metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ-aqua-μ4-(pyrazine-2,5-di­carboxyl­ato)-dilithium(I)]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 29 November 2010; accepted 3 December 2010; online 8 December 2010)

In the title coordination polymer, [Li2(C6H2N2O2)(H2O)2]n the pyrazine-2,5-dicarboxyl­ate dianionic ligand bridges two symmetry-independent Li+ ions using both its N,O-chelating sites. The carboxyl­ate O atom of one of them also bridges to another Li+ ion, while the second O atom of this group is bonded to another Li+ ion. Two symmetry-independent water O atoms participate also in the bridging system, which gives rise to a polymeric three-dimensional framework. Both Li+ ions show distorted trigonal–bipyramidal LiNO4 coordination geometries, with the N atom in an axial site in both cases. The packing is consolidated by O—H⋯O hydrogen bonds, which occur between water mol­ecules as donors and carboxyl­ate O atoms as acceptors.

Related literature

For the crystal structures of transition metal complexes with the title ligand, see: Beobide et al. (2003[Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P., Roman, P. & Lezama, L. (2003). Inorg. Chem. Commun. 6, 1224-1227.]); Xu et al. (2003[Xu, H. T., Zheng, N. W., Yang, R. Y., Li, Z. Q. & Jin, X. L. (2003). Inorg. Chim. Acta, 349, 265-268.]); Beobide et al. (2006[Beobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2006). Inorg. Chem. 45, 5367-5382.]). For the structures of Cd and Zn complexes, see: Liu et al. (2009[Liu, F.-Q., Li, R.-X., Deng, Y.-Y., Li, W.-H., Ding, N.-X. & Liu, G.-Y. (2009). J. Organomet. Chem. 694, 3653-3659.]); Yang & Wu (2009[Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m4-m6.]); Yang et al. (2009[Yang, P., Wu, J.-Z. & Yu, V. (2009). Inorg. Chim. Acta, 362, 1907-1912.]). For the structures of polymeric lanthanide complexes, see: Zheng & Jin (2005[Zheng, X-J. & Lin, J-P. (2005). J. Chem. Crystallogr. 35, 865-869.]); Yang et al. (2009[Yang, P., Wu, J.-Z. & Yu, V. (2009). Inorg. Chim. Acta, 362, 1907-1912.]). For the structure of a Th(IV) complex, see: Frisch & Cahill (2008[Frisch, M. & Cahill, C. L. (2008). Cryst. Growth Des. 8, 2921-2926.]). For the structure of an Sr(II) complex, see: Ptasiewicz-Bąk & Leciejewicz (1998a[Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998a). J. Coord. Chem. 44, 299-309.]). The structures of Li(I) complexes with pyrazine-2,3-dicarboxyl­ate and water ligands (Tombul et al., 2008[Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491-m492.]), 3-amino­pyrazine-2-carboxyl­ate and water ligands (Starosta & Leciejewicz, 2010a[Starosta, W. & Leciejewicz, J. (2010a). Acta Cryst. E66, m744-m745.]) and pyrazine-2,3,5,6-tetra­carboxyl­ate and water ligands (Starosta & Leciejewicz, 2010b[Starosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m1561-m1562.]) have been published. For the structure of pyrazine-2,5-dicarb­oxy­lic acid dihydrate, see: Ptasiewicz-Bąk & Leciejewicz (1998b[Ptasiewicz-Bąk, H. & Leciejewicz, J. (1998b). J. Coord. Chem. 44, 237-246.]); Vishweshwar et al. (2002[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C6H2N2O2)(H2O)2]

  • Mr = 216.01

  • Monoclinic, P 21 /n

  • a = 7.2107 (14) Å

  • b = 7.3646 (15) Å

  • c = 15.327 (3) Å

  • β = 99.71 (3)°

  • V = 802.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.33 × 0.17 × 0.15 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.976, Tmax = 0.985

  • 2520 measured reflections

  • 2348 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.069

  • 3 standard reflections every 200 reflections intensity decay: 0.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.161

  • S = 0.99

  • 2348 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 1.958 (3)
Li1—O5 2.020 (3)
Li1—O6 2.077 (3)
Li1—O3i 2.131 (3)
Li1—N1 2.360 (3)
Li2—O6ii 1.981 (3)
Li2—O3 2.045 (3)
Li2—O5iii 2.056 (3)
Li2—O4iv 2.332 (4)
Li2—N2 2.129 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H62⋯O2v 0.88 (3) 1.86 (3) 2.7210 (16) 165 (3)
O6—H61⋯O2vi 0.84 (4) 2.00 (4) 2.8351 (19) 170 (4)
O5—H52⋯O4vii 0.91 (3) 1.82 (3) 2.7292 (17) 175 (3)
O5—H51⋯O1viii 0.83 (3) 1.87 (3) 2.6842 (16) 169 (3)
Symmetry codes: (v) x, y+1, z; (vi) -x+1, -y, -z+2; (vii) -x+2, -y+1, -z+2; (viii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with pyrazine dicarboxylate ligands are of interest as precursors for new polymeric materials with a wide spectrum of potential applications. Owing to a pair of N,O-chelating sites localized at opposite terminals of the hetero-ring, pyrazine-2,5-dicarboxylate ligand shows a marked tendency to form coordination polymers. Structures with a variety of polymeric patterns have been reported in compounds with 3d transition metal ions (Xu et al., 2003; Beobide et al. 2003; Beobide et al., 2006); with a number of lanthanide ions (Zheng & Jin, 2005; with Cd(II) ion (Liu et al., 2009; Yang & Wu, 2009); with Th(IV) ion (Frisch & Cahill, 2008) and with Sr(II) ion (Ptasiewicz-Bąk & Leciejewicz, 1998b). The asymmetric unit cell of the title complex, (I), contains a ligand dianion, two symmetry independent Li1 and Li2 ions and two symmetry independent O5 and O6 water molecules (Fig.1). The ligand molecule bridges the Li1 and Li2 ions using both its N,O-chelating sites; the carboxylate O2 atom remains coordination inactive. The O3 atom, which acts as bidentate, bridges the Li2 ion to the adjacent Li1ii ion and with the coordinated water O6 atom gives rise to a molecular chain in which metal ions are bridged by the ligand on one side and two O atoms on the other. Water O5 atoms link the chains into molecular layers. (Fig. 2). The latter, bridged by carboxylate O4 atoms which link the ligands with Li2iv ions in adjacent layers give rise to a three-dimensional framework. The coordination environment of the Li1 ion is composed of N1, O5, O3iii atoms: they form together with the metal ion an equatorial plane (r.m.s. of 0.0021 (1) Å) of a distorted trigonal bipyramid; the O1 and O6 atoms are at its opposite apices. The Li2 ion together with coordinated O3, O4v and O5i atoms forms an equatorial plane (r.m.s. of 0.0307 (1) Å) of a distorted trigonal bipyramid, N2 and O6ii atoms are at its apices. The observed Li—O bond distances fall in the range from 1.958 (3) to 2.131 (3)Å observed also in Li complexes with pyrazine carboxylate and water ligands (Tombul et al., 2008; Starosta & Leciejewicz, 2010a, 2010b). The O4—Li2iv bond distance is 2.332 (4) Å; the Li1—N1 and Li2—N2 bond lengths are 2.360 (3)Å and 2.129 (3) Å, respectively. The pyrazine ring is planar with r.m.s. of 0.0094 (1) Å, the carboxylate C7/O1/O2 and C8/O3/O4 groups make with it dihedral angles of 0.55 (20)° and 18.68 (17)°, respectively. Bond lengths and bond angles within the pyrazine ligand match those observed in the structure of the parent acid (Ptasiewicz-Bąk & Leciejewicz, 1998a; Vishweshwar et al., 2002). Hydrogen bond network is composed of coordinated water molecules which are as donors and carboxylate O atoms which act as acceptors.

Related literature top

For the crystal structures of transition metal complexes with the title ligand, see: Beobide et al. (2003); Xu et al. (2003); Beobide et al. (2006). For the structures of Cd and Zn complexes, see: Liu et al. (2009); Yang & Wu (2009); Yang et al. (2009). For the structures of polymeric lanthanide complexes, see: Zheng & Jin (2005); Yang et al. (2009). For the structure of a Th(IV) complex, see: Frisch & Cahill (2008). For the structure of an Sr(II) complex, see: Ptasiewicz-Bąk & Leciejewicz (1998a). The structures of Li(I) complexes with pyrazine-2,3-dicarboxylate and water ligands (Tombul et al., 2008), 3-aminopyrazine-2-carboxylate and water ligands (Starosta & Leciejewicz, 2010a) and pyrazine-2,3,5,6-tetracarboxylate and water ligands (Starosta & Leciejewicz, 2010b) have been published. For the structure of pyrazine-2,5-dicarboxylic acid dihydrate, see: Ptasiewicz-Bąk & Leciejewicz (1998b); Vishweshwar et al. (2002).

Experimental top

1 mmol of pyrazine-2,5-dicarboxylic acid dihydrate (Aldrich) dissolved in 30 ml of hot water and 2 mmols of lithium hydroxide (Aldrich) dissolved in 30 ml of hot water were mixed and boiled for 3 h under reflux with stirring. After cooling to room temperature, the solution was filtered and left to crystallize. After evaporation to dryness colourless blocks of (I) were found on the bottom of the reaction pot. They were washed with ethanol and dried in the air.

Refinement top

Water hydrogen atoms were located in a difference map and refined isotropically. H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (I) with 50% probability displacement ellipsoids. Symmetry code: (i) -x + 2,-y,-z + 2. (ii) x + 1/2, -y + 1/2, z - 1/2. (iii) x - 1/2, -y + 1/2, z + 1/2. (iv) -x + 3/2, y + 1/2, -z + 3/2. (v) -x + 3/2, y - 1/2, -z + 3/2.
[Figure 2] Fig. 2. A fragment of a molecular layer.
Poly[di-µ-aqua-µ4-(pyrazine-2,5-dicarboxylato)-dilithium(I)] top
Crystal data top
[Li2(C6H2N2O2)(H2O)2]F(000) = 440
Mr = 216.01Dx = 1.788 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.2107 (14) Åθ = 6–15°
b = 7.3646 (15) ŵ = 0.16 mm1
c = 15.327 (3) ÅT = 293 K
β = 99.71 (3)°Plates, colourless
V = 802.2 (3) Å30.33 × 0.17 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 30.1°, θmin = 2.7°
profile data from ω/2θ scansh = 010
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 010
Tmin = 0.976, Tmax = 0.985l = 2121
2520 measured reflections3 standard reflections every 200 reflections
2348 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1327P)2 + 0.0049P]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Li2(C6H2N2O2)(H2O)2]V = 802.2 (3) Å3
Mr = 216.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2107 (14) ŵ = 0.16 mm1
b = 7.3646 (15) ÅT = 293 K
c = 15.327 (3) Å0.33 × 0.17 × 0.15 mm
β = 99.71 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1694 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.069
Tmin = 0.976, Tmax = 0.9853 standard reflections every 200 reflections
2520 measured reflections intensity decay: 0.6%
2348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.73 e Å3
2348 reflectionsΔρmin = 0.62 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.92850 (16)0.21032 (15)1.23861 (7)0.0235 (3)
N20.85719 (16)0.06063 (16)0.86051 (8)0.0178 (3)
O30.99726 (17)0.31016 (14)0.76139 (7)0.0248 (3)
O60.54300 (17)0.41912 (16)1.12325 (8)0.0248 (3)
N10.76024 (18)0.16459 (17)1.02138 (8)0.0194 (3)
O10.65141 (17)0.08194 (16)1.12869 (7)0.0258 (3)
C70.69244 (18)0.14435 (18)1.05880 (8)0.0171 (3)
C30.85787 (18)0.23438 (19)0.88494 (9)0.0167 (3)
C80.9150 (2)0.37044 (19)0.82054 (9)0.0194 (3)
O20.68766 (17)0.30725 (14)1.03608 (7)0.0252 (3)
O40.8671 (2)0.53125 (16)0.83062 (9)0.0342 (3)
C50.80318 (19)0.06117 (19)0.91591 (9)0.0177 (3)
H50.79900.18350.90060.021*
C60.75335 (17)0.00880 (18)0.99566 (8)0.0155 (3)
C20.8103 (2)0.28635 (19)0.96561 (9)0.0202 (3)
H20.81360.40870.98080.024*
Li20.9486 (5)0.0403 (4)0.7358 (2)0.0360 (7)
Li10.6732 (4)0.1742 (4)1.1630 (2)0.0298 (6)
H510.908 (4)0.263 (4)1.284 (2)0.063 (9)*
H620.609 (4)0.503 (4)1.1012 (17)0.049 (7)*
H520.994 (4)0.294 (4)1.2126 (18)0.051 (7)*
H610.472 (5)0.375 (5)1.079 (3)0.093 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0301 (6)0.0199 (5)0.0225 (5)0.0017 (4)0.0104 (4)0.0037 (4)
N20.0191 (5)0.0162 (5)0.0190 (5)0.0008 (4)0.0059 (4)0.0006 (4)
O30.0301 (6)0.0227 (5)0.0246 (5)0.0010 (4)0.0137 (4)0.0013 (4)
O60.0298 (6)0.0216 (5)0.0246 (5)0.0021 (4)0.0096 (4)0.0010 (4)
N10.0229 (6)0.0172 (6)0.0191 (5)0.0018 (4)0.0064 (4)0.0001 (4)
O10.0365 (6)0.0212 (5)0.0230 (5)0.0003 (4)0.0148 (5)0.0015 (4)
C70.0148 (6)0.0174 (6)0.0191 (6)0.0001 (5)0.0033 (5)0.0010 (5)
C30.0156 (6)0.0166 (6)0.0182 (6)0.0019 (4)0.0037 (5)0.0015 (4)
C80.0213 (7)0.0169 (6)0.0211 (6)0.0007 (5)0.0063 (5)0.0025 (5)
O20.0335 (6)0.0178 (5)0.0259 (5)0.0039 (4)0.0094 (4)0.0006 (4)
O40.0516 (8)0.0171 (5)0.0400 (7)0.0061 (5)0.0249 (6)0.0042 (5)
C50.0197 (6)0.0152 (6)0.0192 (6)0.0008 (5)0.0057 (5)0.0004 (4)
C60.0145 (6)0.0145 (6)0.0178 (6)0.0008 (4)0.0035 (5)0.0014 (4)
C20.0264 (7)0.0145 (6)0.0211 (6)0.0025 (5)0.0082 (5)0.0003 (5)
Li20.053 (2)0.0239 (14)0.0359 (16)0.0019 (13)0.0218 (15)0.0027 (11)
Li10.0305 (14)0.0250 (13)0.0332 (14)0.0005 (11)0.0033 (11)0.0046 (11)
Geometric parameters (Å, º) top
O5—Li2i2.056 (4)O6—H620.88 (3)
O3—Li1ii2.131 (3)O6—H610.84 (4)
O6—Li2iii1.981 (3)N1—C21.3303 (18)
O4—Li2iv2.332 (4)N1—C61.3348 (18)
Li1—O11.958 (3)O1—C71.2463 (17)
Li1—O52.020 (3)C7—O21.2481 (17)
Li1—O62.077 (3)C7—C61.5064 (18)
Li1—O3iii2.131 (3)C3—C21.3913 (18)
Li1—N12.360 (3)C3—C81.5117 (19)
Li2—O6ii1.981 (3)C8—O41.2506 (19)
Li2—O32.045 (3)C5—C61.3857 (18)
Li2—O5i2.056 (3)C5—H50.9300
Li2—O4v2.332 (4)C2—H20.9300
Li2—N22.129 (3)Li2—Li1ii2.983 (4)
O5—H510.83 (3)Li2—Li1i3.303 (5)
O5—H520.91 (3)Li1—Li2iii2.983 (4)
N2—C31.3330 (18)Li1—Li2i3.303 (5)
N2—C51.3376 (17)Li1—H612.30 (4)
O3—C81.2458 (17)
Li1—O5—Li2i108.24 (14)O3—Li2—N280.13 (12)
Li1—O5—H51105 (2)O5i—Li2—N294.63 (14)
Li2i—O5—H51113 (2)O6ii—Li2—O4v94.45 (15)
Li1—O5—H52109.1 (17)O3—Li2—O4v103.58 (15)
Li2i—O5—H52117.0 (18)O5i—Li2—O4v114.53 (15)
H51—O5—H52103 (3)N2—Li2—O4v88.10 (13)
C3—N2—C5116.94 (12)O6ii—Li2—Li1ii43.94 (9)
C3—N2—Li2109.43 (13)O3—Li2—Li1ii45.59 (9)
C5—N2—Li2133.63 (13)O5i—Li2—Li1ii117.39 (15)
C8—O3—Li2113.48 (13)N2—Li2—Li1ii123.78 (15)
C8—O3—Li1ii155.36 (13)O4v—Li2—Li1ii114.10 (14)
Li2—O3—Li1ii91.16 (13)O6ii—Li2—Li1i95.92 (14)
Li2iii—O6—Li194.61 (13)O3—Li2—Li1i105.87 (15)
Li2iii—O6—H62121.1 (18)O5i—Li2—Li1i35.51 (9)
Li1—O6—H62118.3 (19)N2—Li2—Li1i88.18 (13)
Li2iii—O6—H61120 (3)O4v—Li2—Li1i149.19 (14)
Li1—O6—H6195 (3)Li1ii—Li2—Li1i93.17 (11)
H62—O6—H61105 (3)O1—Li1—O5107.76 (15)
C2—N1—C6117.11 (12)O1—Li1—O6138.27 (17)
C2—N1—Li1135.56 (12)O5—Li1—O6112.16 (15)
C6—N1—Li1107.34 (11)O1—Li1—O3iii102.21 (15)
C7—O1—Li1124.49 (14)O5—Li1—O3iii100.41 (14)
O1—C7—O2126.51 (13)O6—Li1—O3iii82.36 (12)
O1—C7—C6116.42 (12)O1—Li1—N175.27 (11)
O2—C7—C6117.07 (12)O5—Li1—N1100.00 (14)
N2—C3—C2121.60 (12)O6—Li1—N186.19 (12)
N2—C3—C8116.19 (11)O3iii—Li1—N1159.18 (16)
C2—C3—C8122.21 (12)O1—Li1—Li2iii139.07 (16)
O3—C8—O4127.07 (13)O5—Li1—Li2iii101.09 (13)
O3—C8—C3117.04 (13)O6—Li1—Li2iii41.45 (9)
O4—C8—C3115.82 (12)O3iii—Li1—Li2iii43.25 (9)
C8—O4—Li2iv104.05 (13)N1—Li1—Li2iii127.64 (14)
N2—C5—C6121.33 (13)O1—Li1—Li2i71.81 (11)
N2—C5—H5119.3O5—Li1—Li2i36.25 (8)
C6—C5—H5119.3O6—Li1—Li2i148.18 (15)
N1—C6—C5121.63 (12)O3iii—Li1—Li2i103.68 (13)
N1—C6—C7116.40 (11)N1—Li1—Li2i95.21 (12)
C5—C6—C7121.96 (12)Li2iii—Li1—Li2i128.23 (11)
N1—C2—C3121.33 (13)O1—Li1—H61117.0 (10)
N1—C2—H2119.3O5—Li1—H61131.5 (10)
C3—C2—H2119.3O6—Li1—H6121.3 (10)
O6ii—Li2—O386.97 (13)O3iii—Li1—H6188.0 (9)
O6ii—Li2—O5i95.80 (14)N1—Li1—H6175.4 (9)
O3—Li2—O5i141.4 (2)Li2iii—Li1—H6154.9 (10)
O6ii—Li2—N2167.10 (18)Li2i—Li1—H61164.0 (10)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···O2vi0.88 (3)1.86 (3)2.7210 (16)165 (3)
O6—H61···O2vii0.84 (4)2.00 (4)2.8351 (19)170 (4)
O5—H52···O4viii0.91 (3)1.82 (3)2.7292 (17)175 (3)
O5—H51···O1ix0.83 (3)1.87 (3)2.6842 (16)169 (3)
Symmetry codes: (vi) x, y+1, z; (vii) x+1, y, z+2; (viii) x+2, y+1, z+2; (ix) x+3/2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Li2(C6H2N2O2)(H2O)2]
Mr216.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.2107 (14), 7.3646 (15), 15.327 (3)
β (°) 99.71 (3)
V3)802.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.33 × 0.17 × 0.15
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.976, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
2520, 2348, 1694
Rint0.069
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.161, 0.99
No. of reflections2348
No. of parameters161
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.62

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O11.958 (3)Li2—O6ii1.981 (3)
Li1—O52.020 (3)Li2—O32.045 (3)
Li1—O62.077 (3)Li2—O5iii2.056 (3)
Li1—O3i2.131 (3)Li2—O4iv2.332 (4)
Li1—N12.360 (3)Li2—N22.129 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+2, y, z+2; (iv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···O2v0.88 (3)1.86 (3)2.7210 (16)165 (3)
O6—H61···O2vi0.84 (4)2.00 (4)2.8351 (19)170 (4)
O5—H52···O4vii0.91 (3)1.82 (3)2.7292 (17)175 (3)
O5—H51···O1viii0.83 (3)1.87 (3)2.6842 (16)169 (3)
Symmetry codes: (v) x, y+1, z; (vi) x+1, y, z+2; (vii) x+2, y+1, z+2; (viii) x+3/2, y+1/2, z+5/2.
 

References

First citationBeobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P. & Roman, P. (2006). Inorg. Chem. 45, 5367–5382.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeobide, G., Castillo, O., Luque, A., Garcia-Couceiro, U., Garcia-Teran, J. P., Roman, P. & Lezama, L. (2003). Inorg. Chem. Commun. 6, 1224–1227.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. & Cahill, C. L. (2008). Cryst. Growth Des. 8, 2921–2926.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLiu, F.-Q., Li, R.-X., Deng, Y.-Y., Li, W.-H., Ding, N.-X. & Liu, G.-Y. (2009). J. Organomet. Chem. 694, 3653–3659.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (1998a). J. Coord. Chem. 44, 299–309.  Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (1998b). J. Coord. Chem. 44, 237–246.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010a). Acta Cryst. E66, m744–m745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010b). Acta Cryst. E66, m1561–m1562.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2002). J. Org. Chem. 67, 556–565.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, H. T., Zheng, N. W., Yang, R. Y., Li, Z. Q. & Jin, X. L. (2003). Inorg. Chim. Acta, 349, 265–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m4–m6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, P., Wu, J.-Z. & Yu, V. (2009). Inorg. Chim. Acta, 362, 1907–1912.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, X-J. & Lin, J-P. (2005). J. Chem. Crystallogr. 35, 865–869.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds