organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-chloro­benzoic acid

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 November 2010; accepted 1 December 2010; online 4 December 2010)

The title compound, C7H6ClNO2, is almost planar, with an r.m.s. deviation of 0.040 Å. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds. These dimers are stacked along [010].

Related literature

For the pharmacological properties of quinazolinone derivatives, see: Prakash Naik et al. (2009[Prakash Naik, H. R., Bhojya Naik, H. S., Ravikumar Naik, T. R., Raghavendra, M., Aravinda, T. & Lamani, D. S. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 460-470.]); Bembenek et al. (2010[Bembenek, S. D., Hocutt, F. M., Leonard, B. E. Jr, Rabinowitz, M. H., Rosen, M. D., Tarantino, K. T. & Venkatesan, H. (2010). US Patent Appl. 20100204226.]); Miller et al. (2010[Miller, J. R., Venkataraman, T., Melnick, M. M., Lall, M., Donovan, C., Sarver, R. W., Lee, D.-Y., Ohren, J. & Emerson, D. (2010). Chem. Biol. Drug Des. 75, 444-454.]); Sikorska et al. (1998[Sikorska, M., Mrozek, R. & Rzqczynska, Z. (1998). J. Therm. Anal. Calorim. 51, 467-475.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6ClNO2

  • Mr = 171.58

  • Monoclinic, C 2/c

  • a = 15.4667 (10) Å

  • b = 3.7648 (2) Å

  • c = 23.7598 (15) Å

  • β = 93.015 (3)°

  • V = 1381.59 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.53 × 0.17 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.975

  • 34764 measured reflections

  • 3645 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.07

  • 3645 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.853 (16) 1.787 (16) 2.6354 (8) 173.0 (16)
N1—H1N1⋯O1 0.851 (15) 2.102 (14) 2.6918 (9) 126.0 (13)
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Anthranilic acid is required as a starting compound to prepare quinoline derivatives. Quinazolinones are well known as biologically active compounds. Quinazolinones have been studied for their interesting pharmacological properties such as analgesic, antiinflammatory, antibacterial, anticonvulsant, antihypertensive, antimalarial, anticancer activities and as treatment of diabetic complications such as cataracts, nephropathy and neuropathy (Prakash Naik et al., 2009), as well as used as prolyl hydroxylase inhibitors (Bembenek et al., 2010) and antibacterial drugs (Miller et al., 2010). New complexes have been prepared from 2-amino-4-chlorobenzoic acid by Sikorska et al., (1998).

The title compound (Fig. 1) is almost planar with maximum deviation of 0.097 (1) Å at atom O1. An intramolecular N1—H1N1···O1 hydrogen bond generates S(6) ring motif (Bernstein et al., 1995). In the crystal, the molecules are linked into centrosymmetric dimers by O2—H1O2···O1 hydrogen bonds and these dimers are stacked down b axis (Fig. 2, Table 1).

Related literature top

For the pharmacological activity of quinazolinone derivatives, see: Prakash Naik et al. (2009); Bembenek et al. (2010); Miller et al. (2010); Sikorska et al. (1998). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The attempt to prepare the Schiff base ligand by stirring 2-amino-4-chlorobenzoic acid (1 mol) and salicyldehyde (1 mol) together at 70 °C for 3 h in 10 ml of ethanol was unsuccessful. The resulting orange solution was filtered and orange needles were formed after a few days of slow evaporation of the solvent at room temperature. Unfortunately, the crystals were that of the starting material (2-amino-4-chlorobenzoic acid) with melting point 119 °C.

Refinement top

The O– and N-bound hydrogen atoms were located from difference Fourier map and refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model [Uiso(H) = 1.2Ueq(C)].

Structure description top

Anthranilic acid is required as a starting compound to prepare quinoline derivatives. Quinazolinones are well known as biologically active compounds. Quinazolinones have been studied for their interesting pharmacological properties such as analgesic, antiinflammatory, antibacterial, anticonvulsant, antihypertensive, antimalarial, anticancer activities and as treatment of diabetic complications such as cataracts, nephropathy and neuropathy (Prakash Naik et al., 2009), as well as used as prolyl hydroxylase inhibitors (Bembenek et al., 2010) and antibacterial drugs (Miller et al., 2010). New complexes have been prepared from 2-amino-4-chlorobenzoic acid by Sikorska et al., (1998).

The title compound (Fig. 1) is almost planar with maximum deviation of 0.097 (1) Å at atom O1. An intramolecular N1—H1N1···O1 hydrogen bond generates S(6) ring motif (Bernstein et al., 1995). In the crystal, the molecules are linked into centrosymmetric dimers by O2—H1O2···O1 hydrogen bonds and these dimers are stacked down b axis (Fig. 2, Table 1).

For the pharmacological activity of quinazolinone derivatives, see: Prakash Naik et al. (2009); Bembenek et al. (2010); Miller et al. (2010); Sikorska et al. (1998). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound viewed down b axis, showing the molecules are linked into dimers.
2-Amino-4-chlorobenzoic acid top
Crystal data top
C7H6ClNO2F(000) = 704
Mr = 171.58Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9945 reflections
a = 15.4667 (10) Åθ = 2.6–37.5°
b = 3.7648 (2) ŵ = 0.49 mm1
c = 23.7598 (15) ÅT = 100 K
β = 93.015 (3)°Needle, orange
V = 1381.59 (14) Å30.53 × 0.17 × 0.05 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD
diffractometer
3645 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 37.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.780, Tmax = 0.975k = 66
34764 measured reflectionsl = 3840
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.5195P]
where P = (Fo2 + 2Fc2)/3
3645 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H6ClNO2V = 1381.59 (14) Å3
Mr = 171.58Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.4667 (10) ŵ = 0.49 mm1
b = 3.7648 (2) ÅT = 100 K
c = 23.7598 (15) Å0.53 × 0.17 × 0.05 mm
β = 93.015 (3)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
3645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3175 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.975Rint = 0.035
34764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.55 e Å3
3645 reflectionsΔρmin = 0.21 e Å3
112 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.400495 (11)0.03406 (5)0.207389 (8)0.02000 (6)
O10.01970 (4)0.31432 (19)0.06195 (2)0.02250 (12)
O20.11545 (4)0.57721 (19)0.00817 (2)0.02167 (12)
N10.07764 (4)0.0546 (2)0.16254 (3)0.02152 (13)
C10.15675 (4)0.1453 (2)0.14497 (3)0.01451 (11)
C20.23039 (4)0.0671 (2)0.18024 (3)0.01549 (12)
H2A0.22410.04070.21500.019*
C30.31151 (4)0.1502 (2)0.16319 (3)0.01506 (11)
C40.32545 (4)0.3164 (2)0.11206 (3)0.01691 (12)
H4A0.38100.37000.10150.020*
C50.25346 (4)0.3983 (2)0.07761 (3)0.01614 (12)
H5A0.26100.51130.04340.019*
C60.16899 (4)0.31592 (19)0.09275 (3)0.01417 (11)
C70.09544 (5)0.4008 (2)0.05369 (3)0.01611 (12)
H1O20.0692 (10)0.603 (5)0.0126 (7)0.038 (4)*
H1N10.0309 (10)0.083 (4)0.1425 (6)0.034 (4)*
H2N10.0757 (11)0.069 (5)0.1911 (7)0.042 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01555 (8)0.02243 (10)0.02140 (9)0.00327 (6)0.00502 (6)0.00029 (6)
O10.0145 (2)0.0335 (3)0.0191 (2)0.0014 (2)0.00278 (17)0.0055 (2)
O20.0174 (2)0.0316 (3)0.0157 (2)0.0006 (2)0.00240 (18)0.0067 (2)
N10.0141 (2)0.0308 (4)0.0196 (3)0.0016 (2)0.0007 (2)0.0075 (3)
C10.0134 (2)0.0150 (3)0.0150 (2)0.0001 (2)0.00005 (19)0.0001 (2)
C20.0147 (3)0.0169 (3)0.0146 (2)0.0013 (2)0.0012 (2)0.0011 (2)
C30.0136 (2)0.0155 (3)0.0158 (2)0.0016 (2)0.00237 (19)0.0019 (2)
C40.0134 (2)0.0203 (3)0.0169 (3)0.0005 (2)0.0001 (2)0.0009 (2)
C50.0152 (3)0.0187 (3)0.0144 (2)0.0007 (2)0.0000 (2)0.0002 (2)
C60.0139 (2)0.0154 (3)0.0130 (2)0.0005 (2)0.00089 (19)0.0004 (2)
C70.0159 (3)0.0183 (3)0.0140 (2)0.0013 (2)0.00138 (19)0.0003 (2)
Geometric parameters (Å, º) top
Cl1—C31.7425 (7)C2—C31.3746 (10)
O1—C71.2415 (9)C2—H2A0.9300
O2—C71.3197 (9)C3—C41.3933 (10)
O2—H1O20.854 (16)C4—C51.3816 (10)
N1—C11.3572 (9)C4—H4A0.9300
N1—H1N10.851 (16)C5—C61.4078 (9)
N1—H2N10.826 (17)C5—H5A0.9300
C1—C21.4093 (10)C6—C71.4651 (10)
C1—C61.4185 (9)
C7—O2—H1O2107.8 (11)C5—C4—C3117.38 (6)
C1—N1—H1N1123.2 (10)C5—C4—H4A121.3
C1—N1—H2N1117.9 (12)C3—C4—H4A121.3
H1N1—N1—H2N1117.7 (15)C4—C5—C6121.95 (7)
N1—C1—C2118.55 (6)C4—C5—H5A119.0
N1—C1—C6123.17 (6)C6—C5—H5A119.0
C2—C1—C6118.28 (6)C5—C6—C1119.45 (6)
C3—C2—C1119.92 (6)C5—C6—C7119.34 (6)
C3—C2—H2A120.0C1—C6—C7121.20 (6)
C1—C2—H2A120.0O1—C7—O2121.70 (7)
C2—C3—C4123.01 (6)O1—C7—C6123.38 (7)
C2—C3—Cl1118.00 (5)O2—C7—C6114.92 (6)
C4—C3—Cl1118.99 (5)
N1—C1—C2—C3178.90 (7)N1—C1—C6—C5179.53 (8)
C6—C1—C2—C31.19 (11)C2—C1—C6—C50.57 (11)
C1—C2—C3—C40.96 (12)N1—C1—C6—C70.92 (12)
C1—C2—C3—Cl1177.87 (6)C2—C1—C6—C7179.18 (7)
C2—C3—C4—C50.05 (12)C5—C6—C7—O1174.64 (7)
Cl1—C3—C4—C5178.77 (6)C1—C6—C7—O13.97 (12)
C3—C4—C5—C60.59 (12)C5—C6—C7—O25.06 (11)
C4—C5—C6—C10.33 (11)C1—C6—C7—O2176.34 (7)
C4—C5—C6—C7178.31 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.853 (16)1.787 (16)2.6354 (8)173.0 (16)
N1—H1N1···O10.851 (15)2.102 (14)2.6918 (9)126.0 (13)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H6ClNO2
Mr171.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.4667 (10), 3.7648 (2), 23.7598 (15)
β (°) 93.015 (3)
V3)1381.59 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.53 × 0.17 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.780, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
34764, 3645, 3175
Rint0.035
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.07
No. of reflections3645
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.853 (16)1.787 (16)2.6354 (8)173.0 (16)
N1—H1N1···O10.851 (15)2.102 (14)2.6918 (9)126.0 (13)
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant (815002). AMF thanks the Libyan Government for providing a scholarship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBembenek, S. D., Hocutt, F. M., Leonard, B. E. Jr, Rabinowitz, M. H., Rosen, M. D., Tarantino, K. T. & Venkatesan, H. (2010). US Patent Appl. 20100204226.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMiller, J. R., Venkataraman, T., Melnick, M. M., Lall, M., Donovan, C., Sarver, R. W., Lee, D.-Y., Ohren, J. & Emerson, D. (2010). Chem. Biol. Drug Des. 75, 444–454.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrakash Naik, H. R., Bhojya Naik, H. S., Ravikumar Naik, T. R., Raghavendra, M., Aravinda, T. & Lamani, D. S. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 460–470.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorska, M., Mrozek, R. & Rzqczynska, Z. (1998). J. Therm. Anal. Calorim. 51, 467–475.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds