metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tris­­(μ-2-amino­benzene-1,4-di­carboxyl­ato)tetra­kis­(N,N-di­methyl­formamide)­diyttrium(III)]

ainGAP Centre for Research Based Innovation, Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
*Correspondence e-mail: david.wragg@smn.uio.no

(Received 25 October 2010; accepted 2 December 2010; online 8 December 2010)

The asymmetric unit of the title coordination polymer, [Y2(C8H5NO4)3(C3H7NO)4]n, contains one Y3+ ion, three half-mol­ecules of the 2-amino­benzene-1,4-dicarboxyl­ate (abz) dianion and two O-bonded N,N-dimethyl­formamide (DMF) mol­ecules. Each abz half-mol­ecule is completed by crystallographic inversion symmetry and its –NH2 group is disordered in each case [relative occupancies within the asymmetric unit = 0.462 (18):0.538 (18), 0.93 (2):0.07 (2) and 0.828 (16):0.172 (16)]. The combination of disorder and crystal symmetry means that each of the four C—H atoms of the benzene ring of each of the dianions bears a statistical fraction of an –NH2 group. The coordination geometry of the yttrium ion is a fairly regular YO8 square anti­prism arising from its coordination by two DMF mol­ecules, four monodentate abz dianions and one O,O-bidentate abz dianion. The polymeric building unit is a dimeric paddle-wheel with two metal ions linked by four bridging abz dianions. Further bridging linkages connect the dimers into a three-dimensional framework containing voids in which highly disordered DMF mol­ecules are presumed to reside.

Related literature

For a related structure containing a similar paddle-wheel motif, see: Braun et al. (2001[Braun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532-2533.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C8H5NO4)3(C3H7NO)4]

  • Mr = 1007.59

  • Triclinic, [P \overline 1]

  • a = 10.525 (3) Å

  • b = 11.034 (3) Å

  • c = 12.855 (3) Å

  • α = 99.359 (3)°

  • β = 111.301 (3)°

  • γ = 101.265 (2)°

  • V = 1318.8 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 150 K

  • 0.25 × 0.22 × 0.05 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.575, Tmax = 0.894

  • 7363 measured reflections

  • 2345 independent reflections

  • 2111 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 19.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.11

  • 2345 reflections

  • 298 parameters

  • 46 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Y1—O3 2.252 (5)
Y1—O1 2.311 (4)
Y1—O5 2.322 (5)
Y1—O7 2.335 (4)
Y1—O8 2.358 (6)
Y1—O2 2.361 (6)
Y1—O6 2.409 (4)
Y1—O4 2.416 (4)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2004)[Crystal Impact (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) is a metal-organic framework (MOF) which is a weak scatterer of X-rays and data were collected from a very small crystal. These were sufficient for refinement of the framework structure but not the disordered solvent. The asymmetric unit (Fig. 1) of the title compound consists of an yttrium atom coordinated by 8 oxygen atoms, 6 from 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) moieties and 2 from coordinated dimethylformamide solvent. The inorganic cornerstone of the MOF is a paddle wheel type unit comprising two yttrium atoms linked by four bridging Y-BDC-NH2 molecules (Fig. 2). Such units are well known in transition metal MOF structures (Braun, 2001). The paddle wheel carboxylates clearly show one long and one short C—O bond indicating single and double bond character. The single bonded, charge carrying oxygen of the carboxylate group has a shorter Y—O bond distance as would be expected. The axles of the paddle wheel are connected to one BDC-NH2 and 2 DMF molecules at each end.

The BDC-NH2 linkers at the ends of the paddle wheel are offset in a trans-type conformation and link the units in chains which, when the structure is viewed along the a-axis (Fig. 3), bisect the angle of the b and c axes. When we view the structure along the axis of the paddle wheel unit (Fig. 4) we see that the bridging BDC-NH2 molecules also link to further units in chains parallel to the a and b-axes producing a three-dinemsional network. The amino groups are disordered over all four possible positions of the benzene rings of the BDC-NH2 linker molecules, except in the case of the ring described by C10, C11 and C12, in which the NH2 was found to be localized on C12. All of the disordered C—N bonds were restrained to have the same bond distance.

1 molecule of DMF solvent per ASU was located in the void space of the MOF using difference Fourier maps but the resulting model gave a poor refinement. The program Squeeze from the PLATON suite (Spek, 2009 ) was used to remove residual electron density from the solvent accessible voids giving a chemically sensible structure and acceptable refinemnt statistics. The squeeze calculation suggests voids containing 90 electrons or 2.25 DMF molecules in each unit cell. This is in reasonable agreement with the disordered solvent observed in the difference Fourier map.

Related literature top

For a related structure containing a similar paddle-wheel motif, see: Braun et al. (2001).

Experimental top

The Title complex Y-BDC-NH2 was prepared by dissolving Y(NO3)3.6H2O (0.383 g, 1 mmol) and 2-amino 1,4-benzenedicarboxylic acid (H2N—H2BDC) (0.181 g, 1 mmol) in N,N`-dimethylformamide (DMF) (20 ml) at room temperature in a test tube. The mixture thus obtained was placed in a pre-heated oven at 80°C for 24 hrs. Colourless plates of (I) were selected directly from the mother liquor as prepared and mounted on cryoloops.

Refinement top

Most of the non hydrogen atoms positions were obtained from the direct methods solution and the remainder (mainly carbon atoms) were located using difference Fourier maps during refinement. Hydrogen atoms were placed in ideal positions and refined with a riding model.

Structure description top

The title compound (I) is a metal-organic framework (MOF) which is a weak scatterer of X-rays and data were collected from a very small crystal. These were sufficient for refinement of the framework structure but not the disordered solvent. The asymmetric unit (Fig. 1) of the title compound consists of an yttrium atom coordinated by 8 oxygen atoms, 6 from 2-amino-1,4-benzenedicarboxylic acid (BDC-NH2) moieties and 2 from coordinated dimethylformamide solvent. The inorganic cornerstone of the MOF is a paddle wheel type unit comprising two yttrium atoms linked by four bridging Y-BDC-NH2 molecules (Fig. 2). Such units are well known in transition metal MOF structures (Braun, 2001). The paddle wheel carboxylates clearly show one long and one short C—O bond indicating single and double bond character. The single bonded, charge carrying oxygen of the carboxylate group has a shorter Y—O bond distance as would be expected. The axles of the paddle wheel are connected to one BDC-NH2 and 2 DMF molecules at each end.

The BDC-NH2 linkers at the ends of the paddle wheel are offset in a trans-type conformation and link the units in chains which, when the structure is viewed along the a-axis (Fig. 3), bisect the angle of the b and c axes. When we view the structure along the axis of the paddle wheel unit (Fig. 4) we see that the bridging BDC-NH2 molecules also link to further units in chains parallel to the a and b-axes producing a three-dinemsional network. The amino groups are disordered over all four possible positions of the benzene rings of the BDC-NH2 linker molecules, except in the case of the ring described by C10, C11 and C12, in which the NH2 was found to be localized on C12. All of the disordered C—N bonds were restrained to have the same bond distance.

1 molecule of DMF solvent per ASU was located in the void space of the MOF using difference Fourier maps but the resulting model gave a poor refinement. The program Squeeze from the PLATON suite (Spek, 2009 ) was used to remove residual electron density from the solvent accessible voids giving a chemically sensible structure and acceptable refinemnt statistics. The squeeze calculation suggests voids containing 90 electrons or 2.25 DMF molecules in each unit cell. This is in reasonable agreement with the disordered solvent observed in the difference Fourier map.

For a related structure containing a similar paddle-wheel motif, see: Braun et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2004); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of (I) with thermal ellipsoids at 50% probability. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The paddle wheel unit of the MOF structure of (I).
[Figure 3] Fig. 3. Packing diagram of (I) viewed along the a-axis.
[Figure 4] Fig. 4. Packing diagram of (I) viewed along the axis of the paddle wheel unit.
Poly[tris(µ-2-aminobenzene-1,4-dicarboxylato)tetrakis(N,N- dimethylformamide)diyttrium(III)] top
Crystal data top
[Y2(C8H5NO4)3(C3H7NO)4]Z = 1
Mr = 1007.59F(000) = 505
Triclinic, P1Dx = 1.257 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.525 (3) ÅCell parameters from 3097 reflections
b = 11.034 (3) Åθ = 2.4–28.2°
c = 12.855 (3) ŵ = 2.25 mm1
α = 99.359 (3)°T = 150 K
β = 111.301 (3)°Plate, colourless
γ = 101.265 (2)°0.25 × 0.22 × 0.05 mm
V = 1318.8 (6) Å3
Data collection top
Bruker APEX CCD
diffractometer
2345 independent reflections
Radiation source: sealed tube2111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 19.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.575, Tmax = 0.894k = 1010
7363 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0707P)2 + 2.6497P]
where P = (Fo2 + 2Fc2)/3
2345 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.71 e Å3
46 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Y2(C8H5NO4)3(C3H7NO)4]γ = 101.265 (2)°
Mr = 1007.59V = 1318.8 (6) Å3
Triclinic, P1Z = 1
a = 10.525 (3) ÅMo Kα radiation
b = 11.034 (3) ŵ = 2.25 mm1
c = 12.855 (3) ÅT = 150 K
α = 99.359 (3)°0.25 × 0.22 × 0.05 mm
β = 111.301 (3)°
Data collection top
Bruker APEX CCD
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2111 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.894Rint = 0.027
7363 measured reflectionsθmax = 19.7°
Refinement top
R[F2 > 2σ(F2)] = 0.04346 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.11Δρmax = 0.71 e Å3
2345 reflectionsΔρmin = 0.41 e Å3
298 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y10.60986 (6)0.54621 (5)0.67714 (5)0.0325 (3)
O10.5003 (5)0.3303 (4)0.5952 (4)0.0458 (12)
O20.7957 (6)0.4535 (6)0.7557 (5)0.0777 (17)
O30.6664 (4)0.5086 (4)0.5242 (4)0.0489 (12)
O40.8360 (5)0.7070 (5)0.7643 (5)0.0628 (15)
O50.5711 (5)0.7170 (4)0.5974 (4)0.0429 (11)
O60.6807 (5)0.7297 (4)0.8365 (4)0.0512 (13)
O70.3832 (5)0.5508 (4)0.6623 (5)0.0497 (12)
O80.5809 (6)0.4663 (5)0.8289 (5)0.0664 (16)
C10.5309 (7)0.7437 (6)0.5023 (7)0.0425 (18)
C20.5175 (7)0.8788 (6)0.5026 (6)0.0450 (18)
C30.5023 (8)0.9231 (7)0.4060 (6)0.054 (2)
H30.50420.87020.34070.064*0.70
C40.5155 (8)0.9569 (6)0.5979 (6)0.0504 (19)
H40.52640.92780.66540.060*0.80
C50.8016 (8)0.7688 (7)0.8353 (6)0.0481 (19)
C60.9007 (8)0.8887 (6)0.9175 (6)0.0507 (19)
C71.0407 (9)0.9239 (8)0.9287 (7)0.075 (3)
H71.07080.87160.88120.090*0.75
C80.8620 (8)0.9631 (8)0.9897 (7)0.071 (2)
H80.76800.93860.98510.085*0.75
C90.7040 (8)0.4813 (6)0.4410 (8)0.0452 (18)
C100.8564 (7)0.4903 (6)0.4706 (6)0.0426 (18)
C110.9565 (8)0.5420 (7)0.5837 (6)0.052 (2)
H110.92670.57070.64240.062*
C120.9036 (7)0.4478 (7)0.3883 (6)0.052 (2)
H120.83720.41070.31060.062*0.50
C130.8097 (13)0.3559 (13)0.7616 (12)0.146 (6)
H130.72990.28970.70620.175*
C140.8993 (18)0.1782 (16)0.8060 (19)0.234 (10)
H14A0.98440.16700.86380.351*0.50
H14B0.89390.14520.72860.351*0.50
H14C0.81490.13140.81320.351*0.50
H14D0.81110.12880.73990.351*0.50
H14E0.90160.15050.87520.351*0.50
H14F0.98060.16430.79050.351*0.50
C151.042 (3)0.393 (2)0.903 (2)0.39 (2)
H15A1.10030.34140.94250.590*0.50
H15B1.03110.45610.95920.590*0.50
H15C1.08820.43640.85980.590*0.50
H15D1.04610.48120.89850.590*0.50
H15E1.11530.36660.88180.590*0.50
H15F1.05820.38620.98120.590*0.50
C160.4818 (15)0.3945 (12)0.8288 (9)0.103 (3)
H160.39670.37700.76150.124*
C170.595 (2)0.3593 (16)1.0148 (12)0.195 (8)
H17A0.57190.30941.06520.292*0.50
H17B0.62630.45061.05390.292*0.50
H17C0.67130.33510.99740.292*0.50
H17D0.67440.42061.01250.292*0.50
H17E0.62000.27941.02370.292*0.50
H17F0.57500.39491.08020.292*0.50
C180.354 (2)0.2376 (18)0.9021 (16)0.244 (11)
H18A0.37890.21330.97550.366*0.50
H18B0.33190.16250.83950.366*0.50
H18C0.27070.27060.88720.366*0.50
H18D0.27540.21760.82600.366*0.50
H18E0.32250.26840.96200.366*0.50
H18F0.38360.16040.91430.366*0.50
N10.7183 (19)0.959 (3)0.972 (4)0.137 (12)0.228 (9)
H1A0.64740.90490.91130.165*0.228 (9)
H1B0.70111.00971.02270.165*0.228 (9)
N1A1.101 (3)0.857 (3)0.862 (3)0.137 (12)0.272 (9)
H1A11.04850.78650.80760.165*0.272 (9)
H1A21.19120.88670.87520.165*0.272 (9)
N20.8114 (13)0.3877 (17)0.2719 (10)0.111 (7)0.50
H2A0.84560.35960.22260.134*0.50
H2B0.71960.37830.24870.134*0.50
N30.5205 (18)0.9180 (14)0.7009 (11)0.079 (6)0.424 (9)
H3A0.51240.96990.75630.094*0.424 (9)
H3B0.53170.84240.70820.094*0.424 (9)
N3A0.499 (10)0.857 (7)0.299 (4)0.079 (6)0.076 (9)
H3A10.50780.77840.29050.094*0.076 (9)
H3A20.48900.89450.24260.094*0.076 (9)
N40.4703 (14)0.3341 (10)0.9082 (10)0.143 (4)
N50.9061 (13)0.3113 (12)0.8242 (12)0.157 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0242 (4)0.0219 (4)0.0408 (5)0.0023 (3)0.0060 (3)0.0025 (3)
O10.057 (3)0.025 (3)0.043 (3)0.004 (2)0.013 (2)0.002 (2)
O20.064 (4)0.065 (4)0.100 (5)0.033 (3)0.019 (3)0.027 (4)
O30.036 (3)0.035 (3)0.073 (4)0.003 (2)0.029 (3)0.002 (2)
O40.038 (3)0.047 (3)0.072 (4)0.003 (2)0.010 (3)0.020 (3)
O50.049 (3)0.026 (3)0.040 (3)0.004 (2)0.007 (2)0.005 (2)
O60.053 (4)0.035 (3)0.045 (3)0.007 (2)0.012 (3)0.001 (2)
O70.029 (3)0.050 (3)0.058 (4)0.006 (2)0.012 (3)0.003 (3)
O80.073 (4)0.043 (3)0.069 (4)0.006 (3)0.026 (3)0.013 (3)
C10.036 (4)0.023 (4)0.054 (6)0.003 (3)0.011 (4)0.005 (4)
C20.048 (4)0.025 (4)0.042 (5)0.002 (3)0.005 (4)0.001 (4)
C30.075 (5)0.029 (5)0.042 (5)0.005 (4)0.014 (4)0.005 (4)
C40.074 (5)0.026 (4)0.037 (5)0.005 (4)0.010 (4)0.011 (4)
C50.034 (5)0.038 (5)0.043 (5)0.007 (4)0.006 (4)0.006 (4)
C60.051 (6)0.033 (4)0.050 (5)0.004 (4)0.014 (4)0.004 (4)
C70.059 (6)0.061 (6)0.078 (6)0.003 (5)0.022 (5)0.014 (5)
C80.050 (5)0.063 (6)0.071 (6)0.008 (5)0.012 (5)0.003 (5)
C90.038 (5)0.029 (4)0.068 (6)0.008 (3)0.025 (5)0.003 (4)
C100.028 (4)0.038 (4)0.055 (5)0.003 (3)0.018 (5)0.001 (4)
C110.038 (5)0.058 (5)0.052 (6)0.006 (4)0.025 (4)0.011 (4)
C120.025 (5)0.064 (5)0.047 (5)0.004 (4)0.008 (4)0.009 (4)
C130.087 (9)0.096 (10)0.190 (14)0.024 (8)0.015 (9)0.038 (10)
C140.165 (15)0.162 (15)0.39 (3)0.082 (13)0.069 (17)0.181 (18)
C150.32 (3)0.23 (2)0.36 (3)0.14 (2)0.13 (3)0.08 (2)
C160.146 (11)0.102 (9)0.067 (7)0.034 (8)0.045 (7)0.029 (7)
C170.26 (2)0.192 (16)0.100 (11)0.050 (15)0.037 (13)0.061 (11)
C180.23 (2)0.26 (2)0.236 (19)0.063 (16)0.147 (17)0.100 (17)
N10.062 (15)0.114 (19)0.18 (3)0.036 (13)0.061 (16)0.079 (18)
N1A0.062 (15)0.114 (19)0.18 (3)0.036 (13)0.061 (16)0.079 (18)
N20.031 (8)0.196 (18)0.066 (10)0.025 (9)0.006 (8)0.035 (11)
N30.116 (14)0.044 (9)0.069 (11)0.041 (9)0.020 (10)0.019 (8)
N3A0.116 (14)0.044 (9)0.069 (11)0.041 (9)0.020 (10)0.019 (8)
N40.192 (12)0.124 (8)0.099 (8)0.000 (8)0.063 (8)0.040 (7)
N50.121 (9)0.149 (11)0.199 (12)0.089 (8)0.016 (8)0.096 (10)
Geometric parameters (Å, º) top
Y1—O32.252 (5)C12—N21.411 (11)
Y1—O12.311 (4)C12—H120.9500
Y1—O52.322 (5)C13—N51.284 (14)
Y1—O72.335 (4)C13—H130.9500
Y1—O82.358 (6)C14—N51.433 (18)
Y1—O22.361 (6)C14—H14A0.9800
Y1—O62.409 (4)C14—H14B0.9800
Y1—O42.416 (4)C14—H14C0.9800
Y1—C52.775 (7)C14—H14D0.9800
Y1—C9i3.021 (7)C14—H14E0.9800
O1—C1i1.268 (8)C14—H14F0.9800
O2—C131.126 (13)C15—N51.42 (2)
O3—C91.281 (8)C15—H15A0.9800
O4—C51.251 (9)C15—H15B0.9800
O5—C11.245 (8)C15—H15C0.9800
O6—C51.268 (8)C15—H15D0.9800
O7—C9i1.252 (8)C15—H15E0.9800
O8—C161.179 (13)C15—H15F0.9800
C1—O1i1.268 (8)C16—N41.335 (13)
C1—C21.524 (9)C16—H160.9500
C2—C31.375 (9)C17—N41.451 (17)
C2—C41.388 (9)C17—H17A0.9800
C3—C4ii1.379 (9)C17—H17B0.9800
C3—N3A1.432 (13)C17—H17C0.9800
C3—H30.9500C17—H17D0.9800
C4—C3ii1.379 (9)C17—H17E0.9800
C4—N31.443 (11)C17—H17F0.9800
C4—H40.9500C18—N41.427 (16)
C5—C61.470 (10)C18—H18A0.9800
C6—C81.364 (11)C18—H18B0.9800
C6—C71.395 (11)C18—H18C0.9800
C7—C8iii1.414 (11)C18—H18D0.9800
C7—N1A1.436 (12)C18—H18E0.9800
C7—H70.9500C18—H18F0.9800
C8—C7iii1.414 (11)N1—H1A0.8800
C8—N11.436 (13)N1—H1B0.8800
C8—H80.9500N1A—H1A10.8800
C9—O7i1.252 (8)N1A—H1A20.8800
C9—C101.487 (10)N2—H2A0.8800
C9—Y1i3.021 (7)N2—H2B0.8800
C10—C121.377 (9)N3—H3A0.8800
C10—C111.390 (9)N3—H3B0.8800
C11—C12iv1.359 (9)N3A—H3A10.8800
C11—H110.9500N3A—H3A20.8800
C12—C11iv1.359 (9)
O3—Y1—O177.48 (15)H14C—C14—H14D56.3
O3—Y1—O576.70 (16)N5—C14—H14E109.5
O1—Y1—O5128.81 (15)H14A—C14—H14E56.3
O3—Y1—O7123.79 (17)H14B—C14—H14E141.1
O1—Y1—O782.81 (16)H14C—C14—H14E56.3
O5—Y1—O776.18 (16)H14D—C14—H14E109.5
O3—Y1—O8145.22 (18)N5—C14—H14F109.5
O1—Y1—O875.52 (17)H14A—C14—H14F56.3
O5—Y1—O8137.92 (18)H14B—C14—H14F56.3
O7—Y1—O873.86 (19)H14C—C14—H14F141.1
O3—Y1—O281.36 (19)H14D—C14—H14F109.5
O1—Y1—O277.45 (19)H14E—C14—H14F109.5
O5—Y1—O2139.42 (19)N5—C15—H15A109.5
O7—Y1—O2143.6 (2)N5—C15—H15B109.5
O8—Y1—O271.7 (2)H15A—C15—H15B109.5
O3—Y1—O6133.34 (16)N5—C15—H15C109.5
O1—Y1—O6148.63 (17)H15A—C15—H15C109.5
O5—Y1—O673.50 (15)H15B—C15—H15C109.5
O7—Y1—O682.41 (18)N5—C15—H15D109.5
O8—Y1—O673.84 (17)H15A—C15—H15D141.1
O2—Y1—O699.00 (19)H15B—C15—H15D56.3
O3—Y1—O484.05 (18)H15C—C15—H15D56.3
O1—Y1—O4144.15 (17)N5—C15—H15E109.5
O5—Y1—O474.57 (17)H15A—C15—H15E56.3
O7—Y1—O4132.62 (17)H15B—C15—H15E141.1
O8—Y1—O4105.82 (19)H15C—C15—H15E56.3
O2—Y1—O469.5 (2)H15D—C15—H15E109.5
O6—Y1—O453.92 (17)N5—C15—H15F109.5
C1i—O1—Y1133.9 (4)H15A—C15—H15F56.3
C13—O2—Y1138.5 (8)H15B—C15—H15F56.3
C9—O3—Y1175.4 (5)H15C—C15—H15F141.1
C5—O4—Y192.8 (4)H15D—C15—H15F109.5
C1—O5—Y1141.0 (4)H15E—C15—H15F109.5
C5—O6—Y192.7 (4)O8—C16—N4130.2 (12)
C9i—O7—Y1111.1 (4)O8—C16—H16114.9
C16—O8—Y1129.7 (7)N4—C16—H16114.9
O5—C1—O1i126.5 (6)N4—C17—H17A109.5
O5—C1—C2117.0 (7)N4—C17—H17B109.5
O1i—C1—C2116.5 (7)H17A—C17—H17B109.5
C3—C2—C4119.1 (6)N4—C17—H17C109.5
C3—C2—C1119.9 (7)H17A—C17—H17C109.5
C4—C2—C1120.9 (7)H17B—C17—H17C109.5
C2—C3—C4ii121.2 (7)N4—C17—H17D109.5
C2—C3—N3A127 (3)H17A—C17—H17D141.1
C4ii—C3—N3A111 (3)H17B—C17—H17D56.3
C2—C3—H3119.4H17C—C17—H17D56.3
C4ii—C3—H3119.4N4—C17—H17E109.5
C3ii—C4—C2119.7 (6)H17A—C17—H17E56.3
C3ii—C4—N3115.9 (9)H17B—C17—H17E141.1
C2—C4—N3124.3 (8)H17C—C17—H17E56.3
C3ii—C4—H4120.2H17D—C17—H17E109.5
C2—C4—H4120.2N4—C17—H17F109.5
O4—C5—O6120.5 (6)H17A—C17—H17F56.3
O4—C5—C6120.2 (8)H17B—C17—H17F56.3
O6—C5—C6119.3 (8)H17C—C17—H17F141.1
O4—C5—Y160.4 (3)H17D—C17—H17F109.5
O6—C5—Y160.1 (3)H17E—C17—H17F109.5
C6—C5—Y1178.5 (5)N4—C18—H18A109.5
C8—C6—C7118.5 (7)N4—C18—H18B109.5
C8—C6—C5121.4 (8)H18A—C18—H18B109.5
C7—C6—C5120.0 (8)N4—C18—H18C109.5
C6—C7—C8iii120.4 (8)H18A—C18—H18C109.5
C6—C7—N1A126.5 (13)H18B—C18—H18C109.5
C8iii—C7—N1A113.1 (13)N4—C18—H18D109.5
C6—C7—H7119.8H18A—C18—H18D141.1
C8iii—C7—H7119.8H18B—C18—H18D56.3
C6—C8—C7iii121.1 (8)H18C—C18—H18D56.3
C6—C8—N1124.9 (15)N4—C18—H18E109.5
C7iii—C8—N1111.8 (15)H18A—C18—H18E56.3
C6—C8—H8119.4H18B—C18—H18E141.1
C7iii—C8—H8119.4H18C—C18—H18E56.3
O7i—C9—O3121.8 (6)H18D—C18—H18E109.5
O7i—C9—C10120.3 (7)N4—C18—H18F109.5
O3—C9—C10117.9 (7)H18A—C18—H18F56.3
O7i—C9—Y1i46.1 (3)H18B—C18—H18F56.3
O3—C9—Y1i75.7 (4)H18C—C18—H18F141.1
C10—C9—Y1i166.3 (6)H18D—C18—H18F109.5
C12—C10—C11117.7 (6)H18E—C18—H18F109.5
C12—C10—C9121.8 (7)C8—N1—H1A120.0
C11—C10—C9120.5 (7)C8—N1—H1B120.0
C12iv—C11—C10121.1 (6)H1A—N1—H1B120.0
C12iv—C11—H11119.5C7—N1A—H1A1120.0
C10—C11—H11119.5C7—N1A—H1A2120.0
C11iv—C12—C10121.2 (6)H1A1—N1A—H1A2120.0
C11iv—C12—N2115.9 (8)C12—N2—H2A120.0
C10—C12—N2122.9 (8)C12—N2—H2B120.0
C11iv—C12—H12119.4H2A—N2—H2B120.0
C10—C12—H12119.4C4—N3—H3A120.0
O2—C13—N5136.2 (13)C4—N3—H3B120.0
O2—C13—H13111.9H3A—N3—H3B120.0
N5—C13—H13111.9C3—N3A—H3A1120.0
N5—C14—H14A109.5C3—N3A—H3A2120.0
N5—C14—H14B109.5H3A1—N3A—H3A2120.0
H14A—C14—H14B109.5C16—N4—C18129.6 (14)
N5—C14—H14C109.5C16—N4—C17118.0 (12)
H14A—C14—H14C109.5C18—N4—C17112.3 (12)
H14B—C14—H14C109.5C13—N5—C15121.5 (15)
N5—C14—H14D109.5C13—N5—C14123.9 (14)
H14A—C14—H14D141.1C15—N5—C14113.4 (13)
H14B—C14—H14D56.3
O3—Y1—O1—C1i15.5 (6)Y1—O5—C1—O1i3.7 (11)
O5—Y1—O1—C1i45.7 (6)Y1—O5—C1—C2176.1 (4)
O7—Y1—O1—C1i111.5 (6)O5—C1—C2—C3166.7 (6)
O8—Y1—O1—C1i173.4 (6)O1i—C1—C2—C313.4 (9)
O2—Y1—O1—C1i99.3 (6)O5—C1—C2—C415.5 (9)
O6—Y1—O1—C1i173.9 (5)O1i—C1—C2—C4164.4 (6)
O4—Y1—O1—C1i76.3 (6)C4—C2—C3—C4ii0.4 (12)
C5—Y1—O1—C1i125.7 (8)C1—C2—C3—C4ii177.5 (6)
C9i—Y1—O1—C1i90.3 (6)C4—C2—C3—N3A179 (5)
O3—Y1—O2—C1390.5 (14)C1—C2—C3—N3A1 (5)
O1—Y1—O2—C1311.4 (14)C3—C2—C4—C3ii0.3 (12)
O5—Y1—O2—C13148.1 (14)C1—C2—C4—C3ii177.5 (6)
O7—Y1—O2—C1347.4 (15)C3—C2—C4—N3175.5 (10)
O8—Y1—O2—C1367.2 (14)C1—C2—C4—N32.3 (13)
O6—Y1—O2—C13136.8 (14)Y1—O4—C5—O60.9 (7)
O4—Y1—O2—C13177.3 (15)Y1—O4—C5—C6178.3 (6)
C5—Y1—O2—C13159.4 (14)Y1—O6—C5—O40.9 (7)
C9i—Y1—O2—C136.9 (16)Y1—O6—C5—C6178.3 (6)
O3—Y1—O4—C5157.9 (4)O3—Y1—C5—O423.3 (5)
O1—Y1—O4—C5143.2 (4)O1—Y1—C5—O481.3 (8)
O5—Y1—O4—C580.1 (4)O5—Y1—C5—O491.7 (4)
O7—Y1—O4—C526.3 (5)O7—Y1—C5—O4160.0 (4)
O8—Y1—O4—C556.1 (4)O8—Y1—C5—O4127.0 (4)
O2—Y1—O4—C5119.1 (5)O2—Y1—C5—O455.4 (4)
O6—Y1—O4—C50.5 (4)O6—Y1—C5—O4179.1 (7)
C9i—Y1—O4—C557.5 (6)C9i—Y1—C5—O4140.8 (4)
O3—Y1—O5—C133.5 (7)O3—Y1—C5—O6157.6 (4)
O1—Y1—O5—C128.1 (7)O1—Y1—C5—O697.8 (7)
O7—Y1—O5—C196.8 (7)O5—Y1—C5—O689.2 (4)
O8—Y1—O5—C1142.4 (6)O7—Y1—C5—O620.9 (4)
O2—Y1—O5—C192.6 (7)O8—Y1—C5—O652.1 (4)
O6—Y1—O5—C1177.2 (7)O2—Y1—C5—O6123.7 (4)
O4—Y1—O5—C1120.9 (7)O4—Y1—C5—O6179.1 (7)
C5—Y1—O5—C1148.7 (7)C9i—Y1—C5—O640.1 (5)
C9i—Y1—O5—C174.1 (7)C8—C6—C7—C8iii2.4 (14)
O3—Y1—O6—C529.7 (5)C5—C6—C7—C8iii177.8 (7)
O1—Y1—O6—C5137.5 (4)C8—C6—C7—N1A179 (2)
O5—Y1—O6—C582.2 (4)C5—C6—C7—N1A4 (3)
O7—Y1—O6—C5159.9 (4)C7—C6—C8—C7iii2.4 (14)
O8—Y1—O6—C5124.7 (4)C5—C6—C8—C7iii177.8 (7)
O2—Y1—O6—C556.9 (4)C7—C6—C8—N1164 (2)
O4—Y1—O6—C50.5 (4)C5—C6—C8—N120 (3)
C9i—Y1—O6—C5146.5 (4)O7i—C9—C10—C128.9 (10)
O3—Y1—O7—C9i5.9 (5)O3—C9—C10—C12171.8 (6)
O1—Y1—O7—C9i63.8 (4)Y1i—C9—C10—C1216 (2)
O5—Y1—O7—C9i69.1 (4)O7i—C9—C10—C11171.4 (6)
O8—Y1—O7—C9i140.8 (5)O3—C9—C10—C118.0 (9)
O2—Y1—O7—C9i121.2 (5)Y1i—C9—C10—C11163.8 (15)
O6—Y1—O7—C9i143.9 (4)C12—C10—C11—C12iv1.1 (12)
O4—Y1—O7—C9i122.4 (4)C9—C10—C11—C12iv179.2 (7)
C5—Y1—O7—C9i134.4 (4)C11—C10—C12—C11iv1.1 (12)
O3—Y1—O8—C1684.4 (9)C9—C10—C12—C11iv179.2 (7)
O1—Y1—O8—C1644.2 (8)C11—C10—C12—N2176.7 (11)
O5—Y1—O8—C1688.6 (9)C9—C10—C12—N23.1 (14)
O7—Y1—O8—C1642.4 (9)Y1—O2—C13—N5162.0 (14)
O2—Y1—O8—C16125.5 (9)Y1—O8—C16—N4168.8 (9)
O6—Y1—O8—C16129.0 (9)O8—C16—N4—C18172.8 (16)
O4—Y1—O8—C16173.0 (8)O8—C16—N4—C172 (2)
C5—Y1—O8—C16151.0 (9)O2—C13—N5—C158 (3)
C9i—Y1—O8—C1628.2 (9)O2—C13—N5—C14175.0 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Y2(C8H5NO4)3(C3H7NO)4]
Mr1007.59
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)10.525 (3), 11.034 (3), 12.855 (3)
α, β, γ (°)99.359 (3), 111.301 (3), 101.265 (2)
V3)1318.8 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.25 × 0.22 × 0.05
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.575, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
7363, 2345, 2111
Rint0.027
θmax (°)19.7
(sin θ/λ)max1)0.474
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.11
No. of reflections2345
No. of parameters298
No. of restraints46
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.41

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2004), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Y1—O32.252 (5)Y1—O82.358 (6)
Y1—O12.311 (4)Y1—O22.361 (6)
Y1—O52.322 (5)Y1—O62.409 (4)
Y1—O72.335 (4)Y1—O42.416 (4)
 

Acknowledgements

The authors thank the Research Council of Norway and inGAP for funding.

References

First citationBraun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532–2533.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds