organic compounds
(1S,2R,4S)-1-[(Benzylamino)methyl]-4-(prop-1-en-2-yl)cyclohexane-1,2-diol
aEquipe de Chimie de Coordination et Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universitá degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy
*Correspondence e-mail: corrado.rizzoli@unipr.it
The title compound, C17H25NO2, was synthesized by epoxidation of the double bond of (S)-perillyl alcohol [(S)-4-isopropenyl-1-cyclohexenylmethanol], followed by the oxirane ring-opening by benzylamine using [Ca(CF3CO2)2] as catalyst under solvent-free condition at 313 K. The molecular conformation is stabilized by an intramolecular O—H⋯N hydrogen bond. In the crystal, molecules are linked by intermolecular N—H⋯O hydrogen bonds, forming chains parallel to the a axis, which are further connected by O—H⋯O hydrogen bonds into sheets parallel to (010). The of the molecule is known from the synthetic procedure.
Related literature
For the biological activity and applications of aminodiols, see: Alexander & Liotta (1996); Allepuz et al. (2010); Beaulieu et al. (1999); Braga et al. (2003); Chen et al. (1996); Cherng et al. (1995, 1999); Gondela & Walczak (2010); Kempf et al. (1992); Panev et al. (2001); Pastó et al. (1996); Wang et al. (1995). For the synthesis of amidiol derivatives, see: Ager et al. (1996); Bergmeier (2000); Canas et al. (1991); Carree et al. (2004); Dias et al. (2008); Fan & Hou (2003); Kamal et al. (2005); Kwon & Ko (2003); Lee & Kang (2004); Szakonyi et al. (2008); Zhao et al. (2004). For the use of [Ca(CF3CO2)2] as catalyst, see: Harrad et al. (2010). For the synthesis of (S)-1,2-epoxyperillyl alcohol, see: Bach et al. (1979). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: AED (Belletti et al., 1993); cell AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536810052323/gk2332sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052323/gk2332Isup2.hkl
(S)-1,2-Epoxyperillyl alcohol was prepared from commercially available (S)-perillyl alcohol [(S)-4-isopropenyl-1-cyclohexenylmethanol, Fluka] using the procedure described in the literature (Bach et al., 1979). A mixture of benzylamine (5.1 mmol) and (S)-1,2-epoxyperillyl alcohol (5 mmol) was added to Ca(CF3CO2)2 (0.25 mmol) under solvent-free conditions. The mixture was stirred at 40 °C for 72 h, then it was extracted with ethyl acetate (3 × 10 ml), dried over Na2SO4 and the solvent was removed under reduced pressure.
(column 60 x 2.5 cm, hexane) of the residue on silica gel gave the title aminodiol in 52% yield (m. p. 429-430 K). Colourless crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent.The hydroxy and amine H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant
effects, the 1237 Friedel pairs were merged in the last cycles of The was assigned on the basis of the known configuration of the perillyl alcohol employed in the synthesis.Aminodiols play important roles in drug therapy and drug research. For example, 5-(ω-hydroxyalkylamino) derivatives of mucochloric acids (2,3-dichloro-4-oxo-2-butenoic acid) have antibacterial and antiprotozoal activities (Gondela & Walczak, 2010). Other aminodiols have been found to act as HIV protease inhibitors (Kempf et al., 1992; Wang et al., 1995; Chen et al., 1996), or to exert renin inhibitor activity (Alexander & Liotta, 1996; Beaulieu et al., 1999). Furthermore, aminodiols may serve as useful starting materials for the synthesis of biologically active compounds, e. g. 3-amino-1,2-butanediol derivatives, which are key intermediates in the synthesis of the anticancer agent ES-285 (Allepuz et al., 2010). Chiral aminodiols and their derivatives also find excellent applications as catalysts for enantioselective transformations (Panev et al., 2001; Cherng et al., 1995, 1999; Pastó et al., 1996; Braga et al., 2003).
Among many different approaches developed for the synthesis of aminodiol derivatives (Canas et al., 1991; Panev et al., 2001; Kwon & Ko, 2003; Dias et al., 2008; Szakonyi et al., 2008), aminolysis of 1,2-epoxides represents one of the most valuable pathway to produce commercially important aminoalcohols and aminodiols from
(Ager et al., 1996; Bergmeier, 2000; Lee & Kang, 2004; Zhao et al., 2004; Fan & Hou, 2003; Kamal et al., 2005; Carree et al., 2004). As a contribution to this widespread area, we describe here the synthesis and of the title new aminodiol derivative of perillyl alcohol. The synthetic methodology involves an epoxidation of the double bond, followed by the oxirane ring-opening by using benzylamine and Ca(CF3CO2)2 as catalyst (Harrad et al., 2010) under solvent-free condition at 40°C.The molecular structure of the title compound is shown in Fig. 1. The cyclohexane ring is in a chair conformation, with puckering parameters Q, θ and φ of 0.560 (2) Å, 2.6 (2)° and -167 (4)°, respectively (Cremer & Pople, 1975). The hydroxy groups at atoms C1 and C2 are both in axial positions. The is stabilized by an intramolecular O—H···N hydrogen bond (Table 1), generating a ring of S(6) graph set motif (Bernstein et al., 1995). In the (Fig. 2), molecules are linked into chains parallel to the a axis by intermolecular N—H···O hydrogen bonds. The chains are further connected via O—H···O hydrogen bonding interactions to form sheets parallel to (010).
For the biological activity and applications of aminodiols, see: Alexander & Liotta (1996); Allepuz et al. (2010); Beaulieu et al. (1999); Braga et al. (2003); Chen et al. (1996); Cherng et al. (1995, 1999); Gondela & Walczak (2010); Kempf et al. (1992); Panev et al. (2001); Pastó et al. (1996); Wang et al. (1995). For the synthesis of amidiol derivatives, see: Ager et al. (1996); Bergmeier (2000); Canas et al. (1991); Carree et al. (2004); Dias et al. (2008); Fan & Hou (2003); Kamal et al. (2005); Kwon & Ko (2003); Lee & Kang (2004); Szakonyi et al. (2008); Zhao et al. (2004). For the use of [Ca(CF3CO2)2] as catalyst, see: Harrad et al. (2010). For the synthesis of (S)-1,2-epoxyperillyl alcohol, see: Bach et al. (1979). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For details of ring-puckering analysis, see: Cremer & Pople (1975).
Data collection: AED (Belletti et al., 1993); cell
AED (Belletti et al., 1993); data reduction: AED (Belletti et al., 1993); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).C17H25NO2 | F(000) = 300 |
Mr = 275.38 | Dx = 1.131 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2yb | Cell parameters from 48 reflections |
a = 5.8281 (4) Å | θ = 12.6–38.8° |
b = 24.5421 (16) Å | µ = 0.58 mm−1 |
c = 5.8776 (4) Å | T = 294 K |
β = 105.908 (4)° | Block, colourless |
V = 808.50 (10) Å3 | 0.20 × 0.17 × 0.15 mm |
Z = 2 |
Siemens AED diffractometer | Rint = 0.010 |
Radiation source: fine-focus sealed tube | θmax = 69.8°, θmin = 3.6° |
Graphite monochromator | h = −7→7 |
θ/2θ scans | k = −28→29 |
3041 measured reflections | l = −7→1 |
1567 independent reflections | 3 standard reflections every 100 reflections |
1477 reflections with I > 2σ(I) | intensity decay: 0.02% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0328P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1567 reflections | Δρmax = 0.16 e Å−3 |
195 parameters | Δρmin = −0.09 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0091 (17) |
C17H25NO2 | V = 808.50 (10) Å3 |
Mr = 275.38 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.8281 (4) Å | µ = 0.58 mm−1 |
b = 24.5421 (16) Å | T = 294 K |
c = 5.8776 (4) Å | 0.20 × 0.17 × 0.15 mm |
β = 105.908 (4)° |
Siemens AED diffractometer | Rint = 0.010 |
3041 measured reflections | 3 standard reflections every 100 reflections |
1567 independent reflections | intensity decay: 0.02% |
1477 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.031 | 1 restraint |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.16 e Å−3 |
1567 reflections | Δρmin = −0.09 e Å−3 |
195 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0402 (2) | 0.20566 (7) | 0.8285 (2) | 0.0523 (3) | |
H1O | 0.114 (5) | 0.2089 (13) | 0.971 (5) | 0.075 (7)* | |
O2 | 0.2514 (2) | 0.20737 (7) | 0.3026 (2) | 0.0573 (4) | |
H2O | 0.379 (6) | 0.1870 (13) | 0.371 (6) | 0.090 (9)* | |
N1 | 0.5565 (3) | 0.15127 (7) | 0.6459 (3) | 0.0519 (4) | |
H1N | 0.688 (4) | 0.1715 (10) | 0.719 (4) | 0.055 (6)* | |
C1 | 0.2235 (3) | 0.20879 (8) | 0.7095 (2) | 0.0432 (4) | |
C2 | 0.0876 (3) | 0.21090 (9) | 0.4445 (3) | 0.0451 (4) | |
H2 | −0.0219 | 0.1798 | 0.4075 | 0.054* | |
C3 | −0.0551 (3) | 0.26297 (9) | 0.3798 (3) | 0.0501 (4) | |
H3A | −0.1818 | 0.2634 | 0.4578 | 0.060* | |
H3B | −0.1284 | 0.2636 | 0.2104 | 0.060* | |
C4 | 0.0993 (4) | 0.31396 (9) | 0.4509 (4) | 0.0551 (5) | |
H4 | 0.2232 | 0.3127 | 0.3669 | 0.066* | |
C5 | 0.2265 (4) | 0.31182 (9) | 0.7172 (4) | 0.0580 (5) | |
H5A | 0.3308 | 0.3432 | 0.7602 | 0.070* | |
H5B | 0.1087 | 0.3137 | 0.8059 | 0.070* | |
C6 | 0.3724 (3) | 0.25995 (9) | 0.7830 (3) | 0.0509 (4) | |
H6A | 0.5009 | 0.2602 | 0.7073 | 0.061* | |
H6B | 0.4433 | 0.2593 | 0.9527 | 0.061* | |
C7 | −0.0400 (5) | 0.36592 (11) | 0.3773 (5) | 0.0715 (6) | |
C8 | −0.2383 (6) | 0.37780 (15) | 0.4831 (8) | 0.1137 (13) | |
H8A | −0.3043 | 0.4130 | 0.4311 | 0.170* | |
H8B | −0.1791 | 0.3776 | 0.6524 | 0.170* | |
H8C | −0.3599 | 0.3505 | 0.4342 | 0.170* | |
C9 | 0.0179 (7) | 0.40014 (13) | 0.2250 (6) | 0.0967 (10) | |
H9A | −0.0669 | 0.4324 | 0.1828 | 0.116* | |
H9B | 0.1431 | 0.3917 | 0.1613 | 0.116* | |
C10 | 0.3697 (3) | 0.15611 (9) | 0.7684 (3) | 0.0519 (5) | |
H10A | 0.4431 | 0.1547 | 0.9377 | 0.062* | |
H10B | 0.2628 | 0.1252 | 0.7264 | 0.062* | |
C11 | 0.6236 (4) | 0.09492 (10) | 0.6142 (4) | 0.0654 (6) | |
H11A | 0.7594 | 0.0955 | 0.5487 | 0.078* | |
H11B | 0.4925 | 0.0778 | 0.4979 | 0.078* | |
C12 | 0.6868 (4) | 0.05945 (9) | 0.8337 (4) | 0.0606 (5) | |
C13 | 0.9001 (5) | 0.06545 (13) | 1.0055 (6) | 0.0835 (8) | |
H13 | 1.0082 | 0.0918 | 0.9871 | 0.100* | |
C14 | 0.9548 (6) | 0.03319 (17) | 1.2024 (6) | 0.1002 (10) | |
H14 | 1.1006 | 0.0377 | 1.3152 | 0.120* | |
C15 | 0.8001 (7) | −0.00523 (12) | 1.2363 (6) | 0.0908 (9) | |
H15 | 0.8403 | −0.0274 | 1.3698 | 0.109* | |
C16 | 0.5866 (7) | −0.01100 (13) | 1.0734 (7) | 0.1009 (10) | |
H16 | 0.4775 | −0.0366 | 1.0966 | 0.121* | |
C17 | 0.5310 (6) | 0.02089 (12) | 0.8739 (6) | 0.0914 (9) | |
H17 | 0.3842 | 0.0163 | 0.7629 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0435 (6) | 0.0846 (9) | 0.0303 (6) | −0.0047 (7) | 0.0128 (5) | −0.0006 (6) |
O2 | 0.0604 (7) | 0.0859 (10) | 0.0274 (5) | 0.0089 (8) | 0.0153 (5) | 0.0031 (7) |
N1 | 0.0461 (8) | 0.0652 (10) | 0.0451 (8) | 0.0007 (7) | 0.0137 (6) | 0.0022 (7) |
C1 | 0.0379 (7) | 0.0653 (10) | 0.0260 (7) | −0.0025 (8) | 0.0085 (5) | 0.0020 (8) |
C2 | 0.0444 (8) | 0.0633 (10) | 0.0261 (7) | −0.0068 (8) | 0.0070 (6) | −0.0051 (8) |
C3 | 0.0436 (8) | 0.0705 (11) | 0.0320 (7) | −0.0022 (8) | 0.0033 (6) | 0.0000 (8) |
C4 | 0.0514 (9) | 0.0625 (11) | 0.0504 (10) | −0.0026 (9) | 0.0121 (8) | 0.0001 (9) |
C5 | 0.0557 (10) | 0.0649 (12) | 0.0496 (11) | −0.0066 (9) | 0.0079 (8) | −0.0123 (9) |
C6 | 0.0421 (8) | 0.0730 (12) | 0.0337 (8) | −0.0071 (9) | 0.0037 (6) | −0.0057 (9) |
C7 | 0.0732 (14) | 0.0707 (14) | 0.0665 (14) | 0.0036 (11) | 0.0122 (11) | 0.0052 (11) |
C8 | 0.089 (2) | 0.092 (2) | 0.169 (4) | 0.0326 (18) | 0.051 (2) | 0.028 (2) |
C9 | 0.134 (3) | 0.0738 (17) | 0.084 (2) | 0.0154 (17) | 0.0331 (19) | 0.0160 (15) |
C10 | 0.0495 (10) | 0.0702 (12) | 0.0365 (9) | 0.0002 (8) | 0.0126 (7) | 0.0074 (8) |
C11 | 0.0692 (13) | 0.0728 (14) | 0.0557 (11) | −0.0016 (10) | 0.0196 (10) | −0.0077 (10) |
C12 | 0.0617 (11) | 0.0563 (11) | 0.0642 (13) | 0.0049 (9) | 0.0179 (9) | −0.0071 (10) |
C13 | 0.0620 (13) | 0.103 (2) | 0.0823 (17) | −0.0091 (13) | 0.0138 (12) | 0.0109 (15) |
C14 | 0.0825 (18) | 0.120 (3) | 0.086 (2) | 0.0014 (18) | 0.0019 (15) | 0.0123 (19) |
C15 | 0.115 (2) | 0.0723 (16) | 0.0830 (19) | 0.0220 (16) | 0.0235 (17) | 0.0135 (13) |
C16 | 0.107 (2) | 0.0737 (17) | 0.116 (3) | −0.0139 (16) | 0.021 (2) | 0.0218 (17) |
C17 | 0.0863 (17) | 0.0703 (16) | 0.102 (2) | −0.0157 (13) | −0.0009 (15) | 0.0099 (15) |
O1—C1 | 1.4301 (18) | C7—C9 | 1.336 (4) |
O1—H1O | 0.83 (3) | C7—C8 | 1.484 (5) |
O2—C2 | 1.4319 (19) | C8—H8A | 0.9600 |
O2—H2O | 0.89 (3) | C8—H8B | 0.9600 |
N1—C11 | 1.463 (3) | C8—H8C | 0.9600 |
N1—C10 | 1.465 (2) | C9—H9A | 0.9300 |
N1—H1N | 0.92 (2) | C9—H9B | 0.9300 |
C1—C6 | 1.520 (3) | C10—H10A | 0.9700 |
C1—C10 | 1.535 (3) | C10—H10B | 0.9700 |
C1—C2 | 1.5426 (19) | C11—C12 | 1.516 (3) |
C2—C3 | 1.515 (3) | C11—H11A | 0.9700 |
C2—H2 | 0.9800 | C11—H11B | 0.9700 |
C3—C4 | 1.531 (3) | C12—C17 | 1.376 (4) |
C3—H3A | 0.9700 | C12—C13 | 1.378 (4) |
C3—H3B | 0.9700 | C13—C14 | 1.366 (5) |
C4—C7 | 1.510 (3) | C13—H13 | 0.9300 |
C4—C5 | 1.538 (3) | C14—C15 | 1.356 (5) |
C4—H4 | 0.9800 | C14—H14 | 0.9300 |
C5—C6 | 1.521 (3) | C15—C16 | 1.354 (5) |
C5—H5A | 0.9700 | C15—H15 | 0.9300 |
C5—H5B | 0.9700 | C16—C17 | 1.373 (5) |
C6—H6A | 0.9700 | C16—H16 | 0.9300 |
C6—H6B | 0.9700 | C17—H17 | 0.9300 |
C1—O1—H1O | 103.5 (18) | C9—C7—C4 | 120.5 (3) |
C2—O2—H2O | 112 (2) | C8—C7—C4 | 117.7 (2) |
C11—N1—C10 | 113.58 (17) | C7—C8—H8A | 109.5 |
C11—N1—H1N | 110.8 (14) | C7—C8—H8B | 109.5 |
C10—N1—H1N | 111.3 (15) | H8A—C8—H8B | 109.5 |
O1—C1—C6 | 110.51 (15) | C7—C8—H8C | 109.5 |
O1—C1—C10 | 106.71 (15) | H8A—C8—H8C | 109.5 |
C6—C1—C10 | 113.15 (13) | H8B—C8—H8C | 109.5 |
O1—C1—C2 | 104.49 (11) | C7—C9—H9A | 120.0 |
C6—C1—C2 | 110.73 (15) | C7—C9—H9B | 120.0 |
C10—C1—C2 | 110.82 (15) | H9A—C9—H9B | 120.0 |
O2—C2—C3 | 108.21 (15) | N1—C10—C1 | 113.52 (15) |
O2—C2—C1 | 110.28 (12) | N1—C10—H10A | 108.9 |
C3—C2—C1 | 112.11 (15) | C1—C10—H10A | 108.9 |
O2—C2—H2 | 108.7 | N1—C10—H10B | 108.9 |
C3—C2—H2 | 108.7 | C1—C10—H10B | 108.9 |
C1—C2—H2 | 108.7 | H10A—C10—H10B | 107.7 |
C2—C3—C4 | 112.31 (14) | N1—C11—C12 | 116.44 (18) |
C2—C3—H3A | 109.1 | N1—C11—H11A | 108.2 |
C4—C3—H3A | 109.1 | C12—C11—H11A | 108.2 |
C2—C3—H3B | 109.1 | N1—C11—H11B | 108.2 |
C4—C3—H3B | 109.1 | C12—C11—H11B | 108.2 |
H3A—C3—H3B | 107.9 | H11A—C11—H11B | 107.3 |
C7—C4—C3 | 112.49 (17) | C17—C12—C13 | 116.9 (2) |
C7—C4—C5 | 113.05 (18) | C17—C12—C11 | 121.6 (2) |
C3—C4—C5 | 109.44 (16) | C13—C12—C11 | 121.5 (2) |
C7—C4—H4 | 107.2 | C14—C13—C12 | 120.9 (3) |
C3—C4—H4 | 107.2 | C14—C13—H13 | 119.6 |
C5—C4—H4 | 107.2 | C12—C13—H13 | 119.6 |
C6—C5—C4 | 111.52 (17) | C15—C14—C13 | 121.1 (3) |
C6—C5—H5A | 109.3 | C15—C14—H14 | 119.4 |
C4—C5—H5A | 109.3 | C13—C14—H14 | 119.4 |
C6—C5—H5B | 109.3 | C16—C15—C14 | 119.2 (3) |
C4—C5—H5B | 109.3 | C16—C15—H15 | 120.4 |
H5A—C5—H5B | 108.0 | C14—C15—H15 | 120.4 |
C1—C6—C5 | 112.55 (15) | C15—C16—C17 | 120.0 (3) |
C1—C6—H6A | 109.1 | C15—C16—H16 | 120.0 |
C5—C6—H6A | 109.1 | C17—C16—H16 | 120.0 |
C1—C6—H6B | 109.1 | C16—C17—C12 | 121.8 (3) |
C5—C6—H6B | 109.1 | C16—C17—H17 | 119.1 |
H6A—C6—H6B | 107.8 | C12—C17—H17 | 119.1 |
C9—C7—C8 | 121.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···N1 | 0.90 (3) | 1.88 (3) | 2.676 (2) | 147 (3) |
O1—H1O···O2i | 0.83 (3) | 1.89 (3) | 2.721 (2) | 171 (3) |
N1—H1N···O1ii | 0.92 (2) | 2.15 (2) | 3.037 (2) | 164 (2) |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H25NO2 |
Mr | 275.38 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 294 |
a, b, c (Å) | 5.8281 (4), 24.5421 (16), 5.8776 (4) |
β (°) | 105.908 (4) |
V (Å3) | 808.50 (10) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.58 |
Crystal size (mm) | 0.20 × 0.17 × 0.15 |
Data collection | |
Diffractometer | Siemens AED |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3041, 1567, 1477 |
Rint | 0.010 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.092, 1.08 |
No. of reflections | 1567 |
No. of parameters | 195 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.09 |
Computer programs: AED (Belletti et al., 1993), SIR97 (Altomare et al., 1999), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL97 (Keller, 1997), SHELXL97 (Sheldrick, 2008) and PARST95 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···N1 | 0.90 (3) | 1.88 (3) | 2.676 (2) | 147 (3) |
O1—H1O···O2i | 0.83 (3) | 1.89 (3) | 2.721 (2) | 171 (3) |
N1—H1N···O1ii | 0.92 (2) | 2.15 (2) | 3.037 (2) | 164 (2) |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
Acknowledgements
Financial support from the Universitá degli Studi di Parma is gratefully acknowledged.
References
Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–876. CrossRef PubMed CAS Web of Science Google Scholar
Alexander, C. W. & Liotta, D. C. (1996). Tetrahedron Lett. 37, 1961–1964. CrossRef CAS Web of Science Google Scholar
Allepuz, A. C., Badorrey, R., Díaz-de-Villegas, M. D. & Gálvez, J. A. (2010). Tetrahedron Asymmetry, 21, 503–506. Web of Science CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bach, R. D., Klein, M. W., Ryntz, R. A. & Holubka, J. W. (1979). J. Org. Chem. 44, 2569–2571. CrossRef CAS Web of Science Google Scholar
Beaulieu, P. L., Gillard, J., Bailey, M., Beaulieu, C., Duceppe, J., Lavallee, P. & Wernic, D. (1999). J. Org. Chem. 64, 6622–6634. Web of Science CrossRef PubMed CAS Google Scholar
Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy. Google Scholar
Bergmeier, S. C. (2000). Tetrahedron, 56, 2561–2576. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Braga, A. L., Rubim, R. M., Schrekker, H. S., Wessjohann, L. A., de Bolster, M. W. G., Zeni, G. & Sehnem, J. A. (2003). Tetrahedron Asymmetry, 14, 3291–3295. Web of Science CrossRef CAS Google Scholar
Canas, M., Poch, M., Verdaguer, X., Moyano, A., Pericàs, M. A. & Riera, A. (1991). Tetrahedron Lett. 32, 6931–6934. CrossRef CAS Google Scholar
Carree, F., Gil, R. & Collin, J. (2004). Tetrahedron Lett. 45, 7749–7751. CAS Google Scholar
Chen, P., Cheng, P. T. W., Alam, M., Beyer, B. D., Bisacchi, G. S., Dejneka, T., Evans, A. J., Greytok, J. A., Hermsmeier, M. A., Humphreys, W. G., Jacobs, G. A., Kocy, O., Lin, P., Lis, K. A., Marella, M. A., et al. (1996). J. Med. Chem. 39, 1991–2007. CrossRef CAS PubMed Web of Science Google Scholar
Cherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1995). Tetrahedron Asymmetry, 6, 89–92. CAS Google Scholar
Cherng, Y.-J., Fang, J.-M. & Lu, T.-J. (1999). J. Org. Chem. 64, 3207–3212. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dias, L. C., Fattori, J., Perez, C. C., de Oliveira, V. M. & Aguilar, A. M. (2008). Tetrahedron, 64, 5891–5903. Web of Science CrossRef CAS Google Scholar
Fan, R. H. & Hou, X. L. (2003). J. Org. Chem. 68, 726–730. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gondela, E. & Walczak, K. Z. (2010). Eur. J. Med. Chem. 45, 3993–3997. Web of Science CrossRef CAS PubMed Google Scholar
Harrad, M. A., Outtouch, R., Ait Ali, M., El Firdoussi, L., Karim, A. & Roucoux, A. (2010). Catal. Commun. 11, 442–446. Web of Science CrossRef CAS Google Scholar
Kamal, A., Ramu, R., Amerudin, M., Azhar, G. B. & Khanna, R. (2005). Tetrahedron Lett. 46, 2675–2677. Web of Science CrossRef CAS Google Scholar
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. Google Scholar
Kempf, D. J., Sowin, T. J., Doherty, E. M., Hannick, S. M., Codavoci, L., Henry, R. F., Green, B. E., Spanton, S. G. & Norbeck, D. W. (1992). J. Org. Chem. 57, 5692–5700. CSD CrossRef CAS Web of Science Google Scholar
Kwon, S. J. & Ko, S. Y. (2003). Bull. Korean Chem. Soc. 24, 1053–1054. CAS Google Scholar
Lee, H. S. & Kang, S. H. (2004). Synlett, pp. 1673–1685. Web of Science CrossRef Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Panev, S., Linden, A. & Dimitrov, V. (2001). Tetrahedron Asymmetry, 12, 1313–1321. CrossRef CAS Google Scholar
Pastó, M., Castejón, P., Moyano, A., Pericàs, M. A. & Riera, A. (1996). J. Org. Chem. 61, 6033–6037. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szakonyi, Z., Hetényi, A. & Fulöp, F. (2008). Tetrahedron, 64, 1034–1039. Web of Science CrossRef CAS Google Scholar
Wang, G. T., Li, S., Wideburg, N., Krafft, G. A. & Kempf, D. J. (1995). J. Med. Chem. 38, 2995–3002. CrossRef CAS PubMed Web of Science Google Scholar
Zhao, P.-Q., Xu, L.-W. & Xia, C.-G. (2004). Synlett, pp. 846–850. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminodiols play important roles in drug therapy and drug research. For example, 5-(ω-hydroxyalkylamino) derivatives of mucochloric acids (2,3-dichloro-4-oxo-2-butenoic acid) have antibacterial and antiprotozoal activities (Gondela & Walczak, 2010). Other aminodiols have been found to act as HIV protease inhibitors (Kempf et al., 1992; Wang et al., 1995; Chen et al., 1996), or to exert renin inhibitor activity (Alexander & Liotta, 1996; Beaulieu et al., 1999). Furthermore, aminodiols may serve as useful starting materials for the synthesis of biologically active compounds, e. g. 3-amino-1,2-butanediol derivatives, which are key intermediates in the synthesis of the anticancer agent ES-285 (Allepuz et al., 2010). Chiral aminodiols and their derivatives also find excellent applications as catalysts for enantioselective transformations (Panev et al., 2001; Cherng et al., 1995, 1999; Pastó et al., 1996; Braga et al., 2003).
Among many different approaches developed for the synthesis of aminodiol derivatives (Canas et al., 1991; Panev et al., 2001; Kwon & Ko, 2003; Dias et al., 2008; Szakonyi et al., 2008), aminolysis of 1,2-epoxides represents one of the most valuable pathway to produce commercially important aminoalcohols and aminodiols from olefins (Ager et al., 1996; Bergmeier, 2000; Lee & Kang, 2004; Zhao et al., 2004; Fan & Hou, 2003; Kamal et al., 2005; Carree et al., 2004). As a contribution to this widespread area, we describe here the synthesis and crystal structure of the title new aminodiol derivative of perillyl alcohol. The synthetic methodology involves an epoxidation of the double bond, followed by the oxirane ring-opening by using benzylamine and Ca(CF3CO2)2 as catalyst (Harrad et al., 2010) under solvent-free condition at 40°C.
The molecular structure of the title compound is shown in Fig. 1. The cyclohexane ring is in a chair conformation, with puckering parameters Q, θ and φ of 0.560 (2) Å, 2.6 (2)° and -167 (4)°, respectively (Cremer & Pople, 1975). The hydroxy groups at atoms C1 and C2 are both in axial positions. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1), generating a ring of S(6) graph set motif (Bernstein et al., 1995). In the crystal structure (Fig. 2), molecules are linked into chains parallel to the a axis by intermolecular N—H···O hydrogen bonds. The chains are further connected via O—H···O hydrogen bonding interactions to form sheets parallel to (010).