—C9—H9B120.0
O2—C2—C3108.21 (15)N1—C10—C1113.52 (15)
O2—C2—C1110.28 (12)N1—C10—H10A108.9
C3—C2—C1112.11 (15)C1—C10—H10A108.9
O2—C2—H2108.7N1—C10—H10B108.9
C3—C2—H2108.7C1—C10—H10B108.9
C1—C2—H2108.7H10A—C10—H10B107.7
C2—C3—C4112.31 (14)N1—C11—C12116.44 (18)
C2—C3—H3A109.1N1—C11—H11A108.2
C4—C3—H3A109.1C12—C11—H11A108.2
C2—C3—H3B109.1N1—C11—H11B108.2
C4—C3—H3B109.1C12—C11—H11B108.2
H3A—C3—H3B107.9H11A—C11—H11B107.3
C7—C4—C3112.49 (17)C17—C12—C13116.9 (2)
C7—C4—C5113.05 (18)C17—C12—C11121.6 (2)
C3—C4—C5109.44 (16)C13—C12—C11121.5 (2)
C7—C4—H4107.2C14—C13—C12120.9 (3)
C3—C4—H4107.2C14—C13—H13119.6
C5—C4—H4107.2C12—C13—H13119.6
C6—C5—C4111.52 (17)C15—C14—C13121.1 (3)
C6—C5—H5A109.3C15—C14—H14119.4
C4—C5—H5A109.3C13—C14—H14119.4
C6—C5—H5B109.3C16—C15—C14119.2 (3)
C4—C5—H5B109.3C16—C15—H15120.4
H5A—C5—H5B108.0C14—C15—H15120.4
C1—C6—C5112.55 (15)C15—C16—C17120.0 (3)
C1—C6—H6A109.1C15—C16—H16120.0
C5—C6—H6A109.1C17—C16—H16120.0
C1—C6—H6B109.1C16—C17—C12121.8 (3)
C5—C6—H6B109.1C16—C17—H17119.1
H6A—C6—H6B107.8C12—C17—H17119.1
C9—C7—C8121.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.90 (3)1.88 (3)2.676 (2)147 (3)
O1—H1O···O2i0.83 (3)1.89 (3)2.721 (2)171 (3)
N1—H1N···O1ii0.92 (2)2.15 (2)3.037 (2)164 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H25NO2
Mr275.38
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)5.8281 (4), 24.5421 (16), 5.8776 (4)
β (°) 105.908 (4)
V3)808.50 (10)
Z2
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerSiemens AED
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3041, 1567, 1477
Rint0.010
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.092, 1.08
No. of reflections1567
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.09

Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.90 (3)1.88 (3)2.676 (2)147 (3)
O1—H1O···O2i0.83 (3)1.89 (3)2.721 (2)171 (3)
N1—H1N···O1ii0.92 (2)2.15 (2)3.037 (2)164 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–876.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAlexander, C. W. & Liotta, D. C. (1996). Tetrahedron Lett. 37, 1961–1964.  CrossRef CAS Web of Science Google Scholar
First citationAllepuz, A. C., Badorrey, R., Díaz-de-Villegas, M. D. & Gálvez, J. A. (2010). Tetrahedron Asymmetry, 21, 503–506.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBach, R. D., Klein, M. W., Ryntz, R. A. & Holubka, J. W. (1979). J. Org. Chem. 44, 2569–2571.  CrossRef CAS Web of Science Google Scholar
First citationBeaulieu, P. L., Gillard, J., Bailey, M., Beaulieu, C., Duceppe, J., Lavallee, P. & Wernic, D. (1999). J. Org. Chem. 64, 6622–6634.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBelletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.  Google Scholar
First citationBergmeier, S. C. (2000). Tetrahedron, 56, 2561–2576.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraga, A. L., Rubim, R. M., Schrekker, H. S., Wessjohann, L. A., de Bolster, M. W. G., Zeni, G. & Sehnem, J. A. (2003). Tetrahedron Asymmetry, 14, 3291–3295.  Web of Science CrossRef CAS Google Scholar
First citationCanas, M., Poch, M., Verdaguer, X., Moyano, A., Pericàs, M. A. & Riera, A. (1991). Tetrahedron Lett. 32, 6931–6934.  CrossRef CAS Google Scholar
First citationCarree, F., Gil, R. & Collin, J. (2004). Tetrahedron Lett. 45, 7749–7751.  CAS Google Scholar
First citationChen, P., Cheng, P. T. W., Alam, M., Beyer, B. D., Bisacchi, G. S., Dejneka, T., Evans, A. J., Greytok, J. A., Hermsmeier, M. A., Humphreys, W. G., Jacobs, G. A., Kocy, O., Lin, P., Lis, K. A., Marella, M. A., et al. (1996). J. Med. Chem. 39, 1991–2007.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1995). Tetrahedron Asymmetry, 6, 89–92.  CAS Google Scholar
First citationCherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1999). J. Org. Chem. 64, 3207–3212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDias, L. C., Fattori, J., Perez, C. C., de Oliveira, V. M. & Aguilar, A. M. (2008). Tetrahedron, 64, 5891–5903.  Web of Science CrossRef CAS Google Scholar
First citationFan, R. H. & Hou, X. L. (2003). J. Org. Chem. 68, 726–730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993–3997.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446.  Web of Science CrossRef CAS Google Scholar
First citationKamal, A., Ramu, R., Amerudin, M., Azhar, G. B. & Khanna, R. (2005). Tetrahedron Lett. 46, 2675–2677.  Web of Science CrossRef CAS Google Scholar
First citationKeller, E. (1997). SCHAKAL97. University of Freiburg, Germany.  Google Scholar
First citationKempf, D. J., Sowin, T. J., Doherty, E. M., Hannick, S. M., Codavoci, L., Henry, R. F., Green, B. E., Spanton, S. G. & Norbeck, D. W. (1992). J. Org. Chem. 57, 5692–5700.  CSD CrossRef CAS Web of Science Google Scholar
First citationKwon, S. J. & Ko, S. Y. (2003). Bull. Korean Chem. Soc. 24, 1053–1054.  CAS Google Scholar
First citationLee, H. S. & Kang, S. H. (2004). Synlett, pp. 1673–1685.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPanev, S., Linden, A. & Dimitrov, V. (2001). Tetrahedron Asymmetry, 12, 1313–1321.  CrossRef CAS Google Scholar
First citationPastó, M., Castejón, P., Moyano, A., Pericàs, M. A. & Riera, A. (1996). J. Org. Chem. 61, 6033–6037.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzakonyi, Z., Hetényi, A. & Fulöp, F. (2008). Tetrahedron, 64, 1034–1039.  Web of Science CrossRef CAS Google Scholar
First citationWang, G. T., Li, S., Wideburg, N., Krafft, G. A. & Kempf, D. J. (1995). J. Med. Chem. 38, 2995–3002.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhao, P.-Q., Xu, L.-W. & Xia, C.-G. (2004). Synlett, pp. 846–850.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds