organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(9H-Carbazol-9-yl)propan-1-ol

aDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: damo@iitm.ac.in

(Received 29 November 2010; accepted 10 December 2010; online 18 December 2010)

In the title compound, C15H15NO, the dihedral angle between the benzene rings is 2.25 (2)°. The C—C—C—O atoms of the propanol side chain are in a gauche conformation [torsion angle = −60.5 (2)°]. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(2) chains propagating in [100]. The O-bonded H atom is disordered over two sites of equal occupancy.

Related literature

For applications of the title compound, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1712-o1713.]); Murugavel et al. (2009[Murugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139-o140.]). For related structures, see: Chen et al. (2009[Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.]); Uludağ et al. (2010[Uludağ, N., Ateş, M., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, o1077.])

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /n

  • a = 5.2930 (6) Å

  • b = 12.5935 (16) Å

  • c = 17.954 (2) Å

  • β = 97.778 (6)°

  • V = 1185.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.986

  • 8147 measured reflections

  • 2721 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.142

  • S = 0.97

  • 2721 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1i 0.95 (2) 1.91 (3) 2.834 (3) 163 (6)
O1—H1OA⋯O1ii 0.89 (6) 1.96 (6) 2.850 (4) 172 (6)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C15H15NO, (I) is a carbazole based alcohol derivative. It has a tricyclic structure, consisting of two six-membered benzene ring fused on either side of a five-membered nitrogen-containing ring (Uludağ et al. 2010; Chen et al. 2009). A propan-1-ol group is linked to the nitrogen atom of the carbazole.

It is an important heterocyclic aromatic compound in which the alcohol group is used as a linker for the preparation of various carbazole derivatives (Murugavel et al. 2009; Chakkaravarthi et al. 2008). The tricyclic structure is essentially planar, making a dihedral angle of 2.25 (2)° with the two outer most aromatic rings. The crystal packing is stabilized by a bifurcated O—H···O interaction linking the molecules into chains along the a axis.

Related literature top

For applications of the title compound, see: Chakkaravarthi et al. (2008); Murugavel et al. (2009). For related structures, see: Chen et al. (2009); Uludağ et al. (2010)

Experimental top

Carbazole (5 g, 0.03 moles), sodium hydride (2.88 g, 0.12 moles) and dry THF (400 ml) were placed in a 3-neck round bottomed flask equipped with a magnetic stirrer. The flask was purged with dry N2 gas, sealed and placed in a salt ice-bath (-15 °C). The reaction mixture was allowed to stir for 1 h. 3-bromo-1-propanol (4 g, 0.03 mole), was then added slowly to the reaction mixture through a syringe. The reaction was allowed to continue for a period of 12 h, at ambient temperature. The product obtained was isolated by quenching the excess sodium hydride and the solvent was evaporated. The final product was dissolved in ethyl acetate, rinsed with water and dried with anhydrous MgSO4. The product was purified by column chromatography technique using 10% ethyl acetate in hexane as the eluent to obtain pure bright white crystals. Recrystallization of the compound from chloroform gave colourless blocks of (I).

Refinement top

The oxygen H atom was located in a diference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2Ueq(C)and methylene H atoms at Uiso (H) = 1.2Ueq(C). The oxygen H atom is disordered in two orientations.

Structure description top

The title compound, C15H15NO, (I) is a carbazole based alcohol derivative. It has a tricyclic structure, consisting of two six-membered benzene ring fused on either side of a five-membered nitrogen-containing ring (Uludağ et al. 2010; Chen et al. 2009). A propan-1-ol group is linked to the nitrogen atom of the carbazole.

It is an important heterocyclic aromatic compound in which the alcohol group is used as a linker for the preparation of various carbazole derivatives (Murugavel et al. 2009; Chakkaravarthi et al. 2008). The tricyclic structure is essentially planar, making a dihedral angle of 2.25 (2)° with the two outer most aromatic rings. The crystal packing is stabilized by a bifurcated O—H···O interaction linking the molecules into chains along the a axis.

For applications of the title compound, see: Chakkaravarthi et al. (2008); Murugavel et al. (2009). For related structures, see: Chen et al. (2009); Uludağ et al. (2010)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. The packing diagram showing the O—H···O interaction along the a axis.
3-(9H-Carbazol-9-yl)propan-1-ol top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.262 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1647 reflections
a = 5.2930 (6) Åθ = 2.3–23.5°
b = 12.5935 (16) ŵ = 0.08 mm1
c = 17.954 (2) ÅT = 298 K
β = 97.778 (6)°Block, colourless
V = 1185.8 (3) Å30.32 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2721 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 57
Tmin = 0.975, Tmax = 0.986k = 1616
8147 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2606P]
where P = (Fo2 + 2Fc2)/3
2721 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C15H15NOV = 1185.8 (3) Å3
Mr = 225.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2930 (6) ŵ = 0.08 mm1
b = 12.5935 (16) ÅT = 298 K
c = 17.954 (2) Å0.32 × 0.20 × 0.18 mm
β = 97.778 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2721 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1566 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.986Rint = 0.041
8147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.16 e Å3
2721 reflectionsΔρmin = 0.21 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2244 (4)0.30270 (16)0.27538 (14)0.0562 (6)
H10.10630.32690.23600.067*
C20.2145 (5)0.33733 (17)0.34732 (16)0.0648 (7)
H20.08950.38570.35650.078*
C30.3882 (5)0.30124 (17)0.40636 (14)0.0630 (7)
H30.37730.32590.45460.076*
C40.5764 (4)0.23001 (16)0.39565 (12)0.0519 (6)
H40.69220.20590.43570.062*
C50.5869 (3)0.19539 (14)0.32266 (11)0.0395 (5)
C60.6937 (3)0.11621 (14)0.21952 (11)0.0389 (5)
C70.8142 (4)0.05761 (15)0.16897 (12)0.0484 (5)
H70.95540.01550.18510.058*
C80.7165 (5)0.06429 (17)0.09406 (12)0.0562 (6)
H80.79490.02650.05900.067*
C90.5048 (5)0.12569 (17)0.06958 (13)0.0589 (6)
H90.44260.12800.01860.071*
C100.3857 (4)0.18309 (16)0.11946 (12)0.0527 (6)
H100.24300.22390.10260.063*
C110.4806 (3)0.17964 (14)0.19561 (11)0.0407 (5)
C120.4124 (4)0.23114 (14)0.26192 (11)0.0412 (5)
C130.9639 (3)0.06950 (15)0.34094 (11)0.0429 (5)
H13A1.00580.10620.38850.051*
H13B1.11250.07240.31480.051*
C140.9059 (4)0.04550 (14)0.35637 (11)0.0436 (5)
H14A0.86770.08220.30870.052*
H14B1.05760.07780.38340.052*
C150.6889 (4)0.06224 (17)0.40063 (12)0.0502 (5)
H15A0.53440.03270.37320.060*
H15B0.66230.13780.40670.060*
N10.7554 (3)0.12450 (12)0.29658 (9)0.0406 (4)
O10.7366 (3)0.01369 (15)0.47257 (9)0.0653 (5)
H1O0.594 (9)0.009 (6)0.500 (4)0.13 (2)*0.50
H1OA0.903 (11)0.012 (5)0.489 (4)0.10 (2)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (13)0.0443 (11)0.0776 (18)0.0071 (10)0.0148 (12)0.0099 (11)
C20.0610 (15)0.0465 (12)0.093 (2)0.0095 (11)0.0321 (15)0.0026 (13)
C30.0699 (16)0.0525 (13)0.0715 (17)0.0036 (13)0.0278 (14)0.0149 (12)
C40.0557 (13)0.0503 (12)0.0503 (14)0.0030 (11)0.0098 (10)0.0076 (10)
C50.0368 (10)0.0359 (9)0.0471 (12)0.0044 (9)0.0107 (9)0.0025 (9)
C60.0355 (10)0.0389 (10)0.0431 (12)0.0057 (9)0.0083 (9)0.0016 (9)
C70.0475 (12)0.0470 (11)0.0528 (13)0.0013 (10)0.0140 (10)0.0017 (10)
C80.0688 (15)0.0580 (13)0.0448 (13)0.0106 (12)0.0180 (11)0.0064 (11)
C90.0740 (16)0.0613 (13)0.0401 (13)0.0118 (13)0.0027 (11)0.0020 (11)
C100.0504 (12)0.0521 (12)0.0533 (14)0.0071 (10)0.0010 (10)0.0114 (11)
C110.0364 (11)0.0382 (10)0.0469 (12)0.0067 (9)0.0040 (9)0.0061 (9)
C120.0369 (10)0.0338 (9)0.0538 (13)0.0016 (9)0.0088 (9)0.0057 (9)
C130.0290 (10)0.0519 (11)0.0473 (12)0.0002 (9)0.0035 (9)0.0020 (9)
C140.0404 (11)0.0466 (11)0.0439 (12)0.0040 (9)0.0059 (9)0.0008 (9)
C150.0401 (12)0.0574 (12)0.0524 (14)0.0080 (10)0.0034 (10)0.0019 (10)
N10.0378 (9)0.0430 (8)0.0408 (10)0.0041 (7)0.0043 (7)0.0014 (7)
O10.0512 (11)0.0989 (13)0.0473 (10)0.0058 (10)0.0125 (8)0.0059 (9)
Geometric parameters (Å, º) top
C1—C21.371 (3)C9—C101.369 (3)
C1—C121.387 (3)C9—H90.9300
C1—H10.9300C10—C111.392 (3)
C2—C31.383 (3)C10—H100.9300
C2—H20.9300C11—C121.444 (3)
C3—C41.373 (3)C13—N11.447 (2)
C3—H30.9300C13—C141.514 (2)
C4—C51.389 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—N11.388 (2)C14—C151.497 (3)
C5—C121.405 (3)C14—H14A0.9700
C6—N11.382 (2)C14—H14B0.9700
C6—C71.390 (3)C15—O11.420 (3)
C6—C111.401 (3)C15—H15A0.9700
C7—C81.377 (3)C15—H15B0.9700
C7—H70.9300O1—H1O0.95 (2)
C8—C91.383 (3)O1—H1OA0.89 (6)
C8—H80.9300
C2—C1—C12119.4 (2)C10—C11—C6119.15 (18)
C2—C1—H1120.3C10—C11—C12134.31 (18)
C12—C1—H1120.3C6—C11—C12106.52 (17)
C1—C2—C3120.8 (2)C1—C12—C5118.99 (19)
C1—C2—H2119.6C1—C12—C11134.5 (2)
C3—C2—H2119.6C5—C12—C11106.53 (16)
C4—C3—C2121.8 (2)N1—C13—C14113.60 (15)
C4—C3—H3119.1N1—C13—H13A108.8
C2—C3—H3119.1C14—C13—H13A108.8
C3—C4—C5117.3 (2)N1—C13—H13B108.8
C3—C4—H4121.3C14—C13—H13B108.8
C5—C4—H4121.3H13A—C13—H13B107.7
N1—C5—C4129.05 (19)C15—C14—C13114.89 (16)
N1—C5—C12109.24 (17)C15—C14—H14A108.5
C4—C5—C12121.72 (18)C13—C14—H14A108.5
N1—C6—C7128.79 (18)C15—C14—H14B108.5
N1—C6—C11109.58 (16)C13—C14—H14B108.5
C7—C6—C11121.62 (19)H14A—C14—H14B107.5
C8—C7—C6117.4 (2)O1—C15—C14111.54 (16)
C8—C7—H7121.3O1—C15—H15A109.3
C6—C7—H7121.3C14—C15—H15A109.3
C7—C8—C9121.7 (2)O1—C15—H15B109.3
C7—C8—H8119.1C14—C15—H15B109.3
C9—C8—H8119.1H15A—C15—H15B108.0
C10—C9—C8120.8 (2)C6—N1—C5108.11 (15)
C10—C9—H9119.6C6—N1—C13125.06 (15)
C8—C9—H9119.6C5—N1—C13126.82 (16)
C9—C10—C11119.3 (2)C15—O1—H1O116 (5)
C9—C10—H10120.4C15—O1—H1OA111 (5)
C11—C10—H10120.4H1O—O1—H1OA130 (7)
C12—C1—C2—C30.4 (3)C4—C5—C12—C10.1 (3)
C1—C2—C3—C40.1 (3)N1—C5—C12—C110.46 (19)
C2—C3—C4—C50.2 (3)C4—C5—C12—C11179.76 (16)
C3—C4—C5—N1179.93 (18)C10—C11—C12—C11.0 (4)
C3—C4—C5—C120.2 (3)C6—C11—C12—C1179.4 (2)
N1—C6—C7—C8178.94 (18)C10—C11—C12—C5178.9 (2)
C11—C6—C7—C80.1 (3)C6—C11—C12—C50.46 (19)
C6—C7—C8—C90.8 (3)N1—C13—C14—C1561.9 (2)
C7—C8—C9—C100.6 (3)C13—C14—C15—O160.5 (2)
C8—C9—C10—C110.3 (3)C7—C6—N1—C5177.62 (18)
C9—C10—C11—C60.9 (3)C11—C6—N1—C51.5 (2)
C9—C10—C11—C12177.4 (2)C7—C6—N1—C131.3 (3)
N1—C6—C11—C10179.95 (16)C11—C6—N1—C13179.56 (16)
C7—C6—C11—C100.7 (3)C4—C5—N1—C6179.01 (18)
N1—C6—C11—C121.23 (19)C12—C5—N1—C61.22 (19)
C7—C6—C11—C12178.00 (16)C4—C5—N1—C130.1 (3)
C2—C1—C12—C50.4 (3)C12—C5—N1—C13179.89 (16)
C2—C1—C12—C11179.4 (2)C14—C13—N1—C678.8 (2)
N1—C5—C12—C1179.64 (15)C14—C13—N1—C5102.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.95 (2)1.91 (3)2.834 (3)163 (6)
O1—H1OA···O1ii0.89 (6)1.96 (6)2.850 (4)172 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.2930 (6), 12.5935 (16), 17.954 (2)
β (°) 97.778 (6)
V3)1185.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.975, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
8147, 2721, 1566
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.142, 0.97
No. of reflections2721
No. of parameters162
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.95 (2)1.91 (3)2.834 (3)163 (6)
O1—H1OA···O1ii0.89 (6)1.96 (6)2.850 (4)172 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1712–o1713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMurugavel, S., Ranjith, S., SubbiahPandi, A., Periyasami, G. & Raghunathan, R. (2009). Acta Cryst. E65, o139–o140.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUludağ, N., Ateş, M., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds