metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-aqua-tetra­aquadi-μ3-malonato-nickel(II)strontium(II)] dihydrate]

aSchool of Environment and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: guomlin@yahoo.com

(Received 17 November 2010; accepted 29 November 2010; online 4 December 2010)

The unit-cell parameters for the title mixed-metal coordination polymer, {[NiSr(C3H2O4)2(H2O)5]·2H2O}n, which is isostructural with its Co-containing analogue, were reported previously [Gil de Muro et al. (1999[Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.]). Eur. J. Inorg. Chem. pp. 935–943]; the full crystal structure including a description of the hydrogen bonding is reported here. The Sr2+ ion is bonded to five O atoms from three different malonate dianions and four water mol­ecules, displaying a distorted tricapped trigonal–prismatic coordination geometry. Two malonate dianions, two water mol­ecules and one Ni2+ ion build up a dianionic [Ni(C3H2O4)2(H2O)2]2− unit incorporating a slightly distorted NiO6 octa­hedron, which coordinates to three nearby Sr2+ ions. This arrangement creates a metal-organic framework having a 20-membered ring with four Ni and six Sr atoms lying in the bc plane. The coordinated and uncoordinated water mol­ecules are responsible for the formation of two D5 hydrogen-bonded water chains within the 20-membered ring and they are linked into an R4 water cluster via two bifurcated O—H⋯(O,O) links.

Related literature

For the cobalt-containing analogue of the title compound and the previous unit-cell determination, see: Gil de Muro et al. (1999[Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.]). For a related structure, see: Gil de Muro et al. (2000[Gil de Muro, I., Insausti, M., Lezama, L., Urtiaga, M. K., Arriortua, M. I. & Rojo, T. (2000). J. Chem. Soc. Dalton Trans. pp. 3360-3364.]). For hydrogen-bonded water clusters, see: Infantes & Motherwell (2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davvis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [NiSr(C3H2O4)2(H2O)5]·2H2O

  • Mr = 476.53

  • Monoclinic, P 21 /c

  • a = 6.7745 (14) Å

  • b = 14.220 (3) Å

  • c = 15.629 (3) Å

  • β = 101.10 (3)°

  • V = 1477.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 294 K

  • 0.12 × 0.06 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.548, Tmax = 0.712

  • 9983 measured reflections

  • 2609 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.05

  • 2609 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O11 2.556 (2)
Sr1—O12 2.574 (3)
Sr1—O2i 2.581 (3)
Sr1—O6ii 2.598 (3)
Sr1—O13 2.618 (3)
Sr1—O2 2.660 (3)
Sr1—O13iii 2.688 (2)
Sr1—O1 2.751 (3)
Sr1—O5ii 2.816 (3)
Ni1—O4 2.020 (3)
Ni1—O7 2.024 (3)
Ni1—O5 2.026 (2)
Ni1—O1 2.032 (3)
Ni1—O9 2.038 (3)
Ni1—O10 2.064 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15A⋯O14iv 0.84 2.26 2.997 (5) 148
O15—H15A⋯O14 0.84 2.33 2.867 (5) 123
O15—H15B⋯O3v 0.85 2.29 2.881 (7) 127
O14—H14B⋯O8vi 0.86 2.21 3.072 (5) 176
O14—H14A⋯O10ii 0.86 2.14 2.936 (4) 152
O13—H13B⋯O11i 0.85 1.93 2.728 (4) 155
O13—H13A⋯O7iii 0.85 2.01 2.836 (4) 163
O12—H12B⋯O7 0.85 2.42 3.080 (4) 135
O12—H12B⋯O9 0.85 2.36 3.094 (5) 144
O12—H12A⋯O3vii 0.85 1.94 2.772 (4) 166
O11—H11B⋯O8vi 0.85 1.83 2.681 (4) 176
O11—H11A⋯O4ii 0.85 1.89 2.727 (4) 172
O10—H10B⋯O6viii 0.85 1.91 2.728 (4) 162
O10—H10A⋯O3ix 0.85 1.86 2.714 (4) 178
O9—H9B⋯O15 0.85 1.84 2.663 (5) 162
O9—H9A⋯O8vi 0.84 1.81 2.652 (4) 173
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Here we report the structure of the title compound, (I), [SrNi(mal)2(H2O)5].2H2O (mal = malonate dianion). Although isotypic complex [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999) had been reported, the difficulty in locating the water hydrogen atoms prevents from description of hydrogen bonding for the structure. Herein, we report the structure of the title heterobimetallic malonate complex, (I), with dianionic [Ni(C3H2O4)2(H2O)2]2- structure,

The asymmetric unit in the structure of (I) comprises one Sr atom, one [Ni(C3H2O4)2(H2O)2]2- dianion, three coordinated water and two solvent water molecules, and is shown in Fig. 1 in a symmetry-expanded view which displays the full coordination of the Ni and Sr atom. Selected geometric parameters are given in Table 1. The Ni atom has a slightly enlongated axial distortion octahedral coordination. The Ni1 atom deviates by 0.0251 (4)Å from the least-squares plane defined by four O atoms subtended by the two ligands at its metal atom. The O—Ni—O angles are close to 90°, the mean Ni1—O bond distance are 2.026 (2) Å. These are somewhat shorter than those (2.051 (3) Å) in [CaNi(mal)2(H2O)2].2H2O (Gil de Muro et al., 2000), while the Ni—Owater bonds except for Ni1—O9(2.038 (3) Å) are in good agreement with those (2.066 (4) Å) observed for above-mentioned compounds. The variability of the coordination modes of malonate ligands, monodentate, bidentate chelating, chelated six-membered and bridging bonding modes, are all present. As can be seen in Table 1, the O—C—O angles for carboxylate groups of two malonates range from 120.9 (3) to 123.9 (4)°, all of the C—O bond distances are in the range 1.246 (4)–1.265 (4)Å except the shortest O7—C6 being 1.233 (4)Å and the longest O1—C1 being 1.272 (4) Å. These indicate that all of carboxylate groups of malonates are somewhat delocalized.

The coordination polyhedron around the Sr atom is a nine-coordinate distorted tricapped trigonal prism defined by five O atoms from three carboxylate groups and four O atoms from coordinated water molecules. Two of the three carboxylate groups coordinate with the Sr atom in a chelate fashion, whereas the other one is in a bridging mode and serve as bridges between two Sr atoms. Atoms O1, O2, O13 and O13iii (see Fig. 1 for symmetry codes) are coplanar within deviations of less than 0.128 (2)Å and form one uncapped rectangular face. Atoms O2, O13, O5ii and O11 are coplanar, with no deviations of more than 0.150 (2) Å, and form the second rectangular face, with O6ii and O2i as the capping atoms. Atoms O1, O11, O5ii and O13iii are in the same plane with displacements of less than 0.142 (3) Å, forming the third rectangular face capped by atom O12. The angle between the planes defined by the triangles O1/O2/O11 and O5ii/O13/O13iii is 2.67 (14)°. The average Sr1—O distance are 2.649 (2) Å, slightly shorter than those in [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999). The strontium polyhedra are linked to a dimer via bridge atoms O2 and O2i as a common edge. The dianionic [Ni(mal)2(H2O)2]2- act as building blocks to coordinating to three Sr atoms (Fig. 1) via atoms O5, O6, O1 and O2. As the result, each group of four atoms Ni, and six Sr build up a decanuclear 20-membered ring at bc plane direction. These are further joined into a two-dimensional layer (Fig. 2). The Sr dimers are further linked between them along the a direction via other common edge, O13—O13iii, due to the presence of an inversion center at the middle point of these edges, forming a zigzag SrO7 chain. And as chains of edge-sharing Sr polyhedra propagate in the direction of the a axis and strontium polyhedra chains are linked between them by corner-sharing NiO6 distorted octahedra, thus, three-dimensional metal-organic framework is completed.

Solvent water molecules are embed in such decanuclear 20-membered rings composed of four [Ni(mal)2(H2O)2]2- connecting the Sr dimers. Hydrogen-bonding interactions between them are responsible for the conformation of a R4 water cluster with overhanging water molecules (Infantes & Motherwell, 2002). The detailed structure of the water cluster is shown in Figure 2. First, the solvent water molecules are linked into a D5 water chain of O12, O9, O15, O14 and O10ii. Atom H15A as a bifurcated hydrogen one, the four solvent water molecules are further connected via H15A and symmetry-expanded hydrogen bonds and produce this R4 water cluster. As can be seen from Table 2 and Figure 2, within the water cluster, water molecules O14 displays tetrahedral geometry with double hydrogen-bond donors and acceptors. The O···O distances are in range of 2.663 (5)–3.094 (5) Å with an average of 2.89 (1) Å.

The dianionic [Ni(mal)2(H2O)2]2- act as both hydrogen-bonded donors and acceptors and engage in distinct hydrogen-bonding interactions (Fig. 3 and Table 2). Except for their conformation of R22(12) ring between two adjacent dianions, at least there are the following hydrogen-bonded graph sets (Bernstein, et al., 1995): (1) the non-coordinated O8 atom is involved in forming strong hydrogen bond O11—H11B···O8vii and responsible for the conformation of two 8-membered hydrogen bonded ring R33(8) and R32(8); (2) hydrogen bond O12—H12B···O9 engage in the formation of a S(6) ring and a three-center hydrogen bond R12(4) via atom O7. (3) H atoms of water molecule O9 act as proton donors, coordinate to O15 and O8vii as acceptors, and further via water molecule O14, build up an 8-membered ring R43(8) motif; (4) hydrogen bond O10—H10B···O6ix participate in the conformation of an 8-membered hydrogen bonded ring R22(8) and a S(8) hydrogen bonded ring motif via two Sr atoms and one Ni atom. In addition, around the Sr dimers there is a S(6) ring hydrogen-bonded graph set via O13—H13B···O11i hydrogen bonds. These play an important role in manipulation of the three-dimensional metal-organic framework with pore.

Related literature top

For the cobalt-containing analogue of the title compound and the previous unit-cell determination, see: Gil de Muro et al. (1999). For a related structure, see: Gil de Muro et al. (2000). For hydrogen bonded water clusters, see: Infantes & Motherwell (2002). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title complex was prepared under continuous stirring with successive addition of CH2(COONa)2.H2O (0.33 g, 2 mmol), NiCl2.6H2O (0.24 g, 1 mmol), and Sr(NO3)2 (0.21 g, 1 mmol) to distilled water (10 ml) at room temperature. After filtration, slow evaporation over a period of two days at room temperature provided pale green prisms of (I).

Refinement top

The H atoms of the water molecule were found in difference Fourier maps. However, during refinement, they were fixed at O–H distances of 0.85 Å and their Uiso values were set at 1.2 Ueq(O). The H atoms of CH2 groups were treated as riding, with C–H = 0.97 Å, and Uiso (H) = 1.5 Ueq(C).

Structure description top

Here we report the structure of the title compound, (I), [SrNi(mal)2(H2O)5].2H2O (mal = malonate dianion). Although isotypic complex [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999) had been reported, the difficulty in locating the water hydrogen atoms prevents from description of hydrogen bonding for the structure. Herein, we report the structure of the title heterobimetallic malonate complex, (I), with dianionic [Ni(C3H2O4)2(H2O)2]2- structure,

The asymmetric unit in the structure of (I) comprises one Sr atom, one [Ni(C3H2O4)2(H2O)2]2- dianion, three coordinated water and two solvent water molecules, and is shown in Fig. 1 in a symmetry-expanded view which displays the full coordination of the Ni and Sr atom. Selected geometric parameters are given in Table 1. The Ni atom has a slightly enlongated axial distortion octahedral coordination. The Ni1 atom deviates by 0.0251 (4)Å from the least-squares plane defined by four O atoms subtended by the two ligands at its metal atom. The O—Ni—O angles are close to 90°, the mean Ni1—O bond distance are 2.026 (2) Å. These are somewhat shorter than those (2.051 (3) Å) in [CaNi(mal)2(H2O)2].2H2O (Gil de Muro et al., 2000), while the Ni—Owater bonds except for Ni1—O9(2.038 (3) Å) are in good agreement with those (2.066 (4) Å) observed for above-mentioned compounds. The variability of the coordination modes of malonate ligands, monodentate, bidentate chelating, chelated six-membered and bridging bonding modes, are all present. As can be seen in Table 1, the O—C—O angles for carboxylate groups of two malonates range from 120.9 (3) to 123.9 (4)°, all of the C—O bond distances are in the range 1.246 (4)–1.265 (4)Å except the shortest O7—C6 being 1.233 (4)Å and the longest O1—C1 being 1.272 (4) Å. These indicate that all of carboxylate groups of malonates are somewhat delocalized.

The coordination polyhedron around the Sr atom is a nine-coordinate distorted tricapped trigonal prism defined by five O atoms from three carboxylate groups and four O atoms from coordinated water molecules. Two of the three carboxylate groups coordinate with the Sr atom in a chelate fashion, whereas the other one is in a bridging mode and serve as bridges between two Sr atoms. Atoms O1, O2, O13 and O13iii (see Fig. 1 for symmetry codes) are coplanar within deviations of less than 0.128 (2)Å and form one uncapped rectangular face. Atoms O2, O13, O5ii and O11 are coplanar, with no deviations of more than 0.150 (2) Å, and form the second rectangular face, with O6ii and O2i as the capping atoms. Atoms O1, O11, O5ii and O13iii are in the same plane with displacements of less than 0.142 (3) Å, forming the third rectangular face capped by atom O12. The angle between the planes defined by the triangles O1/O2/O11 and O5ii/O13/O13iii is 2.67 (14)°. The average Sr1—O distance are 2.649 (2) Å, slightly shorter than those in [SrCo(mal)2(H2O)5].2H2O (Gil de Muro et al., 1999). The strontium polyhedra are linked to a dimer via bridge atoms O2 and O2i as a common edge. The dianionic [Ni(mal)2(H2O)2]2- act as building blocks to coordinating to three Sr atoms (Fig. 1) via atoms O5, O6, O1 and O2. As the result, each group of four atoms Ni, and six Sr build up a decanuclear 20-membered ring at bc plane direction. These are further joined into a two-dimensional layer (Fig. 2). The Sr dimers are further linked between them along the a direction via other common edge, O13—O13iii, due to the presence of an inversion center at the middle point of these edges, forming a zigzag SrO7 chain. And as chains of edge-sharing Sr polyhedra propagate in the direction of the a axis and strontium polyhedra chains are linked between them by corner-sharing NiO6 distorted octahedra, thus, three-dimensional metal-organic framework is completed.

Solvent water molecules are embed in such decanuclear 20-membered rings composed of four [Ni(mal)2(H2O)2]2- connecting the Sr dimers. Hydrogen-bonding interactions between them are responsible for the conformation of a R4 water cluster with overhanging water molecules (Infantes & Motherwell, 2002). The detailed structure of the water cluster is shown in Figure 2. First, the solvent water molecules are linked into a D5 water chain of O12, O9, O15, O14 and O10ii. Atom H15A as a bifurcated hydrogen one, the four solvent water molecules are further connected via H15A and symmetry-expanded hydrogen bonds and produce this R4 water cluster. As can be seen from Table 2 and Figure 2, within the water cluster, water molecules O14 displays tetrahedral geometry with double hydrogen-bond donors and acceptors. The O···O distances are in range of 2.663 (5)–3.094 (5) Å with an average of 2.89 (1) Å.

The dianionic [Ni(mal)2(H2O)2]2- act as both hydrogen-bonded donors and acceptors and engage in distinct hydrogen-bonding interactions (Fig. 3 and Table 2). Except for their conformation of R22(12) ring between two adjacent dianions, at least there are the following hydrogen-bonded graph sets (Bernstein, et al., 1995): (1) the non-coordinated O8 atom is involved in forming strong hydrogen bond O11—H11B···O8vii and responsible for the conformation of two 8-membered hydrogen bonded ring R33(8) and R32(8); (2) hydrogen bond O12—H12B···O9 engage in the formation of a S(6) ring and a three-center hydrogen bond R12(4) via atom O7. (3) H atoms of water molecule O9 act as proton donors, coordinate to O15 and O8vii as acceptors, and further via water molecule O14, build up an 8-membered ring R43(8) motif; (4) hydrogen bond O10—H10B···O6ix participate in the conformation of an 8-membered hydrogen bonded ring R22(8) and a S(8) hydrogen bonded ring motif via two Sr atoms and one Ni atom. In addition, around the Sr dimers there is a S(6) ring hydrogen-bonded graph set via O13—H13B···O11i hydrogen bonds. These play an important role in manipulation of the three-dimensional metal-organic framework with pore.

For the cobalt-containing analogue of the title compound and the previous unit-cell determination, see: Gil de Muro et al. (1999). For a related structure, see: Gil de Muro et al. (2000). For hydrogen bonded water clusters, see: Infantes & Motherwell (2002). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the coordination environment for Sr and Ni atoms; displacement ellipsoids were drawn at the 30% probability level [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, -y + 1/2, z + 1/2; (iii) -x + 2, -y + 1, -z + 1; (iv) x, -y + 1/2, z - 1/2].
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the a axis, showing its 20-membered structure and water cluster in the direaction of bc plane.
[Figure 3] Fig. 3. The packing diagram of (I), showing hydrogen-bonding interactions between the [Ni(mal)2(H2O)2]2- dianions and water molecules, viewed down the c axis.
Poly[[µ2-aqua-tetraaquadi-µ3-malonato-nickel(II)strontium(II)] dihydrate] top
Crystal data top
[NiSr(C3H2O4)2(H2O)5]·2H2OF(000) = 960
Mr = 476.53Dx = 2.142 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11235 reflections
a = 6.7745 (14) Åθ = 1.3–28.2°
b = 14.220 (3) ŵ = 4.97 mm1
c = 15.629 (3) ÅT = 294 K
β = 101.10 (3)°Prism, green
V = 1477.4 (5) Å30.12 × 0.06 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2609 independent reflections
Radiation source: rotating anode2235 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.045
Detector resolution: 28.57 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 78
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1316
Tmin = 0.548, Tmax = 0.712l = 1818
9983 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[NiSr(C3H2O4)2(H2O)5]·2H2OV = 1477.4 (5) Å3
Mr = 476.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7745 (14) ŵ = 4.97 mm1
b = 14.220 (3) ÅT = 294 K
c = 15.629 (3) Å0.12 × 0.06 × 0.04 mm
β = 101.10 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2609 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2235 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.712Rint = 0.045
9983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.78 e Å3
2609 reflectionsΔρmin = 0.59 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.76917 (4)0.41527 (3)0.54827 (2)0.03336 (14)
Ni10.77798 (6)0.26471 (3)0.29429 (3)0.03640 (16)
O10.6901 (3)0.35987 (19)0.37645 (16)0.0383 (6)
O20.4937 (4)0.46958 (19)0.41211 (16)0.0376 (6)
O30.2090 (5)0.3344 (3)0.1625 (3)0.0892 (15)
O40.4994 (4)0.2690 (2)0.21955 (17)0.0426 (6)
O50.8646 (4)0.16635 (19)0.21529 (16)0.0376 (6)
O61.0210 (4)0.03826 (19)0.18917 (16)0.0393 (6)
O71.0539 (4)0.2606 (2)0.37197 (18)0.0466 (7)
O81.3529 (4)0.2065 (2)0.4271 (2)0.0600 (9)
C10.5431 (5)0.4164 (3)0.3563 (2)0.0353 (8)
C20.4297 (6)0.4246 (3)0.2641 (3)0.0430 (9)
H2A0.50890.46300.23200.052*
H2B0.30570.45840.26500.052*
C30.3765 (5)0.3345 (3)0.2136 (3)0.0468 (10)
C41.0035 (5)0.1073 (3)0.2363 (2)0.0372 (8)
C51.1565 (7)0.1145 (4)0.3191 (3)0.0618 (13)
H5A1.28560.10000.30420.074*
H5B1.12750.06390.35650.074*
C61.1875 (5)0.2012 (3)0.3748 (2)0.0399 (9)
O90.6818 (5)0.1619 (2)0.3674 (2)0.0703 (11)
H9A0.58320.17820.38990.084*
H9B0.72350.10630.38050.084*
O100.8706 (3)0.37394 (19)0.22446 (16)0.0380 (6)
H10A0.97630.36290.20420.046*
H10B0.87940.42430.25420.046*
O110.4547 (3)0.32253 (19)0.56368 (16)0.0384 (6)
H11A0.45830.29730.61300.046*
H11B0.41680.28520.52120.046*
O120.8968 (4)0.24515 (19)0.54373 (17)0.0418 (6)
H12A1.00200.22980.58010.050*
H12B0.89400.22260.49330.050*
O130.8855 (4)0.58384 (18)0.51241 (16)0.0380 (6)
H13A0.91860.62230.55440.046*
H13B0.77510.59860.47870.046*
O140.5916 (6)0.0732 (3)0.5637 (2)0.0772 (11)
H14A0.67360.10630.60090.093*
H14B0.52340.10800.52380.093*
O150.8248 (5)0.0017 (3)0.4433 (2)0.0769 (11)
H15A0.72520.01570.46330.092*
H15B0.89630.04190.42830.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0315 (2)0.0324 (2)0.0327 (2)0.00063 (12)0.00229 (14)0.00001 (13)
Ni10.0387 (3)0.0331 (3)0.0342 (3)0.0033 (2)0.0009 (2)0.0006 (2)
O10.0380 (13)0.0386 (16)0.0344 (13)0.0057 (11)0.0024 (11)0.0025 (11)
O20.0367 (13)0.0369 (16)0.0363 (13)0.0007 (11)0.0004 (11)0.0015 (12)
O30.0387 (16)0.121 (4)0.097 (3)0.0142 (19)0.0150 (17)0.071 (3)
O40.0397 (14)0.0407 (16)0.0439 (15)0.0028 (12)0.0005 (12)0.0084 (12)
O50.0378 (13)0.0351 (16)0.0369 (13)0.0038 (11)0.0004 (10)0.0023 (11)
O60.0427 (14)0.0339 (15)0.0374 (14)0.0031 (11)0.0015 (11)0.0030 (12)
O70.0522 (16)0.0419 (17)0.0385 (14)0.0117 (13)0.0093 (12)0.0049 (12)
O80.0359 (14)0.070 (2)0.0674 (19)0.0041 (14)0.0073 (14)0.0353 (18)
C10.0328 (17)0.033 (2)0.037 (2)0.0026 (15)0.0001 (15)0.0012 (16)
C20.040 (2)0.046 (3)0.039 (2)0.0068 (17)0.0019 (16)0.0027 (18)
C30.0317 (18)0.058 (3)0.047 (2)0.0000 (18)0.0009 (16)0.018 (2)
C40.0377 (19)0.034 (2)0.039 (2)0.0009 (16)0.0039 (16)0.0020 (17)
C50.051 (2)0.050 (3)0.069 (3)0.017 (2)0.026 (2)0.023 (2)
C60.0361 (19)0.040 (2)0.041 (2)0.0013 (16)0.0014 (16)0.0027 (17)
O90.073 (2)0.048 (2)0.102 (3)0.0248 (17)0.048 (2)0.0311 (19)
O100.0368 (12)0.0344 (15)0.0393 (14)0.0015 (11)0.0011 (11)0.0032 (12)
O110.0390 (13)0.0378 (16)0.0341 (13)0.0024 (11)0.0039 (10)0.0006 (11)
O120.0435 (14)0.0413 (17)0.0358 (13)0.0036 (12)0.0040 (11)0.0002 (11)
O130.0344 (12)0.0370 (16)0.0387 (14)0.0030 (10)0.0025 (11)0.0025 (11)
O140.076 (2)0.081 (3)0.065 (2)0.016 (2)0.0118 (18)0.0063 (19)
O150.080 (2)0.058 (2)0.097 (3)0.025 (2)0.030 (2)0.027 (2)
Geometric parameters (Å, º) top
Sr1—O112.556 (2)C1—C21.502 (5)
Sr1—O122.574 (3)C2—C31.512 (6)
Sr1—O2i2.581 (3)C2—H2A0.9700
Sr1—O6ii2.598 (3)C2—H2B0.9700
Sr1—O132.618 (3)C4—C51.498 (6)
Sr1—O22.660 (3)C5—C61.500 (6)
Sr1—O13iii2.688 (2)C5—H5A0.9700
Sr1—O12.751 (3)C5—H5B0.9700
Sr1—O5ii2.816 (3)O9—H9A0.8447
Ni1—O42.020 (3)O9—H9B0.8514
Ni1—O72.024 (3)O10—H10A0.8512
Ni1—O52.026 (2)O10—H10B0.8504
Ni1—O12.032 (3)O11—H11A0.8461
Ni1—O92.038 (3)O11—H11B0.8497
Ni1—O102.064 (3)O12—H12A0.8499
O1—C11.272 (4)O12—H12B0.8484
O2—C11.247 (4)O13—H13A0.8504
O3—C31.255 (5)O13—H13B0.8538
O4—C31.240 (5)O14—H14A0.8626
O5—C41.257 (5)O14—H14B0.8589
O6—C41.247 (5)O15—H15A0.8350
O7—C61.233 (5)O15—H15B0.8470
O8—C61.256 (5)
O11—Sr1—O1278.94 (8)O4—Ni1—O7178.51 (10)
O11—Sr1—O2i71.25 (9)O4—Ni1—O590.94 (10)
O12—Sr1—O2i148.61 (8)O7—Ni1—O590.19 (11)
O11—Sr1—O6ii118.33 (8)O4—Ni1—O189.44 (10)
O12—Sr1—O6ii95.34 (8)O7—Ni1—O189.39 (10)
O2i—Sr1—O6ii90.35 (8)O5—Ni1—O1178.06 (10)
O11—Sr1—O13141.58 (8)O4—Ni1—O988.97 (13)
O12—Sr1—O13137.57 (8)O7—Ni1—O990.06 (14)
O2i—Sr1—O1373.77 (8)O5—Ni1—O990.45 (12)
O6ii—Sr1—O1376.88 (8)O1—Ni1—O987.66 (12)
O11—Sr1—O275.89 (8)O4—Ni1—O1090.96 (11)
O12—Sr1—O2115.99 (8)O7—Ni1—O1089.96 (11)
O2i—Sr1—O266.27 (9)O5—Ni1—O1092.53 (10)
O6ii—Sr1—O2148.12 (9)O1—Ni1—O1089.36 (11)
O13—Sr1—O275.91 (8)O9—Ni1—O10177.02 (12)
O11—Sr1—O13iii146.45 (8)C1—O1—Ni1125.2 (2)
O12—Sr1—O13iii71.04 (8)C1—O1—Sr193.2 (2)
O2i—Sr1—O13iii140.29 (8)Ni1—O1—Sr1141.44 (12)
O6ii—Sr1—O13iii79.85 (8)C1—O2—Sr1i147.4 (2)
O13—Sr1—O13iii66.54 (9)C1—O2—Sr198.2 (2)
O2—Sr1—O13iii103.91 (8)Sr1i—O2—Sr1113.73 (9)
O11—Sr1—O186.27 (8)C3—O4—Ni1127.2 (3)
O12—Sr1—O172.98 (8)C4—O5—Ni1126.3 (2)
O2i—Sr1—O1113.72 (8)C4—O5—Sr1iv89.6 (2)
O6ii—Sr1—O1150.82 (7)Ni1—O5—Sr1iv143.89 (12)
O13—Sr1—O193.63 (8)C4—O6—Sr1iv100.3 (2)
O2—Sr1—O147.73 (8)C6—O7—Ni1128.9 (3)
O13iii—Sr1—O171.10 (8)O2—C1—O1120.9 (3)
O11—Sr1—O5ii75.33 (8)O2—C1—C2117.9 (3)
O12—Sr1—O5ii67.66 (8)O1—C1—C2121.2 (3)
O2i—Sr1—O5ii94.87 (8)O2—C1—Sr158.32 (19)
O6ii—Sr1—O5ii47.39 (8)O1—C1—Sr162.55 (19)
O13—Sr1—O5ii123.45 (8)C2—C1—Sr1175.7 (3)
O2—Sr1—O5ii149.50 (7)C1—C2—C3117.5 (4)
O13iii—Sr1—O5ii105.60 (8)C1—C2—H2A107.9
O1—Sr1—O5ii138.92 (8)C3—C2—H2A107.9
O11—Sr1—C4ii98.18 (9)C1—C2—H2B107.9
O12—Sr1—C4ii79.28 (9)C3—C2—H2B107.9
O2i—Sr1—C4ii95.17 (9)H2A—C2—H2B107.2
O6ii—Sr1—C4ii23.50 (9)O4—C3—O3123.9 (4)
O13—Sr1—C4ii100.31 (9)O4—C3—C2120.5 (3)
O2—Sr1—C4ii161.43 (9)O3—C3—C2115.4 (4)
O13iii—Sr1—C4ii90.77 (9)O6—C4—O5121.6 (4)
O1—Sr1—C4ii150.52 (9)O6—C4—C5115.8 (3)
O5ii—Sr1—C4ii24.11 (9)O5—C4—C5122.6 (3)
O11—Sr1—C180.11 (9)O6—C4—Sr1iv56.20 (19)
O12—Sr1—C194.85 (9)O5—C4—Sr1iv66.3 (2)
O2i—Sr1—C189.63 (9)C5—C4—Sr1iv167.6 (3)
O6ii—Sr1—C1160.39 (9)C4—C5—C6123.6 (4)
O13—Sr1—C184.30 (9)C4—C5—H5A106.4
O2—Sr1—C123.50 (9)C6—C5—H5A106.4
O13iii—Sr1—C187.70 (9)C4—C5—H5B106.4
O1—Sr1—C124.22 (8)C6—C5—H5B106.4
O5ii—Sr1—C1152.04 (9)H5A—C5—H5B106.5
C4ii—Sr1—C1174.11 (10)O7—C6—O8122.6 (4)
O11—Sr1—Sr1i70.32 (6)O7—C6—C5121.5 (3)
O12—Sr1—Sr1i140.14 (6)O8—C6—C5115.8 (4)
O2i—Sr1—Sr1i33.70 (6)Ni1—O9—H9A113.6
O6ii—Sr1—Sr1i121.22 (6)Ni1—O9—H9B132.4
O13—Sr1—Sr1i71.83 (6)H9A—O9—H9B114.0
O2—Sr1—Sr1i32.57 (5)Ni1—O10—H10A114.9
O13iii—Sr1—Sr1i126.73 (6)Ni1—O10—H10B110.0
O1—Sr1—Sr1i80.14 (6)H10A—O10—H10B112.5
O5ii—Sr1—Sr1i124.90 (5)Sr1—O11—H11A115.2
C4ii—Sr1—Sr1i128.87 (7)Sr1—O11—H11B112.4
C1—Sr1—Sr1i55.97 (7)H11A—O11—H11B113.4
O11—Sr1—H13B125.9Sr1—O12—H12A117.7
O12—Sr1—H13B145.7Sr1—O12—H12B115.7
O2i—Sr1—H13B64.5H12A—O12—H12B112.9
O6ii—Sr1—H13B92.1Sr1—O13—Sr1iii113.46 (9)
O13—Sr1—H13B17.5Sr1—O13—H13A118.0
O2—Sr1—H13B59.0Sr1iii—O13—H13A98.7
O13iii—Sr1—H13B77.4Sr1—O13—H13B95.3
O1—Sr1—H13B84.4Sr1iii—O13—H13B120.0
O5ii—Sr1—H13B135.9H13A—O13—H13B112.8
C4ii—Sr1—H13B114.9H14A—O14—H14B111.1
C1—Sr1—H13B70.3H15A—O15—H15B115.6
Sr1i—Sr1—H13B55.5
O4—Ni1—O1—C122.3 (3)O1—Ni1—O7—C6162.7 (3)
O7—Ni1—O1—C1158.6 (3)O9—Ni1—O7—C675.0 (3)
O9—Ni1—O1—C1111.3 (3)O10—Ni1—O7—C6107.9 (3)
O10—Ni1—O1—C168.7 (3)Sr1i—O2—C1—O1168.7 (3)
O4—Ni1—O1—Sr1151.6 (2)Sr1—O2—C1—O10.5 (4)
O7—Ni1—O1—Sr127.5 (2)Sr1i—O2—C1—C214.1 (6)
O9—Ni1—O1—Sr162.6 (2)Sr1—O2—C1—C2177.7 (3)
O10—Ni1—O1—Sr1117.47 (19)Sr1i—O2—C1—Sr1168.2 (5)
O11—Sr1—O1—C174.0 (2)Ni1—O1—C1—O2176.6 (2)
O12—Sr1—O1—C1153.6 (2)Sr1—O1—C1—O20.4 (4)
O2i—Sr1—O1—C16.4 (2)Ni1—O1—C1—C26.3 (5)
O6ii—Sr1—O1—C1136.8 (2)Sr1—O1—C1—C2177.6 (3)
O13—Sr1—O1—C167.4 (2)Ni1—O1—C1—Sr1176.2 (3)
O2—Sr1—O1—C10.23 (19)O11—Sr1—C1—O277.3 (2)
O13iii—Sr1—O1—C1131.1 (2)O12—Sr1—C1—O2155.2 (2)
O5ii—Sr1—O1—C1136.6 (2)O2i—Sr1—C1—O26.3 (2)
C4ii—Sr1—O1—C1174.1 (2)O6ii—Sr1—C1—O283.7 (3)
Sr1i—Sr1—O1—C13.4 (2)O13—Sr1—C1—O267.4 (2)
O11—Sr1—O1—Ni1100.9 (2)O13iii—Sr1—C1—O2134.1 (2)
O12—Sr1—O1—Ni121.35 (18)O1—Sr1—C1—O2179.6 (4)
O2i—Sr1—O1—Ni1168.55 (17)O5ii—Sr1—C1—O2106.0 (3)
O6ii—Sr1—O1—Ni148.3 (3)Sr1i—Sr1—C1—O24.47 (18)
O13—Sr1—O1—Ni1117.59 (19)O11—Sr1—C1—O1103.1 (2)
O2—Sr1—O1—Ni1175.2 (2)O12—Sr1—C1—O125.2 (2)
O13iii—Sr1—O1—Ni153.91 (18)O2i—Sr1—C1—O1174.1 (2)
O5ii—Sr1—O1—Ni138.4 (2)O6ii—Sr1—C1—O195.9 (3)
C4ii—Sr1—O1—Ni10.9 (3)O13—Sr1—C1—O1112.1 (2)
C1—Sr1—O1—Ni1175.0 (4)O2—Sr1—C1—O1179.6 (4)
Sr1i—Sr1—O1—Ni1171.6 (2)O13iii—Sr1—C1—O145.5 (2)
O11—Sr1—O2—C197.7 (2)O5ii—Sr1—C1—O174.4 (3)
O12—Sr1—O2—C127.7 (2)Sr1i—Sr1—C1—O1176.0 (2)
O2i—Sr1—O2—C1173.1 (3)O2—C1—C2—C3139.2 (4)
O6ii—Sr1—O2—C1140.8 (2)O1—C1—C2—C343.6 (5)
O13—Sr1—O2—C1108.7 (2)Ni1—O4—C3—O3176.4 (4)
O13iii—Sr1—O2—C147.7 (2)Ni1—O4—C3—C21.4 (6)
O1—Sr1—O2—C10.2 (2)C1—C2—C3—O441.0 (5)
O5ii—Sr1—O2—C1117.4 (2)C1—C2—C3—O3143.6 (4)
C4ii—Sr1—O2—C1171.0 (3)Sr1iv—O6—C4—O511.5 (4)
Sr1i—Sr1—O2—C1173.1 (3)Sr1iv—O6—C4—C5169.0 (3)
O11—Sr1—O2—Sr1i75.43 (11)Ni1—O5—C4—O6165.8 (3)
O12—Sr1—O2—Sr1i145.39 (9)Sr1iv—O5—C4—O610.5 (4)
O2i—Sr1—O2—Sr1i0.0Ni1—O5—C4—C513.6 (5)
O6ii—Sr1—O2—Sr1i46.06 (17)Sr1iv—O5—C4—C5170.2 (4)
O13—Sr1—O2—Sr1i78.20 (11)Ni1—O5—C4—Sr1iv176.2 (3)
O13iii—Sr1—O2—Sr1i139.18 (9)O6—C4—C5—C6166.9 (4)
O1—Sr1—O2—Sr1i173.35 (16)O5—C4—C5—C613.7 (7)
O5ii—Sr1—O2—Sr1i55.7 (2)Sr1iv—C4—C5—C6119.5 (12)
C4ii—Sr1—O2—Sr1i2.1 (3)Ni1—O7—C6—O8179.3 (3)
C1—Sr1—O2—Sr1i173.1 (3)Ni1—O7—C6—C53.2 (6)
O5—Ni1—O4—C3156.7 (3)C4—C5—C6—O722.8 (7)
O1—Ni1—O4—C325.2 (3)C4—C5—C6—O8160.8 (4)
O9—Ni1—O4—C3112.8 (3)O11—Sr1—O13—Sr1iii156.16 (10)
O10—Ni1—O4—C364.2 (3)O12—Sr1—O13—Sr1iii0.99 (17)
O4—Ni1—O5—C4155.1 (3)O2i—Sr1—O13—Sr1iii178.76 (12)
O7—Ni1—O5—C423.9 (3)O6ii—Sr1—O13—Sr1iii84.49 (10)
O9—Ni1—O5—C466.1 (3)O2—Sr1—O13—Sr1iii112.28 (11)
O10—Ni1—O5—C4113.9 (3)O13iii—Sr1—O13—Sr1iii0.0
O4—Ni1—O5—Sr1iv18.5 (2)O1—Sr1—O13—Sr1iii67.58 (10)
O7—Ni1—O5—Sr1iv162.5 (2)O5ii—Sr1—O13—Sr1iii93.71 (11)
O9—Ni1—O5—Sr1iv107.5 (2)C4ii—Sr1—O13—Sr1iii86.33 (11)
O10—Ni1—O5—Sr1iv72.5 (2)C1—Sr1—O13—Sr1iii89.97 (11)
O5—Ni1—O7—C615.4 (3)Sr1i—Sr1—O13—Sr1iii145.97 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O14v0.842.262.997 (5)148
O15—H15A···O140.842.332.867 (5)123
O15—H15B···O3vi0.852.292.881 (7)127
O14—H14B···O8vii0.862.213.072 (5)176
O14—H14A···O10ii0.862.142.936 (4)152
O13—H13B···O11i0.851.932.728 (4)155
O13—H13A···O7iii0.852.012.836 (4)163
O12—H12B···O70.852.423.080 (4)135
O12—H12B···O90.852.363.094 (5)144
O12—H12A···O3viii0.851.942.772 (4)166
O11—H11B···O8vii0.851.832.681 (4)176
O11—H11A···O4ii0.851.892.727 (4)172
O10—H10B···O6ix0.851.912.728 (4)162
O10—H10A···O3x0.851.862.714 (4)178
O9—H9B···O150.851.842.663 (5)162
O9—H9A···O8vii0.841.812.652 (4)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y1/2, z+1/2; (vii) x1, y, z; (viii) x+1, y+1/2, z+1/2; (ix) x+2, y+1/2, z+1/2; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula[NiSr(C3H2O4)2(H2O)5]·2H2O
Mr476.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.7745 (14), 14.220 (3), 15.629 (3)
β (°) 101.10 (3)
V3)1477.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.12 × 0.06 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.548, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
9983, 2609, 2235
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections2609
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.59

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sr1—O112.556 (2)Sr1—O5ii2.816 (3)
Sr1—O122.574 (3)Ni1—O42.020 (3)
Sr1—O2i2.581 (3)Ni1—O72.024 (3)
Sr1—O6ii2.598 (3)Ni1—O52.026 (2)
Sr1—O132.618 (3)Ni1—O12.032 (3)
Sr1—O22.660 (3)Ni1—O92.038 (3)
Sr1—O13iii2.688 (2)Ni1—O102.064 (3)
Sr1—O12.751 (3)
O4—C3—O3123.9 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O14iv0.842.262.997 (5)148
O15—H15A···O140.842.332.867 (5)123
O15—H15B···O3v0.852.292.881 (7)127
O14—H14B···O8vi0.862.213.072 (5)176
O14—H14A···O10ii0.862.142.936 (4)152
O13—H13B···O11i0.851.932.728 (4)155
O13—H13A···O7iii0.852.012.836 (4)163
O12—H12B···O70.852.423.080 (4)135
O12—H12B···O90.852.363.094 (5)144
O12—H12A···O3vii0.851.942.772 (4)166
O11—H11B···O8vi0.851.832.681 (4)176
O11—H11A···O4ii0.851.892.727 (4)172
O10—H10B···O6viii0.851.912.728 (4)162
O10—H10A···O3ix0.851.862.714 (4)178
O9—H9B···O150.851.842.663 (5)162
O9—H9A···O8vi0.841.812.652 (4)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y1/2, z+1/2; (vi) x1, y, z; (vii) x+1, y+1/2, z+1/2; (viii) x+2, y+1/2, z+1/2; (ix) x+1, y, z.
 

Acknowledgements

We thank Tianjin Polytechnic University for financial support.

References

First citationBernstein, J., Davvis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.  CrossRef Google Scholar
First citationGil de Muro, I., Insausti, M., Lezama, L., Urtiaga, M. K., Arriortua, M. I. & Rojo, T. (2000). J. Chem. Soc. Dalton Trans. pp. 3360–3364.  Web of Science CrossRef Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds