organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Benzyl­­idene­thio­phene-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: weifangjjh@126.com

(Received 23 November 2010; accepted 1 December 2010; online 8 December 2010)

In the title compound, C12H10N2OS, the dihedral angle between the phenyl and thio­phene rings is 10.2 (3)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For related structures, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.]); Li & Meng (2010[Li, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2OS

  • Mr = 230.28

  • Monoclinic, C 2/c

  • a = 22.509 (5) Å

  • b = 5.3202 (11) Å

  • c = 20.855 (4) Å

  • β = 114.43 (3)°

  • V = 2273.8 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 8661 measured reflections

  • 2115 independent reflections

  • 1193 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.328

  • S = 1.11

  • 2115 reflections

  • 145 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.04 2.902 (6) 176
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For related structures, see: Li & Jian (2010); Li & Meng (2010).

Experimental top

A mixture of benzaldehyde (0.01 mol) and thiophene-2-carbohydrazide (0.01 mol) was stirred in refluxing ethanol (10 mL) for 2 h to afford the title compound (0.087 mol, yield 87%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Structure description top

For related structures, see: Li & Jian (2010); Li & Meng (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The moleculkar structure of the title compound showing 50% probability displacement ellipsoids.
N'-Benzylidenethiophene-2-carbohydrazide top
Crystal data top
C12H10N2OSF(000) = 960
Mr = 230.28Dx = 1.345 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2115 reflections
a = 22.509 (5) Åθ = 3.5–25.5°
b = 5.3202 (11) ŵ = 0.26 mm1
c = 20.855 (4) ÅT = 293 K
β = 114.43 (3)°Block, colorless
V = 2273.8 (8) Å30.22 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
1193 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 25.5°, θmin = 3.5°
phi and ω scansh = 2626
8661 measured reflectionsk = 56
2115 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.328H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.89 e Å3
3 restraintsΔρmin = 0.58 e Å3
Crystal data top
C12H10N2OSV = 2273.8 (8) Å3
Mr = 230.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.509 (5) ŵ = 0.26 mm1
b = 5.3202 (11) ÅT = 293 K
c = 20.855 (4) Å0.22 × 0.20 × 0.18 mm
β = 114.43 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1193 reflections with I > 2σ(I)
8661 measured reflectionsRint = 0.073
2115 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0923 restraints
wR(F2) = 0.328H-atom parameters constrained
S = 1.11Δρmax = 0.89 e Å3
2115 reflectionsΔρmin = 0.58 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01403 (9)0.3874 (4)0.33888 (9)0.0815 (8)
O10.06062 (18)0.7464 (8)0.51757 (18)0.0651 (12)
N20.06627 (19)0.7700 (9)0.3491 (2)0.0503 (11)
N10.02647 (19)0.8312 (9)0.4162 (2)0.0550 (12)
H1A0.03550.96090.43520.066*
C70.1623 (2)0.8729 (10)0.2456 (3)0.0506 (13)
C30.1091 (2)0.3226 (8)0.4694 (2)0.0362 (10)
H3A0.13590.33920.51710.043*
C40.0476 (2)0.4805 (10)0.4224 (3)0.0501 (13)
C60.1143 (2)0.9153 (11)0.3186 (3)0.0538 (13)
H6A0.11951.05350.34310.065*
C50.0276 (2)0.6919 (11)0.4546 (3)0.0531 (14)
C80.2152 (3)1.0319 (13)0.2163 (3)0.0648 (16)
H8A0.21861.17020.24180.078*
C120.1576 (3)0.6708 (12)0.2063 (3)0.0634 (16)
H12A0.12270.55990.22540.076*
C100.2577 (3)0.7903 (14)0.1120 (3)0.0783 (19)
H10A0.29050.76060.06740.094*
C110.2045 (3)0.6333 (14)0.1390 (3)0.0744 (18)
H11A0.20010.50190.11180.089*
C20.1133 (3)0.1422 (13)0.4185 (4)0.0732 (17)
H2B0.14590.02080.43160.088*
C90.2620 (3)0.9899 (15)0.1510 (3)0.081 (2)
H9A0.29761.09820.13250.097*
C10.0680 (3)0.1595 (12)0.3516 (3)0.0683 (17)
H1B0.06700.05300.31580.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0945 (14)0.0842 (15)0.0706 (12)0.0052 (9)0.0389 (10)0.0072 (9)
O10.073 (2)0.066 (3)0.049 (2)0.002 (2)0.0184 (18)0.0075 (18)
N20.047 (2)0.056 (3)0.047 (2)0.001 (2)0.0179 (18)0.000 (2)
N10.058 (3)0.056 (3)0.050 (2)0.002 (2)0.020 (2)0.003 (2)
C70.051 (3)0.049 (3)0.055 (3)0.003 (2)0.026 (2)0.001 (2)
C30.040 (2)0.032 (2)0.037 (2)0.0048 (18)0.0171 (18)0.0054 (18)
C40.055 (3)0.049 (3)0.050 (3)0.005 (2)0.026 (2)0.005 (2)
C60.053 (3)0.051 (3)0.062 (3)0.003 (2)0.029 (2)0.005 (3)
C50.055 (3)0.054 (3)0.055 (3)0.009 (2)0.026 (2)0.001 (2)
C80.063 (3)0.058 (4)0.066 (4)0.013 (3)0.019 (3)0.004 (3)
C120.058 (3)0.062 (4)0.066 (3)0.011 (3)0.022 (3)0.005 (3)
C100.077 (4)0.081 (5)0.062 (4)0.000 (4)0.014 (3)0.000 (3)
C110.076 (4)0.070 (4)0.069 (4)0.003 (3)0.022 (3)0.011 (3)
C20.064 (4)0.067 (4)0.091 (4)0.008 (3)0.034 (3)0.013 (3)
C90.075 (4)0.086 (5)0.068 (4)0.026 (4)0.017 (3)0.013 (4)
C10.074 (4)0.069 (4)0.073 (4)0.005 (3)0.042 (3)0.011 (3)
Geometric parameters (Å, º) top
S1—C11.658 (6)C6—H6A0.9300
S1—C41.662 (5)C8—C91.352 (8)
O1—C51.246 (6)C8—H8A0.9300
N2—C61.265 (7)C12—C111.378 (8)
N2—N11.354 (5)C12—H12A0.9300
N1—C51.366 (7)C10—C91.366 (10)
N1—H1A0.8600C10—C111.376 (9)
C7—C81.380 (7)C10—H10A0.9300
C7—C121.382 (8)C11—H11A0.9300
C7—C61.475 (7)C2—C11.348 (8)
C3—C21.463 (8)C2—H2B0.9300
C3—C41.569 (7)C9—H9A0.9300
C3—H3A0.9300C1—H1B0.9300
C4—C51.472 (8)
C1—S1—C493.7 (3)C9—C8—H8A119.5
C6—N2—N1115.8 (5)C7—C8—H8A119.5
N2—N1—C5121.6 (5)C11—C12—C7120.2 (5)
N2—N1—H1A119.2C11—C12—H12A119.9
C5—N1—H1A119.2C7—C12—H12A119.9
C8—C7—C12118.5 (5)C9—C10—C11119.5 (6)
C8—C7—C6119.6 (5)C9—C10—H10A120.2
C12—C7—C6121.9 (5)C11—C10—H10A120.2
C2—C3—C4101.8 (4)C10—C11—C12120.0 (6)
C2—C3—H3A129.1C10—C11—H11A120.0
C4—C3—H3A129.1C12—C11—H11A120.0
C5—C4—C3118.8 (4)C1—C2—C3117.2 (5)
C5—C4—S1127.9 (4)C1—C2—H2B121.4
C3—C4—S1113.3 (4)C3—C2—H2B121.4
N2—C6—C7122.2 (5)C8—C9—C10120.7 (6)
N2—C6—H6A118.9C8—C9—H9A119.7
C7—C6—H6A118.9C10—C9—H9A119.7
O1—C5—N1119.3 (5)C2—C1—S1114.0 (5)
O1—C5—C4119.8 (5)C2—C1—H1B123.0
N1—C5—C4120.8 (5)S1—C1—H1B123.0
C9—C8—C7121.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.902 (6)176
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N2OS
Mr230.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)22.509 (5), 5.3202 (11), 20.855 (4)
β (°) 114.43 (3)
V3)2273.8 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8661, 2115, 1193
Rint0.073
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.328, 1.11
No. of reflections2115
No. of parameters145
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.58

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.902 (6)176
Symmetry code: (i) x, y+2, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F. & Meng, F.-Y. (2010). Acta Cryst. E66, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds