organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The absolute structure of ptilosarcenone 2.5-hydrate, a diterpenoid briarane from the orange sea pen Ptilosarcus gurneyi (Gray)

aDepartment of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
*Correspondence e-mail: DJNurco@UCDavis.edu

(Received 28 October 2010; accepted 30 November 2010; online 18 December 2010)

In the title compound, C24H29ClO8·2.5H2O, which contains two organic mol­ecules (A and B) and five heavily disordered water mol­ecules in the asymmetric unit, the γ-lactone ring and the cyclo­hexenone ring are both trans-fused to the central cyclo­decene ring. The cyclehexenone ring features an α,β-unsaturated ketone with torsion angles between the conjugated carbonyl and alkene bonds of 0.6 (3) and 7.4 (4)° for mol­ecules A and B, respectively. The ptilosarcenone torsion angles between conjugated alkene bonds are 56.2 (5) and 55.4 (6)° for A and B, respectively. In the crystal, the components are linked by O—H⋯O hydrogen bonds. The absolute configuration of ptilosarcenone was determined unambiguously and exhibits similar absolute stereochemistry to that found in the crystal structures of other octocoralline briaranes.

Related literature

In the 1970's, two diterpenoid briaranes, ptilosarcone and ptilosarcenone, were purified from Ptilosarcus gurneyi (Wekell 1974[Wekell, J. C. (1974). Marine Technology Society, Food-Drugs from the Sea, Proceedings, edited by H. H. Weber & G. D. Ruggierl, pp. 324-330.]; Wratten et al. 1977[Wratten, S. J., Fenical, W., Faulkner, J. & Wekell, J. C. (1977). Tetrahedron Lett. 18, 1559-1562.]; Wekell 1978[Wekell, J. C. (1978). PhD dissertation, University of Washington, USA.]) and other octocorals have yielded similar compounds (Sung et al. 2002[Sung, P.-J., Sheu, J.-H. & Xuc, J.-P. (2002). Heterocycles, 57, 535-579.]). In the presence of water or alcohol, ptilosarcone eliminates butyric acid, forming ptilosarcenone. Ptilosarcenone has also been found in extracts of Tochuina tetraquetra, a Tritoniid nudibranch that preys upon Ptilosarcus gurneyi (Williams & Andersen, 1987[Williams, D. E. & Andersen, R. J. (1987). Can. J. Chem. 65, 2244-2247.]). For the structure of ptilosarcenone determined from a mostly complete room-temperature dataset, see: Hendrickson (1990[Hendrickson, R. L. (1990). PhD dissertation, Montana State University, USA.]); Hendrickson & Cardellina (1986[Hendrickson, R. L. & Cardellina, J. H. II (1986). Tetrahedron, 42, 6565-6570.]). Sea pens of the species Ptilosarcus gurneyi were collected near Juneau, Alaska (Smith, 2006[Smith, A. G. E. (2006). Personal communication. Underwater photographer, PADI Divemaster and member of the Juneau Dive Rescue Search and Recovery Team; e-mail: ages@gci.net.]) at depths of 5 to 10 m. For extraction and purification methods used, see: Wekell (1974[Wekell, J. C. (1974). Marine Technology Society, Food-Drugs from the Sea, Proceedings, edited by H. H. Weber & G. D. Ruggierl, pp. 324-330.]). For related structures, see: Burks et al. (1977[Burks, J. E., van der Helm, D., Chang, C. Y. & Ciereszko, L. S. (1977). Acta Cryst. B33, 704-709.]); Coval et al. (1988[Coval, S. J., Cross, S., Bernardinelli, G. & Jefford, C. W. (1988). J. Nat. Prod. 51, 981-984.]); Gonzalez et al. (2002[Gonzalez, N., Rodriguez, J., Kerr, R. G. & Jimenez, C. (2002). J. Org. Chem. 67, 5117-5123.]); Grode et al. (1983[Grode, S. H., James, T. R., Cardellina, J. H. & Onan, K. D. (1983). J. Org. Chem. 48, 5203-5207.]); Hamann et al. (1996[Hamann, M. T., Harrison, K. N., Carroll, A. R. & Scheuer, P. J. (1996). Heterocycles, 42, 325-331.]); van der Helm et al. (1986[Helm, D. van der, Loghry, R. A., Matson, J. A. & Weinheimer, A. J. (1986). J. Crystallogr. Spectrosc. Res. 16, 713-720.]). For scientific background, see: Nurco (2008[Nurco, D. J. (2008). MSc thesis, University of California, Davis, USA.]).

[Scheme 1]

Experimental

Crystal data
  • 2C24H29ClO8·5H2O

  • Mr = 525.98

  • Orthorhombic, P 21 21 21

  • a = 9.8505 (4) Å

  • b = 13.5256 (6) Å

  • c = 39.3169 (17) Å

  • V = 5238.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 95 K

  • 0.60 × 0.32 × 0.14 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.972

  • 75112 measured reflections

  • 13416 independent reflections

  • 12944 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.172

  • S = 1.22

  • 13416 reflections

  • 673 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.60 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5967 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O13 0.83 (2) 2.02 (3) 2.784 (4) 154 (6)
O14—H14B⋯O8i 0.85 (2) 2.13 (3) 2.932 (4) 156 (6)
O17—H17A⋯O3ii 0.81 (4) 2.04 (5) 2.834 (4) 167 (8)
O17—H17B⋯O16iii 0.80 (4) 2.31 (5) 3.082 (5) 161 (7)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In subtidal waters along the west coast of North America lives the orange sea pen Ptilosarcus gurneyi (Gray). Sea pens are soft-bodied octocorals, cnidarians with 8-tentacled polyps, in the order pennatulacea. Like many acidacians, a single sea pen can be made up of thousands of specialized individuals each providing a specific function. They are also colonial organisms, measuring up to 1 meter in height and tending to live in large groups containing sometimes thousands of individual sea pens. The habit of a sea pen is to anchor into soft substrate of the ocean's bottom by its basal polyp. In the 1970's, two diterpenoid briaranes were purified from Ptilosarcus gurneyi, ptilosarcone and ptilosarcenone (Wekell 1974; Wratten et al. 1977; Wekell 1978). Other octocorals have yielded similar compounds (Sung et al. 2002). In the presence of water or alcohol ptilosarcone eliminates butyric acid, forming ptilosarcenone. Ptilosarcenone has also been found in extracts of Tochuina tetraquetra, a Tritoniid nudibranch that preys upon Ptilosarcus gurneyi (Williams & Andersen 1987). A crystal structure of ptilosarcenone from a room temperature dataset, mostly but not entirely complete, was reported in a dissertation (Hendrickson 1990) and referenced as unpublished data (Hendrickson & Cardellina 1986) but has not appeared in the peer-reviewed literature or the Cambridge Structural Database. Herein, we report a new crystallographic investigation of ptilosarcenone conducted with a low temperature dataset and featuring more favorable calculated results than the previous structure.

The structure (Figure 1) has two ptilosarcenone molecules and five disordered water molecules in the asymmetric unit. The γ-lactone and cyclohexenone rings are both trans-fused to the central cyclodecene ring. The cyclehexenone ring featured an α,β-unsaturated ketone with torsion angles between the conjugated carbonyl and alkene bonds of 0.6 (3)° and 7.4 (4)° for C11=C12—C13=O1 and C35=C36—C37=O9 in 1a and 1 b, respectively. The absolute configuration of ptilosarcenone was unambiguously determined with a Flack parameter of 0.06 (7) and revealed the following stereochemical assignments for 1a: C1(S), C2(S), cis-C3=C4, C6(S), C7(R), C8(R), C9(S), C10(S), cis-C11=C12, C14(R), C21(R), and 1 b: C25(S), C26(S), cis-C27=C28, C30(S), C31(R), C32(R), C33(S), C34(S), cis-C35=C36, C38(R), C45(R). The characterization of ptilosarcenone revealed similar absolute stereochemistry as found in structures of similar briaranes. Specifically, the absolute configuration at C6 (bearing a chlorine) and C8 (bearing a hydroxyl) was the same for ptilosarcenone as for briarein A (Burks, et al., 1977), briantheins V (Coval, et al., 1988), X (van der Helm et al., 1986), and Y (Grode, et al., 1983), 11-hydroxybrainthein (Gonzalez, et al., 2002), and juncin E (Hamann, et al., 1996). The ptilosarcenone C3=C4—C5=C19 and C27=C28—C29=C43 torsion angles between conjugated alkene bonds were 56.2 (5)° and 55.4 (6)° for 1a and 1 b. These values are similar to the analogous torsion angles found in the above mentioned compounds which were 69.0°, 57.0°, 57.3°, 48.7°, 48.5°, and 70.3° respectively, as ordered above.

Related literature top

For scientific background, see: Nurco (2008); Sung et al. (2002); Wekell (1978); Williams & Andersen (1987); Wratten et al. (1977); Hendrickson & Cardellina (1986); Smith (2006). For extraction and purification methods used, see: Wekell (1974). For related structures, see: Burks et al. (1977); Coval et al. (1988); Gonzalez et al. (2002); Grode et al. (1983); Hamann et al. (1996); Hendrickson (1990); van der Helm et al. (1986).

Experimental top

Sea pens of the species Ptilosarcus gurneyi were collected near Juneau, Alaska (Smith, 2006) at depths of 5 to 10 meters using SCUBA techniques. Ptilosarcenone was purified from them via published procedures (Wekell, 1974). Crystals of ptilosarcenone were grown in a one half-dram vial from a binary solvent system using ethanol as the good solvent and water as the poor solvent.

Refinement top

Hydrogen atoms bonded to C atoms were generated by their idealized geometry and refined with a riding model, with C—H distances in the range 0.95 - 1.00 Å, and Uiso equal to 1.2Ueq or 1.5Ueq (methyl) of the bonded atom. Hydroxyl H6b and H14b were found on a difference map and refined with a restrained bond length of 0.84 (2) Å. H17a and H17b, bound to water molecule O17, were found in a difference map and refined with a restrained bond length of 0.84 (5) Å. The remaining water oxygen sites were severely disordered, and hydrogen atoms for these O atoms could not be located. For water oxygen atoms O18 through O28, isotropic thermal parameters were fixed at 0.036Å2, and their occupancies were restrained to sum to equal four water molecules.

Structure description top

In subtidal waters along the west coast of North America lives the orange sea pen Ptilosarcus gurneyi (Gray). Sea pens are soft-bodied octocorals, cnidarians with 8-tentacled polyps, in the order pennatulacea. Like many acidacians, a single sea pen can be made up of thousands of specialized individuals each providing a specific function. They are also colonial organisms, measuring up to 1 meter in height and tending to live in large groups containing sometimes thousands of individual sea pens. The habit of a sea pen is to anchor into soft substrate of the ocean's bottom by its basal polyp. In the 1970's, two diterpenoid briaranes were purified from Ptilosarcus gurneyi, ptilosarcone and ptilosarcenone (Wekell 1974; Wratten et al. 1977; Wekell 1978). Other octocorals have yielded similar compounds (Sung et al. 2002). In the presence of water or alcohol ptilosarcone eliminates butyric acid, forming ptilosarcenone. Ptilosarcenone has also been found in extracts of Tochuina tetraquetra, a Tritoniid nudibranch that preys upon Ptilosarcus gurneyi (Williams & Andersen 1987). A crystal structure of ptilosarcenone from a room temperature dataset, mostly but not entirely complete, was reported in a dissertation (Hendrickson 1990) and referenced as unpublished data (Hendrickson & Cardellina 1986) but has not appeared in the peer-reviewed literature or the Cambridge Structural Database. Herein, we report a new crystallographic investigation of ptilosarcenone conducted with a low temperature dataset and featuring more favorable calculated results than the previous structure.

The structure (Figure 1) has two ptilosarcenone molecules and five disordered water molecules in the asymmetric unit. The γ-lactone and cyclohexenone rings are both trans-fused to the central cyclodecene ring. The cyclehexenone ring featured an α,β-unsaturated ketone with torsion angles between the conjugated carbonyl and alkene bonds of 0.6 (3)° and 7.4 (4)° for C11=C12—C13=O1 and C35=C36—C37=O9 in 1a and 1 b, respectively. The absolute configuration of ptilosarcenone was unambiguously determined with a Flack parameter of 0.06 (7) and revealed the following stereochemical assignments for 1a: C1(S), C2(S), cis-C3=C4, C6(S), C7(R), C8(R), C9(S), C10(S), cis-C11=C12, C14(R), C21(R), and 1 b: C25(S), C26(S), cis-C27=C28, C30(S), C31(R), C32(R), C33(S), C34(S), cis-C35=C36, C38(R), C45(R). The characterization of ptilosarcenone revealed similar absolute stereochemistry as found in structures of similar briaranes. Specifically, the absolute configuration at C6 (bearing a chlorine) and C8 (bearing a hydroxyl) was the same for ptilosarcenone as for briarein A (Burks, et al., 1977), briantheins V (Coval, et al., 1988), X (van der Helm et al., 1986), and Y (Grode, et al., 1983), 11-hydroxybrainthein (Gonzalez, et al., 2002), and juncin E (Hamann, et al., 1996). The ptilosarcenone C3=C4—C5=C19 and C27=C28—C29=C43 torsion angles between conjugated alkene bonds were 56.2 (5)° and 55.4 (6)° for 1a and 1 b. These values are similar to the analogous torsion angles found in the above mentioned compounds which were 69.0°, 57.0°, 57.3°, 48.7°, 48.5°, and 70.3° respectively, as ordered above.

For scientific background, see: Nurco (2008); Sung et al. (2002); Wekell (1978); Williams & Andersen (1987); Wratten et al. (1977); Hendrickson & Cardellina (1986); Smith (2006). For extraction and purification methods used, see: Wekell (1974). For related structures, see: Burks et al. (1977); Coval et al. (1988); Gonzalez et al. (2002); Grode et al. (1983); Hamann et al. (1996); Hendrickson (1990); van der Helm et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of both organic molecules in the asymmetric unit (1a and 1 b) drawn with 35% probability thermal ellipsoids.
ptilosarcenone 2.5-hydrate top
Crystal data top
2C24H29ClO8·5H2OF(000) = 2272
Mr = 525.98Dx = 1.334 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9574 reflections
a = 9.8505 (4) Åθ = 2.3–28.6°
b = 13.5256 (6) ŵ = 0.20 mm1
c = 39.3169 (17) ÅT = 95 K
V = 5238.3 (4) Å3Block, colorless
Z = 80.60 × 0.32 × 0.14 mm
Data collection top
Bruker SMART APEXII
diffractometer
13416 independent reflections
Radiation source: fine-focus sealed tube12944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3 pixels mm-1θmax = 28.6°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.888, Tmax = 0.972l = 5252
75112 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0339P)2 + 10.7413P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.025
13416 reflectionsΔρmax = 0.92 e Å3
673 parametersΔρmin = 0.60 e Å3
12 restraintsAbsolute structure: Flack (1983), 5967 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (7)
Crystal data top
2C24H29ClO8·5H2OV = 5238.3 (4) Å3
Mr = 525.98Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.8505 (4) ŵ = 0.20 mm1
b = 13.5256 (6) ÅT = 95 K
c = 39.3169 (17) Å0.60 × 0.32 × 0.14 mm
Data collection top
Bruker SMART APEXII
diffractometer
13416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
12944 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.972Rint = 0.031
75112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0339P)2 + 10.7413P]
where P = (Fo2 + 2Fc2)/3
S = 1.22Δρmax = 0.92 e Å3
13416 reflectionsΔρmin = 0.60 e Å3
673 parametersAbsolute structure: Flack (1983), 5967 Friedel pairs
12 restraintsAbsolute structure parameter: 0.07 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.84698 (9)0.41736 (6)0.22882 (2)0.02499 (18)
O10.2378 (2)0.2518 (2)0.23298 (7)0.0259 (6)
O20.6477 (3)0.01535 (19)0.30844 (6)0.0218 (5)
O30.7263 (2)0.0733 (2)0.35230 (6)0.0242 (5)
O40.9534 (2)0.28556 (19)0.17337 (7)0.0218 (5)
O50.9390 (3)0.3028 (2)0.11727 (8)0.0341 (7)
O60.6462 (2)0.28814 (18)0.18938 (6)0.0188 (5)
H6B0.681 (6)0.328 (4)0.1761 (12)0.054 (18)*
O70.7689 (2)0.04304 (17)0.20640 (6)0.0154 (4)
O80.7265 (2)0.05124 (18)0.16024 (6)0.0194 (5)
C10.5560 (3)0.0517 (2)0.25706 (8)0.0153 (6)
C20.6687 (3)0.0667 (2)0.28492 (8)0.0148 (6)
H20.65140.13030.29710.018*
C30.8169 (3)0.0621 (2)0.27476 (8)0.0170 (6)
H30.85630.00190.27340.020*
C40.8978 (3)0.1380 (3)0.26757 (8)0.0190 (6)
H40.99050.12300.26340.023*
C50.8581 (3)0.2438 (3)0.26543 (9)0.0196 (6)
C60.9057 (3)0.2917 (2)0.23263 (9)0.0188 (6)
H61.00650.29690.23490.023*
C70.8828 (3)0.2328 (3)0.20048 (9)0.0178 (6)
H70.93040.16820.20350.021*
C80.7391 (3)0.2092 (3)0.18507 (8)0.0174 (6)
C90.6660 (3)0.1143 (2)0.19838 (8)0.0153 (6)
H90.61150.08690.17910.018*
C100.5665 (3)0.1325 (2)0.22855 (8)0.0148 (6)
H100.59820.19430.24000.018*
C110.4281 (3)0.0707 (3)0.27753 (9)0.0181 (6)
H110.41590.03090.29720.022*
C120.3306 (3)0.1369 (3)0.27114 (9)0.0214 (7)
H120.26320.14890.28790.026*
C130.3246 (3)0.1909 (3)0.23924 (9)0.0189 (6)
C140.4254 (3)0.1575 (3)0.21242 (9)0.0167 (6)
H140.43900.21370.19620.020*
C150.3532 (4)0.0736 (3)0.19285 (9)0.0224 (7)
H15A0.33060.02000.20860.034*
H15B0.41340.04840.17500.034*
H15C0.26980.09920.18250.034*
C160.5534 (4)0.0566 (2)0.24422 (9)0.0182 (6)
H16A0.49450.09620.25900.027*
H16B0.64560.08380.24470.027*
H16C0.51860.05830.22090.027*
C170.6850 (3)0.0030 (3)0.34076 (10)0.0207 (7)
C180.6728 (4)0.0981 (3)0.36027 (11)0.0319 (9)
H18A0.76010.13280.35990.048*
H18B0.60310.13980.34980.048*
H18C0.64730.08370.38380.048*
C190.7988 (4)0.2904 (3)0.29077 (10)0.0257 (7)
H19A0.78000.25630.31140.031*
H19B0.77490.35810.28850.031*
C200.8961 (4)0.2672 (3)0.14283 (10)0.0248 (7)
C210.7802 (4)0.1953 (3)0.14754 (9)0.0213 (7)
H210.81850.12720.14530.026*
C220.6684 (4)0.2056 (3)0.12117 (10)0.0320 (9)
H22A0.62500.27050.12350.048*
H22B0.60060.15350.12460.048*
H22C0.70730.19950.09830.048*
C230.7878 (3)0.0371 (2)0.18644 (8)0.0155 (6)
C240.8908 (4)0.1036 (3)0.20204 (9)0.0206 (7)
H24A0.84740.14480.21940.031*
H24B0.96260.06380.21260.031*
H24C0.93030.14600.18440.031*
Cl20.49246 (8)0.78146 (7)0.15901 (2)0.02348 (17)
O91.0339 (3)1.0208 (2)0.14272 (8)0.0340 (7)
O100.7227 (3)0.9878 (2)0.00946 (7)0.0313 (6)
O110.5472 (6)1.0767 (4)0.02727 (13)0.090 (2)
O120.5834 (2)0.58739 (19)0.12846 (6)0.0208 (5)
O130.6885 (3)0.4573 (2)0.15048 (7)0.0269 (6)
O140.7957 (2)0.74182 (19)0.14636 (6)0.0197 (5)
H14B0.760 (6)0.799 (2)0.1455 (15)0.053 (17)*
O150.8084 (3)0.6944 (2)0.05473 (6)0.0214 (5)
O161.0020 (3)0.6098 (2)0.04541 (7)0.0297 (6)
C250.8689 (4)0.9096 (3)0.05107 (9)0.0252 (8)
C260.7180 (4)0.9317 (3)0.04118 (10)0.0266 (8)
H260.67630.97390.05930.032*
C270.6255 (4)0.8453 (3)0.03428 (9)0.0266 (8)
H270.63350.81410.01270.032*
C280.5334 (4)0.8088 (3)0.05569 (9)0.0226 (7)
H280.47560.75840.04710.027*
C290.5119 (3)0.8387 (3)0.09151 (9)0.0220 (7)
C300.5067 (3)0.7486 (3)0.11485 (8)0.0199 (6)
H300.42010.71390.10910.024*
C310.6193 (3)0.6732 (3)0.10824 (9)0.0180 (6)
H310.61160.65310.08380.022*
C320.7731 (3)0.6916 (3)0.11541 (8)0.0171 (6)
C330.8587 (3)0.7372 (3)0.08619 (8)0.0180 (6)
H330.95320.71170.08920.022*
C340.8698 (4)0.8522 (3)0.08562 (9)0.0213 (7)
H340.78940.87700.09860.026*
C350.9248 (5)1.0126 (3)0.05641 (11)0.0339 (9)
H350.92481.05520.03720.041*
C360.9743 (5)1.0501 (3)0.08541 (12)0.0359 (10)
H360.99221.11900.08680.043*
C371.0015 (4)0.9876 (3)0.11488 (10)0.0284 (8)
C380.9963 (4)0.8783 (3)0.10774 (10)0.0254 (7)
H380.98620.84350.13000.030*
C391.1368 (4)0.8495 (4)0.09277 (12)0.0378 (11)
H39A1.15320.88720.07190.057*
H39B1.13770.77860.08760.057*
H39C1.20800.86440.10940.057*
C400.9443 (4)0.8610 (3)0.02121 (10)0.0287 (8)
H40A0.97300.91200.00500.043*
H40B0.88370.81410.00980.043*
H40C1.02430.82580.02980.043*
C410.6288 (7)1.0587 (3)0.00541 (14)0.0492 (13)
C420.6379 (7)1.1094 (4)0.02794 (15)0.0553 (15)
H42A0.55501.09680.04100.083*
H42B0.71661.08420.04050.083*
H42C0.64821.18070.02430.083*
C430.4881 (4)0.9301 (3)0.10167 (10)0.0259 (7)
H43A0.48370.98220.08550.031*
H43B0.47530.94380.12520.031*
C440.6951 (4)0.5343 (3)0.13546 (9)0.0210 (7)
C450.8187 (3)0.5830 (3)0.12108 (9)0.0228 (7)
H450.83690.55300.09830.027*
C460.9462 (4)0.5708 (3)0.14259 (12)0.0341 (9)
H46A0.93350.60400.16450.051*
H46B1.02380.60020.13070.051*
H46C0.96340.50030.14640.051*
C470.8881 (4)0.6288 (3)0.03764 (9)0.0254 (8)
C480.8111 (5)0.5895 (4)0.00796 (10)0.0362 (10)
H48A0.78960.64370.00770.054*
H48B0.72670.55880.01590.054*
H48C0.86630.54000.00390.054*
O170.2889 (4)0.5904 (3)0.07596 (8)0.0351 (7)
H17A0.272 (8)0.582 (6)0.0959 (12)0.08 (2)*
H17B0.224 (6)0.592 (6)0.0639 (16)0.07 (2)*
O180.5303 (4)1.4924 (3)0.05414 (11)0.036*0.753 (6)
O190.7874 (6)1.4018 (4)0.06457 (14)0.036*0.579 (7)
O200.4923 (8)1.3333 (6)0.00801 (19)0.036*0.419 (7)
O210.8447 (8)1.2950 (6)0.03643 (19)0.036*0.413 (7)
O220.7887 (10)1.3320 (7)0.0972 (3)0.036*0.327 (7)
O230.7397 (12)1.2492 (9)0.0247 (3)0.036*0.278 (7)
O240.7695 (11)1.3529 (8)0.0514 (3)0.036*0.300 (6)
O250.5313 (13)1.4108 (10)0.0508 (3)0.036*0.247 (6)
O260.8040 (12)1.3150 (8)0.0017 (3)0.036*0.287 (6)
O270.7929 (17)1.3123 (12)0.0754 (4)0.036*0.196 (8)
O280.6751 (16)1.3628 (12)0.0420 (4)0.036*0.201 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0206 (4)0.0162 (4)0.0381 (5)0.0005 (3)0.0080 (4)0.0002 (3)
O10.0143 (11)0.0282 (13)0.0353 (14)0.0039 (10)0.0018 (10)0.0038 (11)
O20.0213 (12)0.0237 (12)0.0203 (12)0.0013 (10)0.0025 (10)0.0051 (10)
O30.0137 (11)0.0355 (15)0.0234 (12)0.0005 (11)0.0016 (9)0.0032 (11)
O40.0151 (11)0.0228 (12)0.0275 (12)0.0009 (10)0.0036 (9)0.0065 (10)
O50.0328 (15)0.0389 (17)0.0307 (15)0.0024 (13)0.0093 (12)0.0143 (13)
O60.0121 (10)0.0169 (11)0.0274 (12)0.0003 (9)0.0004 (9)0.0045 (10)
O70.0133 (10)0.0147 (10)0.0183 (11)0.0017 (9)0.0009 (8)0.0014 (9)
O80.0162 (11)0.0228 (12)0.0193 (11)0.0017 (9)0.0013 (9)0.0026 (10)
C10.0122 (13)0.0159 (14)0.0176 (14)0.0005 (12)0.0006 (11)0.0008 (11)
C20.0136 (14)0.0116 (13)0.0194 (14)0.0000 (11)0.0004 (11)0.0040 (11)
C30.0160 (14)0.0188 (15)0.0161 (14)0.0048 (12)0.0016 (11)0.0019 (12)
C40.0116 (13)0.0286 (17)0.0168 (15)0.0004 (12)0.0016 (12)0.0005 (13)
C50.0080 (13)0.0225 (16)0.0282 (17)0.0032 (12)0.0010 (12)0.0004 (13)
C60.0102 (13)0.0164 (14)0.0297 (17)0.0001 (12)0.0012 (12)0.0030 (13)
C70.0117 (13)0.0188 (15)0.0231 (16)0.0008 (12)0.0010 (11)0.0022 (13)
C80.0116 (13)0.0209 (16)0.0197 (15)0.0001 (12)0.0013 (11)0.0019 (12)
C90.0112 (13)0.0187 (15)0.0161 (14)0.0036 (12)0.0010 (11)0.0006 (11)
C100.0113 (13)0.0131 (13)0.0199 (14)0.0006 (11)0.0001 (12)0.0002 (12)
C110.0161 (15)0.0196 (15)0.0187 (15)0.0045 (12)0.0006 (12)0.0011 (12)
C120.0122 (14)0.0263 (17)0.0255 (17)0.0029 (12)0.0043 (13)0.0035 (14)
C130.0114 (14)0.0191 (15)0.0262 (17)0.0028 (12)0.0009 (12)0.0025 (13)
C140.0120 (14)0.0179 (15)0.0201 (15)0.0022 (12)0.0002 (11)0.0007 (12)
C150.0149 (14)0.0256 (17)0.0269 (17)0.0032 (14)0.0017 (13)0.0029 (14)
C160.0202 (15)0.0139 (14)0.0205 (15)0.0021 (12)0.0003 (12)0.0010 (12)
C170.0100 (13)0.0271 (17)0.0251 (16)0.0014 (12)0.0010 (12)0.0069 (14)
C180.034 (2)0.030 (2)0.032 (2)0.0027 (17)0.0037 (17)0.0116 (16)
C190.0167 (15)0.0274 (18)0.0328 (19)0.0055 (14)0.0026 (14)0.0050 (15)
C200.0178 (15)0.0243 (18)0.0323 (19)0.0025 (14)0.0048 (14)0.0054 (15)
C210.0212 (16)0.0212 (16)0.0216 (16)0.0021 (13)0.0038 (13)0.0037 (13)
C220.034 (2)0.040 (2)0.0224 (18)0.0062 (18)0.0048 (16)0.0053 (16)
C230.0090 (13)0.0196 (15)0.0181 (14)0.0008 (11)0.0032 (11)0.0018 (12)
C240.0181 (15)0.0195 (16)0.0241 (17)0.0044 (13)0.0006 (13)0.0020 (13)
Cl20.0180 (3)0.0302 (4)0.0222 (4)0.0001 (3)0.0066 (3)0.0009 (3)
O90.0271 (14)0.0402 (17)0.0348 (15)0.0139 (12)0.0049 (12)0.0154 (13)
O100.0403 (16)0.0263 (14)0.0273 (14)0.0041 (12)0.0031 (12)0.0004 (11)
O110.129 (5)0.065 (3)0.077 (3)0.057 (3)0.050 (3)0.027 (3)
O120.0182 (11)0.0228 (12)0.0213 (12)0.0035 (10)0.0025 (9)0.0025 (10)
O130.0289 (14)0.0227 (13)0.0292 (14)0.0015 (11)0.0055 (11)0.0028 (11)
O140.0165 (11)0.0253 (13)0.0172 (11)0.0004 (10)0.0000 (9)0.0049 (10)
O150.0197 (11)0.0287 (13)0.0158 (11)0.0081 (10)0.0021 (9)0.0069 (10)
O160.0278 (14)0.0347 (15)0.0266 (13)0.0044 (12)0.0084 (11)0.0072 (11)
C250.0262 (18)0.0267 (18)0.0226 (17)0.0114 (15)0.0054 (14)0.0057 (14)
C260.0297 (19)0.0288 (19)0.0214 (17)0.0101 (16)0.0044 (14)0.0011 (14)
C270.0289 (19)0.033 (2)0.0180 (16)0.0015 (16)0.0049 (14)0.0008 (14)
C280.0223 (17)0.0213 (16)0.0241 (16)0.0013 (13)0.0082 (13)0.0027 (13)
C290.0121 (14)0.0291 (18)0.0247 (16)0.0049 (13)0.0032 (13)0.0046 (14)
C300.0149 (14)0.0269 (17)0.0179 (14)0.0044 (13)0.0006 (12)0.0007 (12)
C310.0112 (14)0.0248 (17)0.0180 (15)0.0072 (12)0.0006 (11)0.0023 (12)
C320.0136 (14)0.0210 (15)0.0167 (14)0.0042 (12)0.0016 (12)0.0014 (12)
C330.0154 (14)0.0213 (16)0.0171 (14)0.0049 (12)0.0021 (12)0.0059 (12)
C340.0163 (16)0.0288 (18)0.0188 (15)0.0095 (13)0.0043 (12)0.0058 (13)
C350.038 (2)0.034 (2)0.030 (2)0.0180 (18)0.0103 (17)0.0045 (17)
C360.037 (2)0.031 (2)0.039 (2)0.0168 (18)0.0077 (18)0.0076 (18)
C370.0160 (15)0.036 (2)0.0332 (19)0.0090 (16)0.0065 (15)0.0099 (16)
C380.0162 (15)0.0327 (19)0.0273 (17)0.0100 (15)0.0042 (14)0.0088 (15)
C390.0167 (18)0.052 (3)0.045 (2)0.0121 (18)0.0072 (17)0.019 (2)
C400.032 (2)0.034 (2)0.0204 (17)0.0089 (17)0.0092 (15)0.0009 (15)
C410.076 (4)0.021 (2)0.050 (3)0.007 (2)0.014 (3)0.0032 (19)
C420.085 (4)0.024 (2)0.057 (3)0.007 (3)0.008 (3)0.011 (2)
C430.0199 (16)0.0294 (19)0.0284 (18)0.0016 (15)0.0003 (14)0.0043 (15)
C440.0195 (16)0.0231 (17)0.0204 (16)0.0001 (13)0.0041 (13)0.0047 (13)
C450.0169 (16)0.0284 (18)0.0231 (17)0.0055 (14)0.0038 (13)0.0018 (14)
C460.0224 (18)0.031 (2)0.049 (3)0.0037 (16)0.0015 (17)0.0114 (19)
C470.0285 (19)0.0285 (19)0.0192 (16)0.0109 (15)0.0096 (14)0.0059 (14)
C480.035 (2)0.048 (3)0.0253 (19)0.019 (2)0.0068 (16)0.0145 (18)
O170.0370 (17)0.0396 (17)0.0287 (16)0.0028 (14)0.0060 (13)0.0046 (14)
Geometric parameters (Å, º) top
Cl1—C61.801 (3)O9—C371.225 (5)
O1—C131.213 (4)O10—C411.341 (6)
O2—C171.333 (4)O10—C261.461 (5)
O2—C21.459 (4)O11—C411.202 (7)
O3—C171.197 (5)O12—C441.342 (4)
O4—C201.350 (5)O12—C311.451 (4)
O4—C71.459 (4)O13—C441.199 (5)
O5—C201.192 (5)O14—C321.411 (4)
O6—C81.416 (4)O14—H14B0.849 (19)
O6—H6B0.83 (2)O15—C471.362 (5)
O7—C231.351 (4)O15—C331.453 (4)
O7—C91.434 (4)O16—C471.191 (5)
O8—C231.209 (4)C25—C351.512 (5)
C1—C111.517 (5)C25—C401.537 (5)
C1—C161.550 (4)C25—C341.565 (5)
C1—C101.569 (4)C25—C261.566 (6)
C1—C21.572 (4)C26—C271.506 (5)
C2—C31.515 (4)C26—H261.0000
C2—H21.0000C27—C281.333 (5)
C3—C41.331 (5)C27—H270.9500
C3—H30.9500C28—C291.480 (5)
C4—C51.486 (5)C28—H280.9500
C4—H40.9500C29—C431.321 (5)
C5—C191.315 (5)C29—C301.526 (5)
C5—C61.517 (5)C30—C311.528 (5)
C6—C71.511 (5)C30—H301.0000
C6—H61.0000C31—C321.561 (4)
C7—C81.572 (4)C31—H311.0000
C7—H71.0000C32—C331.553 (5)
C8—C211.542 (5)C32—C451.553 (5)
C8—C91.562 (5)C33—C341.560 (5)
C9—C101.558 (4)C33—H331.0000
C9—H91.0000C34—C381.560 (5)
C10—C141.565 (4)C34—H341.0000
C10—H101.0000C35—C361.340 (6)
C11—C121.337 (5)C35—H350.9500
C11—H110.9500C36—C371.459 (6)
C12—C131.453 (5)C36—H360.9500
C12—H120.9500C37—C381.505 (5)
C13—C141.518 (5)C38—C391.553 (5)
C14—C151.544 (5)C38—H381.0000
C14—H141.0000C39—H39A0.9800
C15—H15A0.9800C39—H39B0.9800
C15—H15B0.9800C39—H39C0.9800
C15—H15C0.9800C40—H40A0.9800
C16—H16A0.9800C40—H40B0.9800
C16—H16B0.9800C40—H40C0.9800
C16—H16C0.9800C41—C421.483 (7)
C17—C181.503 (5)C42—H42A0.9800
C18—H18A0.9800C42—H42B0.9800
C18—H18B0.9800C42—H42C0.9800
C18—H18C0.9800C43—H43A0.9500
C19—H19A0.9500C43—H43B0.9500
C19—H19B0.9500C44—C451.495 (5)
C20—C211.511 (5)C45—C461.523 (5)
C21—C221.519 (5)C45—H451.0000
C21—H211.0000C46—H46A0.9800
C22—H22A0.9800C46—H46B0.9800
C22—H22B0.9800C46—H46C0.9800
C22—H22C0.9800C47—C481.490 (5)
C23—C241.489 (5)C48—H48A0.9800
C24—H24A0.9800C48—H48B0.9800
C24—H24B0.9800C48—H48C0.9800
C24—H24C0.9800O17—H17A0.81 (4)
Cl2—C301.798 (3)O17—H17B0.80 (4)
C17—O2—C2118.0 (3)C44—O12—C31109.9 (3)
C20—O4—C7111.1 (3)C32—O14—H14B110 (4)
C8—O6—H6B99 (4)C47—O15—C33118.9 (3)
C23—O7—C9120.6 (3)C35—C25—C40108.9 (3)
C11—C1—C16108.6 (3)C35—C25—C34109.5 (3)
C11—C1—C10108.4 (3)C40—C25—C34116.6 (3)
C16—C1—C10115.3 (3)C35—C25—C26101.8 (3)
C11—C1—C2101.2 (3)C40—C25—C26110.5 (3)
C16—C1—C2111.1 (3)C34—C25—C26108.4 (3)
C10—C1—C2111.2 (3)O10—C26—C27105.6 (3)
O2—C2—C3105.8 (2)O10—C26—C25106.3 (3)
O2—C2—C1104.1 (2)C27—C26—C25118.1 (3)
C3—C2—C1119.4 (3)O10—C26—H26108.8
O2—C2—H2109.0C27—C26—H26108.8
C3—C2—H2109.0C25—C26—H26108.8
C1—C2—H2109.0C28—C27—C26125.8 (4)
C4—C3—C2127.0 (3)C28—C27—H27117.1
C4—C3—H3116.5C26—C27—H27117.1
C2—C3—H3116.5C27—C28—C29126.7 (3)
C3—C4—C5126.7 (3)C27—C28—H28116.7
C3—C4—H4116.6C29—C28—H28116.7
C5—C4—H4116.6C43—C29—C28124.7 (3)
C19—C5—C4122.3 (3)C43—C29—C30124.0 (3)
C19—C5—C6125.2 (3)C28—C29—C30111.0 (3)
C4—C5—C6112.2 (3)C29—C30—C31113.9 (3)
C7—C6—C5116.1 (3)C29—C30—Cl2112.7 (3)
C7—C6—Cl1112.3 (2)C31—C30—Cl2112.7 (2)
C5—C6—Cl1112.0 (2)C29—C30—H30105.5
C7—C6—H6105.1C31—C30—H30105.5
C5—C6—H6105.1Cl2—C30—H30105.5
Cl1—C6—H6105.1O12—C31—C30105.3 (3)
O4—C7—C6106.4 (3)O12—C31—C32105.3 (3)
O4—C7—C8104.3 (3)C30—C31—C32124.5 (3)
C6—C7—C8124.3 (3)O12—C31—H31106.9
O4—C7—H7106.9C30—C31—H31106.9
C6—C7—H7106.9C32—C31—H31106.9
C8—C7—H7106.9O14—C32—C33111.2 (3)
O6—C8—C21112.1 (3)O14—C32—C45106.6 (3)
O6—C8—C9106.4 (2)C33—C32—C45108.9 (3)
C21—C8—C9109.9 (3)O14—C32—C31112.7 (3)
O6—C8—C7112.5 (3)C33—C32—C31117.2 (3)
C21—C8—C799.0 (3)C45—C32—C3199.0 (3)
C9—C8—C7116.9 (3)O15—C33—C32106.7 (3)
O7—C9—C10112.6 (3)O15—C33—C34114.1 (3)
O7—C9—C8107.5 (2)C32—C33—C34116.4 (3)
C10—C9—C8114.5 (3)O15—C33—H33106.3
O7—C9—H9107.3C32—C33—H33106.3
C10—C9—H9107.3C34—C33—H33106.3
C8—C9—H9107.3C33—C34—C38105.9 (3)
C9—C10—C14106.5 (3)C33—C34—C25120.5 (3)
C9—C10—C1118.4 (3)C38—C34—C25112.1 (3)
C14—C10—C1112.4 (2)C33—C34—H34105.8
C9—C10—H10106.3C38—C34—H34105.8
C14—C10—H10106.3C25—C34—H34105.8
C1—C10—H10106.3C36—C35—C25126.8 (4)
C12—C11—C1127.6 (3)C36—C35—H35116.6
C12—C11—H11116.2C25—C35—H35116.6
C1—C11—H11116.2C35—C36—C37121.6 (4)
C11—C12—C13121.9 (3)C35—C36—H36119.2
C11—C12—H12119.1C37—C36—H36119.2
C13—C12—H12119.1O9—C37—C36123.0 (4)
O1—C13—C12123.1 (3)O9—C37—C38122.4 (4)
O1—C13—C14121.5 (3)C36—C37—C38114.5 (3)
C12—C13—C14115.1 (3)C37—C38—C39106.7 (3)
C13—C14—C15105.3 (3)C37—C38—C34110.7 (3)
C13—C14—C10111.3 (3)C39—C38—C34116.3 (3)
C15—C14—C10116.9 (3)C37—C38—H38107.6
C13—C14—H14107.6C39—C38—H38107.6
C15—C14—H14107.6C34—C38—H38107.6
C10—C14—H14107.6C38—C39—H39A109.5
C14—C15—H15A109.5C38—C39—H39B109.5
C14—C15—H15B109.5H39A—C39—H39B109.5
H15A—C15—H15B109.5C38—C39—H39C109.5
C14—C15—H15C109.5H39A—C39—H39C109.5
H15A—C15—H15C109.5H39B—C39—H39C109.5
H15B—C15—H15C109.5C25—C40—H40A109.5
C1—C16—H16A109.5C25—C40—H40B109.5
C1—C16—H16B109.5H40A—C40—H40B109.5
H16A—C16—H16B109.5C25—C40—H40C109.5
C1—C16—H16C109.5H40A—C40—H40C109.5
H16A—C16—H16C109.5H40B—C40—H40C109.5
H16B—C16—H16C109.5O11—C41—O10121.4 (5)
O3—C17—O2124.3 (3)O11—C41—C42125.4 (5)
O3—C17—C18124.8 (4)O10—C41—C42113.2 (5)
O2—C17—C18110.9 (3)C41—C42—H42A109.5
C17—C18—H18A109.5C41—C42—H42B109.5
C17—C18—H18B109.5H42A—C42—H42B109.5
H18A—C18—H18B109.5C41—C42—H42C109.5
C17—C18—H18C109.5H42A—C42—H42C109.5
H18A—C18—H18C109.5H42B—C42—H42C109.5
H18B—C18—H18C109.5C29—C43—H43A120.0
C5—C19—H19A120.0C29—C43—H43B120.0
C5—C19—H19B120.0H43A—C43—H43B120.0
H19A—C19—H19B120.0O13—C44—O12121.4 (3)
O5—C20—O4121.8 (4)O13—C44—C45127.8 (4)
O5—C20—C21129.1 (4)O12—C44—C45110.8 (3)
O4—C20—C21109.0 (3)C44—C45—C46114.4 (3)
C20—C21—C22113.9 (3)C44—C45—C32103.6 (3)
C20—C21—C8103.7 (3)C46—C45—C32114.9 (3)
C22—C21—C8116.8 (3)C44—C45—H45107.8
C20—C21—H21107.3C46—C45—H45107.8
C22—C21—H21107.3C32—C45—H45107.8
C8—C21—H21107.3C45—C46—H46A109.5
C21—C22—H22A109.5C45—C46—H46B109.5
C21—C22—H22B109.5H46A—C46—H46B109.5
H22A—C22—H22B109.5C45—C46—H46C109.5
C21—C22—H22C109.5H46A—C46—H46C109.5
H22A—C22—H22C109.5H46B—C46—H46C109.5
H22B—C22—H22C109.5O16—C47—O15123.9 (3)
O8—C23—O7123.6 (3)O16—C47—C48127.1 (4)
O8—C23—C24126.5 (3)O15—C47—C48109.0 (4)
O7—C23—C24109.9 (3)C47—C48—H48A109.5
C23—C24—H24A109.5C47—C48—H48B109.5
C23—C24—H24B109.5H48A—C48—H48B109.5
H24A—C24—H24B109.5C47—C48—H48C109.5
C23—C24—H24C109.5H48A—C48—H48C109.5
H24A—C24—H24C109.5H48B—C48—H48C109.5
H24B—C24—H24C109.5H17A—O17—H17B114 (7)
C41—O10—C26116.8 (4)
C17—O2—C2—C380.7 (3)C40—C25—C26—C2765.5 (4)
C17—O2—C2—C1152.6 (3)C34—C25—C26—C2763.5 (4)
C11—C1—C2—O267.0 (3)O10—C26—C27—C28139.8 (4)
C16—C1—C2—O248.2 (3)C25—C26—C27—C28101.5 (5)
C10—C1—C2—O2178.0 (2)C26—C27—C28—C296.3 (6)
C11—C1—C2—C3175.4 (3)C27—C28—C29—C4355.4 (6)
C16—C1—C2—C369.3 (4)C27—C28—C29—C30130.3 (4)
C10—C1—C2—C360.5 (4)C43—C29—C30—C31139.7 (4)
O2—C2—C3—C4146.8 (3)C28—C29—C30—C3145.9 (4)
C1—C2—C3—C496.5 (4)C43—C29—C30—Cl29.7 (5)
C2—C3—C4—C54.9 (6)C28—C29—C30—Cl2176.0 (2)
C3—C4—C5—C1956.2 (5)C44—O12—C31—C30155.7 (3)
C3—C4—C5—C6129.2 (4)C44—O12—C31—C3222.5 (3)
C19—C5—C6—C7140.5 (3)C29—C30—C31—O12170.5 (3)
C4—C5—C6—C745.1 (4)Cl2—C30—C31—O1259.4 (3)
C19—C5—C6—Cl19.7 (4)C29—C30—C31—C3268.1 (4)
C4—C5—C6—Cl1175.9 (2)Cl2—C30—C31—C3262.0 (4)
C20—O4—C7—C6153.6 (3)O12—C31—C32—O1480.2 (3)
C20—O4—C7—C820.7 (4)C30—C31—C32—O1441.2 (4)
C5—C6—C7—O4171.8 (3)O12—C31—C32—C33148.9 (3)
Cl1—C6—C7—O457.6 (3)C30—C31—C32—C3389.7 (4)
C5—C6—C7—C867.4 (4)O12—C31—C32—C4532.1 (3)
Cl1—C6—C7—C863.3 (4)C30—C31—C32—C45153.5 (3)
O4—C7—C8—O685.7 (3)C47—O15—C33—C32109.6 (3)
C6—C7—C8—O636.1 (4)C47—O15—C33—C34120.4 (3)
O4—C7—C8—C2132.9 (3)O14—C32—C33—O15168.7 (3)
C6—C7—C8—C21154.7 (3)C45—C32—C33—O1574.0 (3)
O4—C7—C8—C9150.8 (3)C31—C32—C33—O1537.1 (4)
C6—C7—C8—C987.4 (4)O14—C32—C33—C3440.1 (4)
C23—O7—C9—C10125.4 (3)C45—C32—C33—C34157.3 (3)
C23—O7—C9—C8107.6 (3)C31—C32—C33—C3491.5 (4)
O6—C8—C9—O7158.7 (2)O15—C33—C34—C38145.7 (3)
C21—C8—C9—O779.7 (3)C32—C33—C34—C3889.3 (3)
C7—C8—C9—O732.1 (4)O15—C33—C34—C2517.4 (4)
O6—C8—C9—C1032.8 (3)C32—C33—C34—C25142.3 (3)
C21—C8—C9—C10154.4 (3)C35—C25—C34—C33162.0 (3)
C7—C8—C9—C1093.8 (3)C40—C25—C34—C3337.7 (5)
O7—C9—C10—C14148.3 (3)C26—C25—C34—C3387.7 (4)
C8—C9—C10—C1488.6 (3)C35—C25—C34—C3836.5 (4)
O7—C9—C10—C120.5 (4)C40—C25—C34—C3887.8 (4)
C8—C9—C10—C1143.7 (3)C26—C25—C34—C38146.8 (3)
C11—C1—C10—C9164.1 (3)C40—C25—C35—C36125.7 (5)
C16—C1—C10—C942.1 (4)C34—C25—C35—C363.0 (6)
C2—C1—C10—C985.5 (3)C26—C25—C35—C36117.5 (5)
C11—C1—C10—C1439.2 (3)C25—C35—C36—C3710.7 (7)
C16—C1—C10—C1482.8 (3)C35—C36—C37—O9172.6 (4)
C2—C1—C10—C14149.6 (3)C35—C36—C37—C3811.6 (6)
C16—C1—C11—C12119.1 (4)O9—C37—C38—C3993.2 (4)
C10—C1—C11—C126.8 (5)C36—C37—C38—C3982.7 (4)
C2—C1—C11—C12123.9 (4)O9—C37—C38—C34139.4 (4)
C1—C11—C12—C1310.3 (6)C36—C37—C38—C3444.8 (4)
C11—C12—C13—O1179.4 (3)C33—C34—C38—C37168.7 (3)
C11—C12—C13—C147.4 (5)C25—C34—C38—C3758.1 (4)
O1—C13—C14—C1585.5 (4)C33—C34—C38—C3969.3 (4)
C12—C13—C14—C1587.9 (3)C25—C34—C38—C3963.8 (5)
O1—C13—C14—C10146.9 (3)C26—O10—C41—O112.0 (8)
C12—C13—C14—C1039.8 (4)C26—O10—C41—C42177.9 (4)
C9—C10—C14—C13172.0 (3)C31—O12—C44—O13176.2 (3)
C1—C10—C14—C1356.8 (3)C31—O12—C44—C451.8 (4)
C9—C10—C14—C1567.0 (3)O13—C44—C45—C4636.8 (6)
C1—C10—C14—C1564.2 (4)O12—C44—C45—C46145.4 (3)
C2—O2—C17—O35.2 (5)O13—C44—C45—C32162.6 (4)
C2—O2—C17—C18172.9 (3)O12—C44—C45—C3219.6 (4)
C7—O4—C20—O5179.6 (4)O14—C32—C45—C4486.7 (3)
C7—O4—C20—C211.6 (4)C33—C32—C45—C44153.2 (3)
O5—C20—C21—C2230.5 (6)C31—C32—C45—C4430.3 (3)
O4—C20—C21—C22151.8 (3)O14—C32—C45—C4638.8 (4)
O5—C20—C21—C8158.5 (4)C33—C32—C45—C4681.2 (4)
O4—C20—C21—C823.7 (4)C31—C32—C45—C46155.9 (3)
O6—C8—C21—C2085.5 (3)C33—O15—C47—O166.2 (5)
C9—C8—C21—C20156.4 (3)C33—O15—C47—C48175.6 (3)
C7—C8—C21—C2033.4 (3)O26—O21—O24—O27164.9 (12)
O6—C8—C21—C2240.8 (4)O24—O21—O26—O23117.6 (13)
C9—C8—C21—C2277.3 (4)O27—O21—O26—O23101.3 (17)
C7—C8—C21—C22159.6 (3)O28—O23—O26—O21154.2 (12)
C9—O7—C23—O84.1 (5)O21—O24—O27—O22157 (2)
C9—O7—C23—C24174.6 (3)O24—O21—O27—O2296 (6)
C41—O10—C26—C2789.6 (5)O26—O21—O27—O22120 (6)
C41—O10—C26—C25144.1 (4)O26—O21—O27—O2423.9 (18)
C35—C25—C26—O1062.8 (4)O18—O25—O28—O1946.5 (16)
C40—C25—C26—O1052.8 (4)O18—O25—O28—O23162.2 (14)
C34—C25—C26—O10178.2 (3)O26—O23—O28—O1985.1 (10)
C35—C25—C26—C27178.9 (3)O26—O23—O28—O25122.3 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O130.83 (2)2.02 (3)2.784 (4)154 (6)
O14—H14B···O8i0.85 (2)2.13 (3)2.932 (4)156 (6)
O17—H17A···O3ii0.81 (4)2.04 (5)2.834 (4)167 (8)
O17—H17B···O16iii0.80 (4)2.31 (5)3.082 (5)161 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C24H29ClO8·5H2O
Mr525.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)95
a, b, c (Å)9.8505 (4), 13.5256 (6), 39.3169 (17)
V3)5238.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.60 × 0.32 × 0.14
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
75112, 13416, 12944
Rint0.031
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.172, 1.22
No. of reflections13416
No. of parameters673
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0339P)2 + 10.7413P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 0.60
Absolute structureFlack (1983), 5967 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O130.83 (2)2.02 (3)2.784 (4)154 (6)
O14—H14B···O8i0.849 (19)2.13 (3)2.932 (4)156 (6)
O17—H17A···O3ii0.81 (4)2.04 (5)2.834 (4)167 (8)
O17—H17B···O16iii0.80 (4)2.31 (5)3.082 (5)161 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

We thank Annette G. E. Smith for collecting Ptilosarcus gurneyi sea pens using SCUBA techniques near Juneau, Alaska, and the Alaska Department of Fish and Game for providing a Scientific Collecting Permit allowing the collection. This work was supported in part by a UC Davis Jastro–Shields Grant.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurks, J. E., van der Helm, D., Chang, C. Y. & Ciereszko, L. S. (1977). Acta Cryst. B33, 704–709.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoval, S. J., Cross, S., Bernardinelli, G. & Jefford, C. W. (1988). J. Nat. Prod. 51, 981–984.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonzalez, N., Rodriguez, J., Kerr, R. G. & Jimenez, C. (2002). J. Org. Chem. 67, 5117–5123.  Web of Science PubMed CAS Google Scholar
First citationGrode, S. H., James, T. R., Cardellina, J. H. & Onan, K. D. (1983). J. Org. Chem. 48, 5203–5207.  CSD CrossRef CAS Web of Science Google Scholar
First citationHamann, M. T., Harrison, K. N., Carroll, A. R. & Scheuer, P. J. (1996). Heterocycles, 42, 325–331.  CAS Google Scholar
First citationHelm, D. van der, Loghry, R. A., Matson, J. A. & Weinheimer, A. J. (1986). J. Crystallogr. Spectrosc. Res. 16, 713–720.  CSD CrossRef Google Scholar
First citationHendrickson, R. L. (1990). PhD dissertation, Montana State University, USA.  Google Scholar
First citationHendrickson, R. L. & Cardellina, J. H. II (1986). Tetrahedron, 42, 6565–6570.  CrossRef CAS Web of Science Google Scholar
First citationNurco, D. J. (2008). MSc thesis, University of California, Davis, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, A. G. E. (2006). Personal communication. Underwater photographer, PADI Divemaster and member of the Juneau Dive Rescue Search and Recovery Team; e-mail: ages@gci.net.  Google Scholar
First citationSung, P.-J., Sheu, J.-H. & Xuc, J.-P. (2002). Heterocycles, 57, 535–579.  CrossRef CAS Google Scholar
First citationWekell, J. C. (1974). Marine Technology Society, Food-Drugs from the Sea, Proceedings, edited by H. H. Weber & G. D. Ruggierl, pp. 324–330.  Google Scholar
First citationWekell, J. C. (1978). PhD dissertation, University of Washington, USA.  Google Scholar
First citationWilliams, D. E. & Andersen, R. J. (1987). Can. J. Chem. 65, 2244–2247.  CrossRef CAS Web of Science Google Scholar
First citationWratten, S. J., Fenical, W., Faulkner, J. & Wekell, J. C. (1977). Tetrahedron Lett. 18, 1559–1562.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds