metal-organic compounds
Poly[di-μ-aqua-μ4-(pyrazine-2,5-dicarboxylato)-dilithium(I)]
aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
In the title coordination polymer, [Li2(C6H2N2O2)(H2O)2]n the pyrazine-2,5-dicarboxylate dianionic ligand bridges two symmetry-independent Li+ ions using both its N,O-chelating sites. The carboxylate O atom of one of them also bridges to another Li+ ion, while the second O atom of this group is bonded to another Li+ ion. Two symmetry-independent water O atoms participate also in the bridging system, which gives rise to a polymeric three-dimensional framework. Both Li+ ions show distorted trigonal–bipyramidal LiNO4 coordination geometries, with the N atom in an axial site in both cases. The packing is consolidated by O—H⋯O hydrogen bonds, which occur between water molecules as donors and carboxylate O atoms as acceptors.
Related literature
For the crystal structures of transition metal complexes with the title ligand, see: Beobide et al. (2003); Xu et al. (2003); Beobide et al. (2006). For the structures of Cd and Zn complexes, see: Liu et al. (2009); Yang & Wu (2009); Yang et al. (2009). For the structures of polymeric lanthanide complexes, see: Zheng & Jin (2005); Yang et al. (2009). For the structure of a Th(IV) complex, see: Frisch & Cahill (2008). For the structure of an Sr(II) complex, see: Ptasiewicz-Bąk & Leciejewicz (1998a). The structures of Li(I) complexes with pyrazine-2,3-dicarboxylate and water ligands (Tombul et al., 2008), 3-aminopyrazine-2-carboxylate and water ligands (Starosta & Leciejewicz, 2010a) and pyrazine-2,3,5,6-tetracarboxylate and water ligands (Starosta & Leciejewicz, 2010b) have been published. For the structure of pyrazine-2,5-dicarboxylic acid dihydrate, see: Ptasiewicz-Bąk & Leciejewicz (1998b); Vishweshwar et al. (2002).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: KM-4 Software (Kuma, 1996); cell KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810050762/hb5759sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810050762/hb5759Isup2.hkl
1 mmol of pyrazine-2,5-dicarboxylic acid dihydrate (Aldrich) dissolved in 30 ml of hot water and 2 mmols of lithium hydroxide (Aldrich) dissolved in 30 ml of hot water were mixed and boiled for 3 h under reflux with stirring. After cooling to room temperature, the solution was filtered and left to crystallize. After evaporation to dryness colourless blocks of (I) were found on the bottom of the reaction pot. They were washed with ethanol and dried in the air.
Water hydrogen atoms were located in a difference map and refined isotropically. H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).
# Used for convenience to store draft or replaced versions
of the abstract, comment etc. Its contents will not be outputData collection: KM-4 Software (Kuma, 1996); cell
KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A structural unit of (I) with 50% probability displacement ellipsoids. Symmetry code: (i) -x + 2,-y,-z + 2. (ii) x + 1/2, -y + 1/2, z - 1/2. (iii) x - 1/2, -y + 1/2, z + 1/2. (iv) -x + 3/2, y + 1/2, -z + 3/2. (v) -x + 3/2, y - 1/2, -z + 3/2. | |
Fig. 2. A fragment of a molecular layer. |
[Li2(C6H2N2O2)(H2O)2] | F(000) = 440 |
Mr = 216.01 | Dx = 1.788 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 7.2107 (14) Å | θ = 6–15° |
b = 7.3646 (15) Å | µ = 0.16 mm−1 |
c = 15.327 (3) Å | T = 293 K |
β = 99.71 (3)° | Plates, colourless |
V = 802.2 (3) Å3 | 0.33 × 0.17 × 0.15 mm |
Z = 4 |
Kuma KM-4 four-circle diffractometer | 1694 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.069 |
Graphite monochromator | θmax = 30.1°, θmin = 2.7° |
profile data from ω/2θ scans | h = 0→10 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = 0→10 |
Tmin = 0.976, Tmax = 0.985 | l = −21→21 |
2520 measured reflections | 3 standard reflections every 200 reflections |
2348 independent reflections | intensity decay: 0.6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.1327P)2 + 0.0049P] where P = (Fo2 + 2Fc2)/3 |
2348 reflections | (Δ/σ)max = 0.001 |
161 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
[Li2(C6H2N2O2)(H2O)2] | V = 802.2 (3) Å3 |
Mr = 216.01 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2107 (14) Å | µ = 0.16 mm−1 |
b = 7.3646 (15) Å | T = 293 K |
c = 15.327 (3) Å | 0.33 × 0.17 × 0.15 mm |
β = 99.71 (3)° |
Kuma KM-4 four-circle diffractometer | 1694 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | Rint = 0.069 |
Tmin = 0.976, Tmax = 0.985 | 3 standard reflections every 200 reflections |
2520 measured reflections | intensity decay: 0.6% |
2348 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.73 e Å−3 |
2348 reflections | Δρmin = −0.62 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O5 | 0.92850 (16) | 0.21032 (15) | 1.23861 (7) | 0.0235 (3) | |
N2 | 0.85719 (16) | 0.06063 (16) | 0.86051 (8) | 0.0178 (3) | |
O3 | 0.99726 (17) | 0.31016 (14) | 0.76139 (7) | 0.0248 (3) | |
O6 | 0.54300 (17) | 0.41912 (16) | 1.12325 (8) | 0.0248 (3) | |
N1 | 0.76024 (18) | 0.16459 (17) | 1.02138 (8) | 0.0194 (3) | |
O1 | 0.65141 (17) | −0.08194 (16) | 1.12869 (7) | 0.0258 (3) | |
C7 | 0.69244 (18) | −0.14435 (18) | 1.05880 (8) | 0.0171 (3) | |
C3 | 0.85787 (18) | 0.23438 (19) | 0.88494 (9) | 0.0167 (3) | |
C8 | 0.9150 (2) | 0.37044 (19) | 0.82054 (9) | 0.0194 (3) | |
O2 | 0.68766 (17) | −0.30725 (14) | 1.03608 (7) | 0.0252 (3) | |
O4 | 0.8671 (2) | 0.53125 (16) | 0.83062 (9) | 0.0342 (3) | |
C5 | 0.80318 (19) | −0.06117 (19) | 0.91591 (9) | 0.0177 (3) | |
H5 | 0.7990 | −0.1835 | 0.9006 | 0.021* | |
C6 | 0.75335 (17) | −0.00880 (18) | 0.99566 (8) | 0.0155 (3) | |
C2 | 0.8103 (2) | 0.28635 (19) | 0.96561 (9) | 0.0202 (3) | |
H2 | 0.8136 | 0.4087 | 0.9808 | 0.024* | |
Li2 | 0.9486 (5) | 0.0403 (4) | 0.7358 (2) | 0.0360 (7) | |
Li1 | 0.6732 (4) | 0.1742 (4) | 1.1630 (2) | 0.0298 (6) | |
H51 | 0.908 (4) | 0.263 (4) | 1.284 (2) | 0.063 (9)* | |
H62 | 0.609 (4) | 0.503 (4) | 1.1012 (17) | 0.049 (7)* | |
H52 | 0.994 (4) | 0.294 (4) | 1.2126 (18) | 0.051 (7)* | |
H61 | 0.472 (5) | 0.375 (5) | 1.079 (3) | 0.093 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O5 | 0.0301 (6) | 0.0199 (5) | 0.0225 (5) | −0.0017 (4) | 0.0104 (4) | −0.0037 (4) |
N2 | 0.0191 (5) | 0.0162 (5) | 0.0190 (5) | 0.0008 (4) | 0.0059 (4) | 0.0006 (4) |
O3 | 0.0301 (6) | 0.0227 (5) | 0.0246 (5) | 0.0010 (4) | 0.0137 (4) | 0.0013 (4) |
O6 | 0.0298 (6) | 0.0216 (5) | 0.0246 (5) | −0.0021 (4) | 0.0096 (4) | 0.0010 (4) |
N1 | 0.0229 (6) | 0.0172 (6) | 0.0191 (5) | 0.0018 (4) | 0.0064 (4) | −0.0001 (4) |
O1 | 0.0365 (6) | 0.0212 (5) | 0.0230 (5) | 0.0003 (4) | 0.0148 (5) | 0.0015 (4) |
C7 | 0.0148 (6) | 0.0174 (6) | 0.0191 (6) | −0.0001 (5) | 0.0033 (5) | 0.0010 (5) |
C3 | 0.0156 (6) | 0.0166 (6) | 0.0182 (6) | 0.0019 (4) | 0.0037 (5) | 0.0015 (4) |
C8 | 0.0213 (7) | 0.0169 (6) | 0.0211 (6) | 0.0007 (5) | 0.0063 (5) | 0.0025 (5) |
O2 | 0.0335 (6) | 0.0178 (5) | 0.0259 (5) | −0.0039 (4) | 0.0094 (4) | −0.0006 (4) |
O4 | 0.0516 (8) | 0.0171 (5) | 0.0400 (7) | 0.0061 (5) | 0.0249 (6) | 0.0042 (5) |
C5 | 0.0197 (6) | 0.0152 (6) | 0.0192 (6) | −0.0008 (5) | 0.0057 (5) | −0.0004 (4) |
C6 | 0.0145 (6) | 0.0145 (6) | 0.0178 (6) | 0.0008 (4) | 0.0035 (5) | 0.0014 (4) |
C2 | 0.0264 (7) | 0.0145 (6) | 0.0211 (6) | 0.0025 (5) | 0.0082 (5) | 0.0003 (5) |
Li2 | 0.053 (2) | 0.0239 (14) | 0.0359 (16) | −0.0019 (13) | 0.0218 (15) | −0.0027 (11) |
Li1 | 0.0305 (14) | 0.0250 (13) | 0.0332 (14) | 0.0005 (11) | 0.0033 (11) | −0.0046 (11) |
O5—Li2i | 2.056 (4) | O6—H62 | 0.88 (3) |
O3—Li1ii | 2.131 (3) | O6—H61 | 0.84 (4) |
O6—Li2iii | 1.981 (3) | N1—C2 | 1.3303 (18) |
O4—Li2iv | 2.332 (4) | N1—C6 | 1.3348 (18) |
Li1—O1 | 1.958 (3) | O1—C7 | 1.2463 (17) |
Li1—O5 | 2.020 (3) | C7—O2 | 1.2481 (17) |
Li1—O6 | 2.077 (3) | C7—C6 | 1.5064 (18) |
Li1—O3iii | 2.131 (3) | C3—C2 | 1.3913 (18) |
Li1—N1 | 2.360 (3) | C3—C8 | 1.5117 (19) |
Li2—O6ii | 1.981 (3) | C8—O4 | 1.2506 (19) |
Li2—O3 | 2.045 (3) | C5—C6 | 1.3857 (18) |
Li2—O5i | 2.056 (3) | C5—H5 | 0.9300 |
Li2—O4v | 2.332 (4) | C2—H2 | 0.9300 |
Li2—N2 | 2.129 (3) | Li2—Li1ii | 2.983 (4) |
O5—H51 | 0.83 (3) | Li2—Li1i | 3.303 (5) |
O5—H52 | 0.91 (3) | Li1—Li2iii | 2.983 (4) |
N2—C3 | 1.3330 (18) | Li1—Li2i | 3.303 (5) |
N2—C5 | 1.3376 (17) | Li1—H61 | 2.30 (4) |
O3—C8 | 1.2458 (17) | ||
Li1—O5—Li2i | 108.24 (14) | O3—Li2—N2 | 80.13 (12) |
Li1—O5—H51 | 105 (2) | O5i—Li2—N2 | 94.63 (14) |
Li2i—O5—H51 | 113 (2) | O6ii—Li2—O4v | 94.45 (15) |
Li1—O5—H52 | 109.1 (17) | O3—Li2—O4v | 103.58 (15) |
Li2i—O5—H52 | 117.0 (18) | O5i—Li2—O4v | 114.53 (15) |
H51—O5—H52 | 103 (3) | N2—Li2—O4v | 88.10 (13) |
C3—N2—C5 | 116.94 (12) | O6ii—Li2—Li1ii | 43.94 (9) |
C3—N2—Li2 | 109.43 (13) | O3—Li2—Li1ii | 45.59 (9) |
C5—N2—Li2 | 133.63 (13) | O5i—Li2—Li1ii | 117.39 (15) |
C8—O3—Li2 | 113.48 (13) | N2—Li2—Li1ii | 123.78 (15) |
C8—O3—Li1ii | 155.36 (13) | O4v—Li2—Li1ii | 114.10 (14) |
Li2—O3—Li1ii | 91.16 (13) | O6ii—Li2—Li1i | 95.92 (14) |
Li2iii—O6—Li1 | 94.61 (13) | O3—Li2—Li1i | 105.87 (15) |
Li2iii—O6—H62 | 121.1 (18) | O5i—Li2—Li1i | 35.51 (9) |
Li1—O6—H62 | 118.3 (19) | N2—Li2—Li1i | 88.18 (13) |
Li2iii—O6—H61 | 120 (3) | O4v—Li2—Li1i | 149.19 (14) |
Li1—O6—H61 | 95 (3) | Li1ii—Li2—Li1i | 93.17 (11) |
H62—O6—H61 | 105 (3) | O1—Li1—O5 | 107.76 (15) |
C2—N1—C6 | 117.11 (12) | O1—Li1—O6 | 138.27 (17) |
C2—N1—Li1 | 135.56 (12) | O5—Li1—O6 | 112.16 (15) |
C6—N1—Li1 | 107.34 (11) | O1—Li1—O3iii | 102.21 (15) |
C7—O1—Li1 | 124.49 (14) | O5—Li1—O3iii | 100.41 (14) |
O1—C7—O2 | 126.51 (13) | O6—Li1—O3iii | 82.36 (12) |
O1—C7—C6 | 116.42 (12) | O1—Li1—N1 | 75.27 (11) |
O2—C7—C6 | 117.07 (12) | O5—Li1—N1 | 100.00 (14) |
N2—C3—C2 | 121.60 (12) | O6—Li1—N1 | 86.19 (12) |
N2—C3—C8 | 116.19 (11) | O3iii—Li1—N1 | 159.18 (16) |
C2—C3—C8 | 122.21 (12) | O1—Li1—Li2iii | 139.07 (16) |
O3—C8—O4 | 127.07 (13) | O5—Li1—Li2iii | 101.09 (13) |
O3—C8—C3 | 117.04 (13) | O6—Li1—Li2iii | 41.45 (9) |
O4—C8—C3 | 115.82 (12) | O3iii—Li1—Li2iii | 43.25 (9) |
C8—O4—Li2iv | 104.05 (13) | N1—Li1—Li2iii | 127.64 (14) |
N2—C5—C6 | 121.33 (13) | O1—Li1—Li2i | 71.81 (11) |
N2—C5—H5 | 119.3 | O5—Li1—Li2i | 36.25 (8) |
C6—C5—H5 | 119.3 | O6—Li1—Li2i | 148.18 (15) |
N1—C6—C5 | 121.63 (12) | O3iii—Li1—Li2i | 103.68 (13) |
N1—C6—C7 | 116.40 (11) | N1—Li1—Li2i | 95.21 (12) |
C5—C6—C7 | 121.96 (12) | Li2iii—Li1—Li2i | 128.23 (11) |
N1—C2—C3 | 121.33 (13) | O1—Li1—H61 | 117.0 (10) |
N1—C2—H2 | 119.3 | O5—Li1—H61 | 131.5 (10) |
C3—C2—H2 | 119.3 | O6—Li1—H61 | 21.3 (10) |
O6ii—Li2—O3 | 86.97 (13) | O3iii—Li1—H61 | 88.0 (9) |
O6ii—Li2—O5i | 95.80 (14) | N1—Li1—H61 | 75.4 (9) |
O3—Li2—O5i | 141.4 (2) | Li2iii—Li1—H61 | 54.9 (10) |
O6ii—Li2—N2 | 167.10 (18) | Li2i—Li1—H61 | 164.0 (10) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···O2vi | 0.88 (3) | 1.86 (3) | 2.7210 (16) | 165 (3) |
O6—H61···O2vii | 0.84 (4) | 2.00 (4) | 2.8351 (19) | 170 (4) |
O5—H52···O4viii | 0.91 (3) | 1.82 (3) | 2.7292 (17) | 175 (3) |
O5—H51···O1ix | 0.83 (3) | 1.87 (3) | 2.6842 (16) | 169 (3) |
Symmetry codes: (vi) x, y+1, z; (vii) −x+1, −y, −z+2; (viii) −x+2, −y+1, −z+2; (ix) −x+3/2, y+1/2, −z+5/2. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C6H2N2O2)(H2O)2] |
Mr | 216.01 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.2107 (14), 7.3646 (15), 15.327 (3) |
β (°) | 99.71 (3) |
V (Å3) | 802.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 0.33 × 0.17 × 0.15 |
Data collection | |
Diffractometer | Kuma KM-4 four-circle |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.976, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2520, 2348, 1694 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.161, 0.99 |
No. of reflections | 2348 |
No. of parameters | 161 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.73, −0.62 |
Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li1—O1 | 1.958 (3) | Li2—O6ii | 1.981 (3) |
Li1—O5 | 2.020 (3) | Li2—O3 | 2.045 (3) |
Li1—O6 | 2.077 (3) | Li2—O5iii | 2.056 (3) |
Li1—O3i | 2.131 (3) | Li2—O4iv | 2.332 (4) |
Li1—N1 | 2.360 (3) | Li2—N2 | 2.129 (3) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+2, −y, −z+2; (iv) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···O2v | 0.88 (3) | 1.86 (3) | 2.7210 (16) | 165 (3) |
O6—H61···O2vi | 0.84 (4) | 2.00 (4) | 2.8351 (19) | 170 (4) |
O5—H52···O4vii | 0.91 (3) | 1.82 (3) | 2.7292 (17) | 175 (3) |
O5—H51···O1viii | 0.83 (3) | 1.87 (3) | 2.6842 (16) | 169 (3) |
Symmetry codes: (v) x, y+1, z; (vi) −x+1, −y, −z+2; (vii) −x+2, −y+1, −z+2; (viii) −x+3/2, y+1/2, −z+5/2. |
References
Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2006). Inorg. Chem. 45, 5367–5382. Web of Science CSD CrossRef PubMed CAS Google Scholar
Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P., Roman, P. & Lezama, L. (2003). Inorg. Chem. Commun. 6, 1224–1227. Web of Science CSD CrossRef CAS Google Scholar
Frisch, M. & Cahill, C. L. (2008). Cryst. Growth Des. 8, 2921–2926. Web of Science CSD CrossRef CAS Google Scholar
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland. Google Scholar
Liu, F.-Q., Li, R.-X., Deng, Y.-Y., Li, W.-H., Ding, N.-X. & Liu, G.-Y. (2009). J. Organomet. Chem. 694, 3653–3659. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998a). J. Coord. Chem. 44, 299–309. Google Scholar
Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998b). J. Coord. Chem. 44, 237–246. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010a). Acta Cryst. E66, m744–m745. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m1561–m1562. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556–565. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xu, H. T., Zheng, N. W., Yang, R. Y., Li, Z. Q. & Jin, X. L. (2003). Inorg. Chim. Acta, 349, 265–268. Web of Science CSD CrossRef CAS Google Scholar
Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m4–m6. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, P., Wu, J.-Z. & Yu, V. (2009). Inorg. Chim. Acta, 362, 1907–1912. Web of Science CSD CrossRef CAS Google Scholar
Zheng, X-J. & Lin, J-P. (2005). J. Chem. Crystallogr. 35, 865–869. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal complexes with pyrazine dicarboxylate ligands are of interest as precursors for new polymeric materials with a wide spectrum of potential applications. Owing to a pair of N,O-chelating sites localized at opposite terminals of the hetero-ring, pyrazine-2,5-dicarboxylate ligand shows a marked tendency to form coordination polymers. Structures with a variety of polymeric patterns have been reported in compounds with 3d transition metal ions (Xu et al., 2003; Beobide et al. 2003; Beobide et al., 2006); with a number of lanthanide ions (Zheng & Jin, 2005; with Cd(II) ion (Liu et al., 2009; Yang & Wu, 2009); with Th(IV) ion (Frisch & Cahill, 2008) and with Sr(II) ion (Ptasiewicz-Bąk & Leciejewicz, 1998b). The asymmetric unit cell of the title complex, (I), contains a ligand dianion, two symmetry independent Li1 and Li2 ions and two symmetry independent O5 and O6 water molecules (Fig.1). The ligand molecule bridges the Li1 and Li2 ions using both its N,O-chelating sites; the carboxylate O2 atom remains coordination inactive. The O3 atom, which acts as bidentate, bridges the Li2 ion to the adjacent Li1ii ion and with the coordinated water O6 atom gives rise to a molecular chain in which metal ions are bridged by the ligand on one side and two O atoms on the other. Water O5 atoms link the chains into molecular layers. (Fig. 2). The latter, bridged by carboxylate O4 atoms which link the ligands with Li2iv ions in adjacent layers give rise to a three-dimensional framework. The coordination environment of the Li1 ion is composed of N1, O5, O3iii atoms: they form together with the metal ion an equatorial plane (r.m.s. of 0.0021 (1) Å) of a distorted trigonal bipyramid; the O1 and O6 atoms are at its opposite apices. The Li2 ion together with coordinated O3, O4v and O5i atoms forms an equatorial plane (r.m.s. of 0.0307 (1) Å) of a distorted trigonal bipyramid, N2 and O6ii atoms are at its apices. The observed Li—O bond distances fall in the range from 1.958 (3) to 2.131 (3)Å observed also in Li complexes with pyrazine carboxylate and water ligands (Tombul et al., 2008; Starosta & Leciejewicz, 2010a, 2010b). The O4—Li2iv bond distance is 2.332 (4) Å; the Li1—N1 and Li2—N2 bond lengths are 2.360 (3)Å and 2.129 (3) Å, respectively. The pyrazine ring is planar with r.m.s. of 0.0094 (1) Å, the carboxylate C7/O1/O2 and C8/O3/O4 groups make with it dihedral angles of 0.55 (20)° and 18.68 (17)°, respectively. Bond lengths and bond angles within the pyrazine ligand match those observed in the structure of the parent acid (Ptasiewicz-Bąk & Leciejewicz, 1998a; Vishweshwar et al., 2002). Hydrogen bond network is composed of coordinated water molecules which are as donors and carboxylate O atoms which act as acceptors.