organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-((Z)-{3-[(Z)-(2-Hy­dr­oxy-5-methyl­benzyl­­idene)amino]-2,2-di­methyl­prop­yl}imino­meth­yl)-4-methyl­phenol

aDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, dDepartment of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 4 December 2010; accepted 9 December 2010; online 15 December 2010)

In the title compound, C21H26N2O2, the dihedral angle between the two benzene rings is 73.47 (16)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The substituted benzene rings are twisted around the central quaternary C atom in opposite directions, making a vault geometry.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.], 2010[Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O2

  • Mr = 338.44

  • Orthorhombic, P 21 21 21

  • a = 5.8950 (3) Å

  • b = 17.8634 (10) Å

  • c = 18.2140 (11) Å

  • V = 1918.02 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.991

  • 16208 measured reflections

  • 2199 independent reflections

  • 1368 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.03

  • 2199 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.89 2.620 (3) 147
O2—H2A⋯N2 0.82 1.88 2.609 (4) 147

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of tetradenate Schiff bases (Kargar et al. 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the two phenyl rings is 73.47 (16)°. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The title compound has a skew geometry. In the absence of sufficient anomalous scattering the absolute structure could not be determined.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2009).

Experimental top

The title compound was synthesized by adding 5-methyl-salicylaldehyde (4 mmol) to a solution of 2,2'-dimethylpropylenediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups were located by a rotating O–H group and constraied to refine with the parent atoms with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used for the methyl groups of the benzene rings. In the absence of sufficient anomalous scattering the absolute structure could not be determined and 1580 Friedel pairs were merged.

Structure description top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of tetradenate Schiff bases (Kargar et al. 2009; Kargar et al. 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potentially tetradenate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle between the two phenyl rings is 73.47 (16)°. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The title compound has a skew geometry. In the absence of sufficient anomalous scattering the absolute structure could not be determined.

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
2-((Z)-{3-[(Z)-(2-Hydroxy-5-methylbenzylidene)amino]- 2,2-dimethylpropyl}iminomethyl)-4-methylphenol top
Crystal data top
C21H26N2O2F(000) = 728
Mr = 338.44Dx = 1.172 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2150 reflections
a = 5.8950 (3) Åθ = 2.5–29.8°
b = 17.8634 (10) ŵ = 0.08 mm1
c = 18.2140 (11) ÅT = 296 K
V = 1918.02 (19) Å3Plate, yellow
Z = 40.30 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2199 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.978, Tmax = 0.991k = 2222
16208 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.082P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2199 reflectionsΔρmax = 0.15 e Å3
231 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C21H26N2O2V = 1918.02 (19) Å3
Mr = 338.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8950 (3) ŵ = 0.08 mm1
b = 17.8634 (10) ÅT = 296 K
c = 18.2140 (11) Å0.30 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1368 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.062
16208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2199 reflectionsΔρmin = 0.12 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4633 (4)0.71477 (13)0.18637 (14)0.0691 (7)
H1A0.38870.67860.19990.104*
O20.1798 (4)0.44857 (14)0.02145 (14)0.0769 (7)
H2A0.09360.46430.05330.115*
N10.1130 (4)0.62471 (14)0.19160 (15)0.0576 (7)
N20.1758 (5)0.44863 (14)0.10671 (15)0.0589 (7)
C10.3362 (5)0.75772 (18)0.14103 (17)0.0513 (8)
C20.4215 (5)0.82499 (18)0.11644 (19)0.0593 (9)
H20.56500.84010.13160.071*
C30.2994 (6)0.87012 (19)0.07010 (18)0.0593 (9)
H30.36140.91530.05450.071*
C40.0828 (5)0.84926 (18)0.04596 (18)0.0558 (9)
C50.0004 (6)0.78143 (17)0.07017 (17)0.0544 (8)
H50.14210.76590.05370.065*
C60.1183 (5)0.73540 (17)0.11802 (17)0.0487 (8)
C70.0504 (7)0.90009 (19)0.0039 (2)0.0777 (11)
H7A0.00480.89520.05330.117*
H7B0.03320.95100.01200.117*
H7C0.20790.88650.00230.117*
C80.0162 (6)0.66623 (17)0.14440 (18)0.0562 (9)
H80.12460.65200.12610.067*
C90.0035 (6)0.55714 (17)0.21706 (19)0.0641 (10)
H9A0.10670.54010.17910.077*
H9B0.09290.56930.26010.077*
C100.1605 (6)0.49409 (17)0.23599 (18)0.0615 (9)
C110.3201 (7)0.5184 (2)0.2980 (2)0.0892 (13)
H11A0.23360.52760.34170.134*
H11B0.39820.56330.28380.134*
H11C0.42860.47940.30720.134*
C120.0218 (8)0.4259 (2)0.2593 (2)0.0891 (13)
H12A0.12160.38420.26730.134*
H12B0.08500.41360.22140.134*
H12C0.05820.43700.30390.134*
C130.3085 (6)0.47518 (18)0.16952 (19)0.0640 (10)
H13A0.39290.51940.15510.077*
H13B0.41710.43690.18330.077*
C140.2562 (6)0.39671 (18)0.06619 (18)0.0571 (9)
H140.39620.37620.07840.069*
C150.1397 (5)0.36831 (16)0.00220 (18)0.0512 (8)
C160.2388 (6)0.31298 (17)0.04090 (17)0.0542 (8)
H160.37900.29400.02670.065*
C170.1400 (6)0.28490 (17)0.10341 (18)0.0570 (9)
C180.0714 (6)0.3128 (2)0.1220 (2)0.0638 (10)
H180.14380.29430.16360.077*
C190.1782 (6)0.3673 (2)0.08042 (19)0.0648 (9)
H190.32050.38500.09410.078*
C200.0727 (5)0.39531 (18)0.01880 (19)0.0542 (9)
C210.2588 (7)0.22644 (19)0.14975 (19)0.0775 (12)
H21A0.37790.24970.17750.116*
H21B0.15170.20390.18270.116*
H21C0.32220.18860.11840.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0584 (15)0.0711 (17)0.0778 (17)0.0012 (12)0.0145 (14)0.0031 (14)
O20.0690 (16)0.0818 (17)0.0798 (19)0.0272 (15)0.0009 (14)0.0003 (14)
N10.0590 (17)0.0501 (16)0.0636 (18)0.0000 (13)0.0014 (15)0.0032 (14)
N20.0615 (17)0.0523 (17)0.0629 (18)0.0032 (14)0.0008 (16)0.0023 (15)
C10.0439 (18)0.0545 (19)0.056 (2)0.0055 (16)0.0042 (16)0.0062 (16)
C20.0503 (19)0.060 (2)0.068 (2)0.0066 (17)0.0024 (18)0.0138 (18)
C30.057 (2)0.056 (2)0.065 (2)0.0064 (17)0.0018 (18)0.0047 (18)
C40.056 (2)0.054 (2)0.058 (2)0.0018 (16)0.0007 (17)0.0054 (16)
C50.0467 (18)0.055 (2)0.061 (2)0.0020 (16)0.0037 (17)0.0096 (17)
C60.0423 (17)0.0497 (18)0.0540 (19)0.0008 (14)0.0011 (16)0.0062 (16)
C70.078 (3)0.070 (2)0.085 (3)0.0059 (19)0.015 (2)0.014 (2)
C80.0485 (19)0.057 (2)0.063 (2)0.0020 (16)0.0052 (17)0.0098 (17)
C90.067 (2)0.061 (2)0.064 (2)0.0107 (19)0.0100 (19)0.0015 (17)
C100.072 (2)0.052 (2)0.060 (2)0.0139 (19)0.0039 (19)0.0081 (17)
C110.109 (3)0.080 (3)0.079 (3)0.012 (2)0.027 (3)0.002 (2)
C120.116 (3)0.077 (3)0.074 (3)0.032 (3)0.009 (3)0.016 (2)
C130.060 (2)0.052 (2)0.080 (3)0.0010 (17)0.006 (2)0.0061 (18)
C140.0495 (19)0.054 (2)0.068 (2)0.0020 (16)0.0012 (18)0.0062 (18)
C150.0506 (19)0.0491 (18)0.0538 (19)0.0021 (15)0.0049 (17)0.0105 (16)
C160.0496 (19)0.0534 (19)0.059 (2)0.0028 (15)0.0031 (17)0.0083 (17)
C170.063 (2)0.055 (2)0.053 (2)0.0015 (17)0.0069 (18)0.0096 (17)
C180.064 (2)0.072 (2)0.055 (2)0.0100 (19)0.0029 (19)0.0109 (18)
C190.0495 (19)0.079 (3)0.066 (2)0.0022 (19)0.002 (2)0.018 (2)
C200.051 (2)0.0555 (19)0.057 (2)0.0067 (16)0.0082 (17)0.0106 (17)
C210.099 (3)0.068 (2)0.065 (2)0.011 (2)0.006 (2)0.0031 (19)
Geometric parameters (Å, º) top
O1—C11.354 (3)C10—C121.527 (5)
O1—H1A0.8200C10—C131.530 (4)
O2—C201.357 (4)C10—C111.533 (5)
O2—H2A0.8200C11—H11A0.9600
N1—C81.271 (4)C11—H11B0.9600
N1—C91.464 (4)C11—H11C0.9600
N2—C141.276 (4)C12—H12A0.9600
N2—C131.465 (4)C12—H12B0.9600
C1—C21.377 (4)C12—H12C0.9600
C1—C61.409 (4)C13—H13A0.9700
C2—C31.371 (4)C13—H13B0.9700
C2—H20.9300C14—C151.445 (4)
C3—C41.401 (4)C14—H140.9300
C3—H30.9300C15—C161.391 (4)
C4—C51.380 (4)C15—C201.395 (4)
C4—C71.506 (4)C16—C171.374 (4)
C5—C61.388 (4)C16—H160.9300
C5—H50.9300C17—C181.384 (5)
C6—C81.456 (4)C17—C211.515 (4)
C7—H7A0.9600C18—C191.386 (5)
C7—H7B0.9600C18—H180.9300
C7—H7C0.9600C19—C201.377 (4)
C8—H80.9300C19—H190.9300
C9—C101.524 (5)C21—H21A0.9600
C9—H9A0.9700C21—H21B0.9600
C9—H9B0.9700C21—H21C0.9600
C1—O1—H1A109.5C10—C11—H11B109.5
C20—O2—H2A109.5H11A—C11—H11B109.5
C8—N1—C9119.0 (3)C10—C11—H11C109.5
C14—N2—C13119.3 (3)H11A—C11—H11C109.5
O1—C1—C2119.4 (3)H11B—C11—H11C109.5
O1—C1—C6121.7 (3)C10—C12—H12A109.5
C2—C1—C6118.9 (3)C10—C12—H12B109.5
C3—C2—C1121.4 (3)H12A—C12—H12B109.5
C3—C2—H2119.3C10—C12—H12C109.5
C1—C2—H2119.3H12A—C12—H12C109.5
C2—C3—C4121.0 (3)H12B—C12—H12C109.5
C2—C3—H3119.5N2—C13—C10112.6 (3)
C4—C3—H3119.5N2—C13—H13A109.1
C5—C4—C3117.2 (3)C10—C13—H13A109.1
C5—C4—C7122.5 (3)N2—C13—H13B109.1
C3—C4—C7120.3 (3)C10—C13—H13B109.1
C4—C5—C6122.8 (3)H13A—C13—H13B107.8
C4—C5—H5118.6N2—C14—C15123.0 (3)
C6—C5—H5118.6N2—C14—H14118.5
C5—C6—C1118.6 (3)C15—C14—H14118.5
C5—C6—C8120.1 (3)C16—C15—C20117.9 (3)
C1—C6—C8121.3 (3)C16—C15—C14120.4 (3)
C4—C7—H7A109.5C20—C15—C14121.7 (3)
C4—C7—H7B109.5C17—C16—C15123.3 (3)
H7A—C7—H7B109.5C17—C16—H16118.3
C4—C7—H7C109.5C15—C16—H16118.3
H7A—C7—H7C109.5C16—C17—C18117.0 (3)
H7B—C7—H7C109.5C16—C17—C21121.2 (3)
N1—C8—C6122.2 (3)C18—C17—C21121.9 (3)
N1—C8—H8118.9C17—C18—C19121.9 (4)
C6—C8—H8118.9C17—C18—H18119.0
N1—C9—C10112.6 (3)C19—C18—H18119.0
N1—C9—H9A109.1C20—C19—C18119.7 (3)
C10—C9—H9A109.1C20—C19—H19120.2
N1—C9—H9B109.1C18—C19—H19120.2
C10—C9—H9B109.1O2—C20—C19119.0 (3)
H9A—C9—H9B107.8O2—C20—C15120.8 (3)
C9—C10—C12108.2 (3)C19—C20—C15120.2 (3)
C9—C10—C13110.2 (3)C17—C21—H21A109.5
C12—C10—C13110.4 (3)C17—C21—H21B109.5
C9—C10—C11110.3 (3)H21A—C21—H21B109.5
C12—C10—C11110.5 (3)C17—C21—H21C109.5
C13—C10—C11107.2 (3)H21A—C21—H21C109.5
C10—C11—H11A109.5H21B—C21—H21C109.5
O1—C1—C2—C3179.6 (3)C14—N2—C13—C10142.8 (3)
C6—C1—C2—C30.3 (5)C9—C10—C13—N261.8 (4)
C1—C2—C3—C40.1 (5)C12—C10—C13—N257.8 (4)
C2—C3—C4—C50.6 (5)C11—C10—C13—N2178.1 (3)
C2—C3—C4—C7179.0 (3)C13—N2—C14—C15178.5 (3)
C3—C4—C5—C61.7 (5)N2—C14—C15—C16178.3 (3)
C7—C4—C5—C6177.9 (3)N2—C14—C15—C201.2 (5)
C4—C5—C6—C12.1 (4)C20—C15—C16—C171.3 (4)
C4—C5—C6—C8176.9 (3)C14—C15—C16—C17178.3 (3)
O1—C1—C6—C5178.6 (3)C15—C16—C17—C181.7 (5)
C2—C1—C6—C51.3 (4)C15—C16—C17—C21177.9 (3)
O1—C1—C6—C82.4 (4)C16—C17—C18—C191.0 (5)
C2—C1—C6—C8177.7 (3)C21—C17—C18—C19178.7 (3)
C9—N1—C8—C6178.2 (3)C17—C18—C19—C200.2 (5)
C5—C6—C8—N1175.7 (3)C18—C19—C20—O2179.8 (3)
C1—C6—C8—N13.3 (5)C18—C19—C20—C150.7 (5)
C8—N1—C9—C10147.8 (3)C16—C15—C20—O2179.1 (3)
N1—C9—C10—C12178.1 (3)C14—C15—C20—O21.3 (5)
N1—C9—C10—C1357.2 (4)C16—C15—C20—C190.0 (4)
N1—C9—C10—C1160.9 (4)C14—C15—C20—C19179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.620 (3)147
O2—H2A···N20.821.882.609 (4)147

Experimental details

Crystal data
Chemical formulaC21H26N2O2
Mr338.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.8950 (3), 17.8634 (10), 18.2140 (11)
V3)1918.02 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16208, 2199, 1368
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.03
No. of reflections2199
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.620 (3)147
O2—H2A···N20.821.882.609 (4)147
 

Acknowledgements

RK thanks the Science and Research Branch, Islamic Azad University. HK and FG thank PNU for financial support. MNT thanks the University of Sargodha, Pakistan, for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). Acta Cryst. E66, o539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds