metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromidotricarbon­yl[2-(pyridin-2-yl-κN)-5-p-tolyl-1,3,4-oxa­diazole-κN3]rhenium(I) di­chloro­methane monosolvate

aCollege of Sciences, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, People's Republic of China, bSchool of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China, and cSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130000, People's Republic of China
*Correspondence e-mail: lfshi2003@163.com

(Received 23 November 2010; accepted 28 November 2010; online 4 December 2010)

In the title compound, [ReBr(C14H11N3O)(CO)3]·CH2Cl2, the coordination geometry of the ReI atom is a distorted ReC3N2Br octa­hedron with the carbonyl C atoms in a fac arrangement. Within the 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole ligand, the dihedral angles between the oxadiazole ring and the pyridine (py) and benzene (bz) rings are 1.7 (2) and 7.1 (2)°, respectively, and the dihedral angle between the py and bz rings is 5.5 (2)°. In the crystal, aromatic ππ stacking between the oxadiazole rings of adjacent mol­ecules [centroid–centroid separation = 3.465 (3) Å] is seen.

Related literature

For backgroud to phospho­resence in Re(I) complexes, see: Ley et al. (1997[Ley, K.-D., Whittle, C.-E., Bartberger, M.-D. & Schanze, K.-S. (1997). J. Am. Chem. Soc. 119, 3423-3424.]); Zhang et al. (2009[Zhang, L.-M., Li, B. & Su, Z.-M. (2009). Langmuir, 25, 2068-2074.]). For a related structure, see: Rajendran et al. (2000[Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016-2017.]). For the synthesis of the ligand, see: Demko & Sharpless (2001[Demko, Z.-P. & Sharpless, K.-B. (2001). J. Org. Chem. 66, 7945-7950.]); Tamoto et al. (1997[Tamoto, N., Adachi, C. & Ngai, K. (1997). Chem. Mater. 9, 1077-1085.]).

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C14H11N3O)(CO)3]·CH2Cl2

  • Mr = 672.32

  • Monoclinic, C 2/c

  • a = 12.590 (3) Å

  • b = 19.621 (4) Å

  • c = 17.660 (4) Å

  • β = 101.77 (3)°

  • V = 4270.8 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.84 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002)[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.149, Tmax = 0.409

  • 20653 measured reflections

  • 4847 independent reflections

  • 4254 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.05

  • 4847 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 2.07 e Å−3

  • Δρmin = −2.88 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C1 1.887 (6)
Re1—C2 1.921 (5)
Re1—C3 1.890 (5)
Re1—N1 2.228 (4)
Re1—N2 2.169 (4)
Re1—Br1 2.6146 (11)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies of possible phosphorescent materials containing Re(I) (Ley et al., 1997), we have synthesized the title Re(I) complex, (I), which contain the oxadiazole ligand of 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole and characterized its structure by single-crystal X-ray diffraction analysis. Its luminescent property will be further studied in the coming research.

As shown in Scheme 1 and Figure 1, [Re(CO)3(L)Br].CH2Cl2 is a six-coordinated complex. The coordination geometry at the Re atom is a distorted octahedron with the three carbonyl ligands arranged in a facial fashion. The distances of C(1), C(2), and C(3) to Re(1) are 1.887 (6), 1.921 (5), and 1.890 (5), respectively, and the Re—N bonds distances are 2.228 (4) and 2.169 (4). The bond angles in Table 1 clearly indicate that the CO ligands are linearly coordinated. The bond angles between adjacent CO carbon atoms are 87.8 (3), 89.1 (3) and 89.2 (3) degree, respectively, which is close to 90 degree, but the bond angle between the coordinated nitrogen atoms of ligand is 73.26 (16), which is much less than 90. All other bond distances and angles are comparable to those found for the related Re(I) complexes (Rajendran et al., 2000).

Figure 2 displays inter-molecular face-to-face stacking present in the molecular structure of [Re(CO)3(L)Br].CH2Cl2: the 1,3,4-oxadiazole moiety in one molecule is almost parallel to the other one from another complex molecule (the dihedral angle between the two planes is 1.65 degree), and the approximate distance between the two closest atoms (N2—N3) is only 3.349. Thus the complex molecule achieved a bonded dual-molecule structure which is believed a rigid one and will prevent geometric relaxation effectively (Zhang et al., 2009). This kind of rigid structure is expected possessing excellent luminescent properties.

Related literature top

For backgroud to phosphoresence in Re(I) complexes, see: Ley et al. (1997); Zhang et al. (2009). For a related structure, see: Rajendran et al. (2000). For the synthesis of the ligand, see: Demko & Sharpless (2001); Tamoto et al. (1997).

Experimental top

The oxadiazole ligand was synthesized according to the literature method (Demko et al., 2001; Tamoto et al., 1997) with some minor modification.[Re(CO)3(L)Br] was synthesized according to the following procedure: L1 (0.06 g, 0.210 mmol) and Re(CO)5Br (0.08 g, 0.200 mmol) were refluxed in 15 ml of toluene for 6 h. After the mixture was cooled to RT, the solvent was removed in a water bath under reduced pressure. The resulting yellow solid was purified by silica gel column chromatography with acetic acid ethyl ester and dichloromethane (v/v = 10:1). Yellow blocks of (I) were grown from slow evaporation of a CH2Cl2 solution.

Refinement top

All H atoms were placed geometrically (N—H = 0.86, C—H = 0.93 Å) and refined as riding with Uiso(H)= 1.2Ueq(carrier).

Structure description top

As part of our studies of possible phosphorescent materials containing Re(I) (Ley et al., 1997), we have synthesized the title Re(I) complex, (I), which contain the oxadiazole ligand of 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole and characterized its structure by single-crystal X-ray diffraction analysis. Its luminescent property will be further studied in the coming research.

As shown in Scheme 1 and Figure 1, [Re(CO)3(L)Br].CH2Cl2 is a six-coordinated complex. The coordination geometry at the Re atom is a distorted octahedron with the three carbonyl ligands arranged in a facial fashion. The distances of C(1), C(2), and C(3) to Re(1) are 1.887 (6), 1.921 (5), and 1.890 (5), respectively, and the Re—N bonds distances are 2.228 (4) and 2.169 (4). The bond angles in Table 1 clearly indicate that the CO ligands are linearly coordinated. The bond angles between adjacent CO carbon atoms are 87.8 (3), 89.1 (3) and 89.2 (3) degree, respectively, which is close to 90 degree, but the bond angle between the coordinated nitrogen atoms of ligand is 73.26 (16), which is much less than 90. All other bond distances and angles are comparable to those found for the related Re(I) complexes (Rajendran et al., 2000).

Figure 2 displays inter-molecular face-to-face stacking present in the molecular structure of [Re(CO)3(L)Br].CH2Cl2: the 1,3,4-oxadiazole moiety in one molecule is almost parallel to the other one from another complex molecule (the dihedral angle between the two planes is 1.65 degree), and the approximate distance between the two closest atoms (N2—N3) is only 3.349. Thus the complex molecule achieved a bonded dual-molecule structure which is believed a rigid one and will prevent geometric relaxation effectively (Zhang et al., 2009). This kind of rigid structure is expected possessing excellent luminescent properties.

For backgroud to phosphoresence in Re(I) complexes, see: Ley et al. (1997); Zhang et al. (2009). For a related structure, see: Rajendran et al. (2000). For the synthesis of the ligand, see: Demko & Sharpless (2001); Tamoto et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of [Re(CO)3(L)Br].CH2Cl2, with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of inter-molecular face-to-face stacking structure of (I).
Bromidotricarbonyl[2-(pyridin-2-yl-κN)-5-p-tolyl-1,3,4- oxadiazole κN3]rhenium(I) dichloromethane monosolvate top
Crystal data top
[ReBr(C14H11N3O)(CO)3]·CH2Cl2F(000) = 2544
Mr = 672.32Dx = 2.091 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4847 reflections
a = 12.590 (3) Åθ = 3.1–24.8°
b = 19.621 (4) ŵ = 7.84 mm1
c = 17.660 (4) ÅT = 293 K
β = 101.77 (3)°Block, yellow
V = 4270.8 (15) Å30.25 × 0.22 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4847 independent reflections
Radiation source: fine-focus sealed tube4254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
phi and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1416
Tmin = 0.149, Tmax = 0.409k = 2525
20653 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0652P)2 + 4.556P]
where P = (Fo2 + 2Fc2)/3
4847 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = 2.88 e Å3
Crystal data top
[ReBr(C14H11N3O)(CO)3]·CH2Cl2V = 4270.8 (15) Å3
Mr = 672.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.590 (3) ŵ = 7.84 mm1
b = 19.621 (4) ÅT = 293 K
c = 17.660 (4) Å0.25 × 0.22 × 0.11 mm
β = 101.77 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4847 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4254 reflections with I > 2σ(I)
Tmin = 0.149, Tmax = 0.409Rint = 0.063
20653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 2.07 e Å3
4847 reflectionsΔρmin = 2.88 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3443 (5)0.4519 (3)0.2015 (4)0.0487 (13)
C20.3684 (5)0.3907 (2)0.3391 (3)0.0382 (11)
C30.1818 (5)0.4511 (3)0.2734 (3)0.0489 (13)
C40.1120 (4)0.2916 (3)0.3248 (3)0.0423 (12)
H40.08590.33340.33780.051*
C50.0700 (4)0.2331 (3)0.3493 (3)0.0472 (13)
H50.01740.23550.37930.057*
C60.1068 (4)0.1700 (3)0.3287 (3)0.0462 (12)
H60.07860.12980.34440.055*
C70.1858 (4)0.1681 (3)0.2847 (3)0.0407 (11)
H70.21180.12690.27000.049*
C80.2249 (3)0.2291 (3)0.2634 (2)0.0329 (10)
C90.3108 (4)0.2358 (2)0.2196 (2)0.0301 (9)
C100.4329 (4)0.2180 (2)0.1553 (2)0.0303 (9)
C110.5036 (4)0.1774 (2)0.1171 (2)0.0312 (9)
C120.5080 (5)0.1071 (3)0.1248 (3)0.0465 (13)
H120.46600.08510.15500.056*
C130.5751 (5)0.0698 (3)0.0873 (3)0.0534 (14)
H130.57710.02260.09240.064*
C140.6396 (5)0.1012 (3)0.0422 (3)0.0490 (14)
C150.6340 (4)0.1714 (3)0.0361 (3)0.0436 (12)
H150.67650.19330.00620.052*
C160.5678 (4)0.2104 (2)0.0728 (3)0.0356 (10)
H160.56620.25760.06790.043*
C170.7105 (7)0.0591 (4)0.0005 (4)0.078 (2)
H17A0.74910.08880.02770.117*
H17B0.66590.02850.03480.117*
H17C0.76140.03340.03750.117*
C180.1644 (7)0.1149 (3)0.0205 (5)0.068 (2)
H18A0.23920.10280.02090.082*
H18B0.12260.10750.03140.082*
N10.1910 (3)0.2908 (2)0.2820 (2)0.0339 (8)
N20.3461 (3)0.2940 (2)0.2029 (2)0.0327 (8)
N30.4270 (3)0.2836 (2)0.1605 (2)0.0338 (8)
O10.3910 (5)0.4950 (3)0.1764 (3)0.0831 (16)
O20.4232 (4)0.3958 (2)0.3981 (3)0.0620 (12)
O30.1276 (5)0.4934 (3)0.2913 (3)0.094 (2)
O40.3618 (3)0.18424 (16)0.19223 (18)0.0326 (7)
Br10.12760 (5)0.36874 (3)0.11151 (3)0.04326 (14)
Re10.268376 (15)0.382313 (9)0.241699 (11)0.03283 (10)
Cl10.1140 (3)0.06259 (12)0.08553 (18)0.1191 (10)
Cl20.15734 (14)0.20035 (8)0.04467 (9)0.0578 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (3)0.034 (3)0.056 (3)0.000 (2)0.015 (3)0.004 (2)
C20.046 (3)0.026 (2)0.040 (3)0.0082 (19)0.005 (2)0.0054 (18)
C30.049 (3)0.046 (3)0.051 (3)0.009 (3)0.009 (3)0.013 (2)
C40.037 (3)0.056 (3)0.037 (3)0.008 (2)0.014 (2)0.006 (2)
C50.046 (3)0.058 (3)0.041 (3)0.001 (2)0.017 (2)0.004 (2)
C60.045 (3)0.048 (3)0.049 (3)0.009 (2)0.017 (2)0.006 (2)
C70.046 (3)0.036 (3)0.043 (3)0.001 (2)0.014 (2)0.004 (2)
C80.036 (3)0.034 (3)0.030 (2)0.0017 (17)0.008 (2)0.0021 (16)
C90.037 (2)0.025 (2)0.029 (2)0.0035 (17)0.0067 (18)0.0018 (16)
C100.036 (2)0.030 (2)0.026 (2)0.0008 (18)0.0081 (17)0.0001 (15)
C110.041 (2)0.029 (2)0.025 (2)0.0047 (18)0.0100 (18)0.0011 (15)
C120.066 (4)0.029 (3)0.052 (3)0.005 (2)0.029 (3)0.004 (2)
C130.076 (4)0.032 (3)0.057 (3)0.014 (3)0.025 (3)0.003 (2)
C140.059 (3)0.053 (3)0.040 (3)0.017 (3)0.023 (3)0.007 (2)
C150.048 (3)0.052 (3)0.035 (3)0.007 (2)0.019 (2)0.005 (2)
C160.045 (3)0.031 (2)0.033 (2)0.005 (2)0.013 (2)0.0034 (18)
C170.099 (5)0.083 (5)0.061 (4)0.044 (4)0.038 (4)0.010 (3)
C180.074 (5)0.059 (4)0.077 (5)0.004 (3)0.028 (4)0.018 (3)
N10.035 (2)0.036 (2)0.032 (2)0.0047 (17)0.0108 (17)0.0038 (16)
N20.034 (2)0.031 (2)0.035 (2)0.0007 (16)0.0111 (17)0.0032 (15)
N30.040 (2)0.031 (2)0.033 (2)0.0015 (16)0.0155 (17)0.0033 (15)
O10.093 (4)0.054 (3)0.105 (4)0.023 (3)0.028 (3)0.019 (3)
O20.065 (3)0.059 (3)0.054 (3)0.013 (2)0.005 (2)0.014 (2)
O30.112 (5)0.079 (4)0.093 (4)0.055 (4)0.025 (3)0.022 (3)
O40.0407 (17)0.0271 (16)0.0328 (16)0.0012 (13)0.0144 (14)0.0017 (12)
Br10.0496 (3)0.0390 (3)0.0394 (3)0.0001 (2)0.0049 (2)0.00145 (19)
Re10.03905 (14)0.02488 (12)0.03580 (14)0.00306 (6)0.01052 (10)0.00546 (6)
Cl10.176 (3)0.0556 (13)0.142 (2)0.0091 (15)0.072 (2)0.0206 (13)
Cl20.0680 (9)0.0531 (9)0.0511 (8)0.0077 (7)0.0089 (7)0.0014 (6)
Geometric parameters (Å, º) top
Re1—C11.887 (6)C10—N31.293 (6)
Re1—C21.921 (5)C10—O41.380 (5)
Re1—C31.890 (5)C10—C111.459 (6)
Re1—N12.228 (4)C11—C121.385 (6)
Re1—N22.169 (4)C11—C161.395 (6)
Re1—Br12.6146 (11)C12—C131.384 (7)
C1—O11.168 (7)C12—H120.9300
C2—O21.131 (7)C13—C141.392 (9)
C3—O31.159 (7)C13—H130.9300
C4—N11.366 (6)C14—C151.383 (8)
C4—C51.369 (8)C14—C171.512 (7)
C4—H40.9300C15—C161.386 (7)
C5—C61.397 (8)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—C71.381 (7)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.374 (7)C17—H17C0.9600
C7—H70.9300C18—Cl21.737 (6)
C8—N11.346 (6)C18—Cl11.753 (8)
C8—C91.459 (7)C18—H18A0.9700
C9—N21.283 (6)C18—H18B0.9700
C9—O41.339 (5)N2—N31.396 (5)
O1—C1—Re1179.8 (7)C15—C16—C11118.5 (5)
O2—C2—Re1176.8 (5)C15—C16—H16120.7
O3—C3—Re1178.6 (6)C11—C16—H16120.7
N1—C4—C5122.5 (5)C14—C17—H17A109.5
N1—C4—H4118.8C14—C17—H17B109.5
C5—C4—H4118.8H17A—C17—H17B109.5
C4—C5—C6119.4 (5)C14—C17—H17C109.5
C4—C5—H5120.3H17A—C17—H17C109.5
C6—C5—H5120.3H17B—C17—H17C109.5
C7—C6—C5119.0 (5)Cl2—C18—Cl1111.1 (4)
C7—C6—H6120.5Cl2—C18—H18A109.4
C5—C6—H6120.5Cl1—C18—H18A109.4
C8—C7—C6118.1 (5)Cl2—C18—H18B109.4
C8—C7—H7121.0Cl1—C18—H18B109.4
C6—C7—H7121.0H18A—C18—H18B108.0
N1—C8—C7124.5 (4)C8—N1—C4116.6 (4)
N1—C8—C9110.8 (4)C8—N1—Re1117.8 (3)
C7—C8—C9124.7 (4)C4—N1—Re1125.6 (4)
N2—C9—O4112.1 (4)C9—N2—N3108.5 (4)
N2—C9—C8122.1 (4)C9—N2—Re1116.1 (3)
O4—C9—C8125.9 (4)N3—N2—Re1135.4 (3)
N3—C10—O4113.1 (4)C10—N3—N2104.1 (4)
N3—C10—C11128.8 (4)C9—O4—C10102.3 (3)
O4—C10—C11118.2 (4)C1—Re1—C387.8 (3)
C12—C11—C16120.1 (4)C1—Re1—C289.1 (3)
C12—C11—C10121.0 (4)C3—Re1—C289.2 (2)
C16—C11—C10118.9 (4)C1—Re1—N299.4 (2)
C13—C12—C11119.7 (5)C3—Re1—N2171.4 (2)
C13—C12—H12120.1C2—Re1—N295.53 (18)
C11—C12—H12120.1C1—Re1—N1172.65 (19)
C12—C13—C14121.6 (5)C3—Re1—N199.5 (2)
C12—C13—H13119.2C2—Re1—N191.87 (19)
C14—C13—H13119.2N2—Re1—N173.26 (16)
C15—C14—C13117.3 (5)C1—Re1—Br192.72 (19)
C15—C14—C17122.1 (6)C3—Re1—Br190.28 (18)
C13—C14—C17120.6 (6)C2—Re1—Br1178.05 (17)
C14—C15—C16122.7 (5)N2—Re1—Br184.79 (11)
C14—C15—H15118.6N1—Re1—Br186.38 (10)
C16—C15—H15118.6

Experimental details

Crystal data
Chemical formula[ReBr(C14H11N3O)(CO)3]·CH2Cl2
Mr672.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.590 (3), 19.621 (4), 17.660 (4)
β (°) 101.77 (3)
V3)4270.8 (15)
Z8
Radiation typeMo Kα
µ (mm1)7.84
Crystal size (mm)0.25 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.149, 0.409
No. of measured, independent and
observed [I > 2σ(I)] reflections
20653, 4847, 4254
Rint0.063
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.05
No. of reflections4847
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.07, 2.88

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Re1—C11.887 (6)Re1—N12.228 (4)
Re1—C21.921 (5)Re1—N22.169 (4)
Re1—C31.890 (5)Re1—Br12.6146 (11)
 

Acknowledgements

This work was supported by Zhejiang A & F University Science Foundation (2009FR068).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemko, Z.-P. & Sharpless, K.-B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLey, K.-D., Whittle, C.-E., Bartberger, M.-D. & Schanze, K.-S. (1997). J. Am. Chem. Soc. 119, 3423–3424.  CrossRef CAS Web of Science Google Scholar
First citationRajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016–2017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamoto, N., Adachi, C. & Ngai, K. (1997). Chem. Mater. 9, 1077–1085.  CrossRef CAS Web of Science Google Scholar
First citationZhang, L.-M., Li, B. & Su, Z.-M. (2009). Langmuir, 25, 2068–2074.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds