organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(4-methyl­phen­yl)phosphine selenide

aResearch Centre in Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: mulleraj@uj.ac.za

(Received 29 November 2010; accepted 2 December 2010; online 8 December 2010)

In the title mol­ecule, C21H21PSe or PSe(C7H7)3, the P atom has a distorted PSeC3 tetra­hedral environment, formed by the Se atom [P=Se = 2.1119 (5) Å] and three aryl rings. Two short intra­molecular C—H⋯Se contacts occur. In the crystal, weak inter­molecular C—H⋯Se inter­actions link the mol­ecules into zigzag double chains propagating in [100]. The previous report of this structure [Zhdanov et al. (1953[Zhdanov, G. S., Pospelov, V. A., Umanski, M. M. & Glushkova V. P. (1953). Dokl. Akad. Nauk SSSR (Russ.) (Proc. Nat. Acad. Sci. USSR), 92, 983-985.]). Dokl. Akad. Nauk SSSR (Russ.) (Proc. Nat. Acad. Sci. USSR), 92, 983–985] contained no geometrical data.

Related literature

For the previous structure determination, see: Zhdanov et al. (1953[Zhdanov, G. S., Pospelov, V. A., Umanski, M. M. & Glushkova V. P. (1953). Dokl. Akad. Nauk SSSR (Russ.) (Proc. Nat. Acad. Sci. USSR), 92, 983-985.]). For background to phospho­rus- and selenium-containing ligands, see: Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); For ligand cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21PSe

  • Mr = 383.31

  • Monoclinic, P 21 /c

  • a = 9.8330 (4) Å

  • b = 19.0584 (9) Å

  • c = 11.9136 (4) Å

  • β = 124.969 (2)°

  • V = 1829.55 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 100 K

  • 0.36 × 0.14 × 0.13 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.513, Tmax = 0.769

  • 12931 measured reflections

  • 4555 independent reflections

  • 3748 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.03

  • 4555 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Se 0.95 3.04 3.495 (2) 111
C12—H12⋯Sei 0.95 3.18 3.890 (2) 133
C2—H2B⋯Seii 0.98 3.09 4.067 (2) 176
C36—H36⋯Se 0.95 3.13 3.556 (2) 109
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller et al. 2008) This way there is no steric crowding effect, abeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] coneangles variation from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). The J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here, as part of the above continuing study, the single-crystal structure of the compound P(4—Me—C6H3)3 is presented. This was done as no geometrical data are available from the CCDC (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002) on the previously published structure reported by Zhdanov et al., 1953.

Crystals of the title compound, (I), packs in the P21/c (Z = 4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 161.1° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977).

The packing in the unit cell show Se-atoms forming dimeric units with bi-furcated H-atoms of C12. These units are propagated along the [100] direction with additional weak C—H···Se interactions (See Table 2, Fig. 2).

Related literature top

For the previous structure determination, see: Zhdanov (1953). For background to phosphorus- and selenium-containing ligands, see: Muller et al. (2006, 2008); Roodt et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002); For ligand cone angles, see: Tolman (1977).

Experimental top

SeP(4-Me-C6H3)3 and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN and the SeP(4-Me—C6H3)3 compound (ca 0.04 mmol) were dissolved in the minimum amounts of methanol (10 – 20 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give colourless blocks.

Analytical data: 31P {H} NMR (CDCl3, 121.42 MHz):δ = 34.60 (t, 1JP—Se = 717.6 Hz)

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) respectively, with torsion angles refined from the electron density for the methyl groups. The highest residual electron density is located 0.94 Å from Se.

Structure description top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own, with various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we are now also studying selenium bonded phosphorus ligands (see Muller et al. 2008) This way there is no steric crowding effect, abeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] coneangles variation from 156° to 167° was observed for the two phosphite ligands (Muller, et al. 2006). The J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here, as part of the above continuing study, the single-crystal structure of the compound P(4—Me—C6H3)3 is presented. This was done as no geometrical data are available from the CCDC (Cambridge Structural Database; Version 5.31, update of August; Allen, 2002) on the previously published structure reported by Zhdanov et al., 1953.

Crystals of the title compound, (I), packs in the P21/c (Z = 4) space group with the molecules lying on general positions. All geometrical features of the molecule (Allen, 2002) are as expected with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1 and Table 1). The cone angle was found to be 161.1° when the Se—P distance is adjusted to 2.28 Å (the default value used in Tolman, 1977).

The packing in the unit cell show Se-atoms forming dimeric units with bi-furcated H-atoms of C12. These units are propagated along the [100] direction with additional weak C—H···Se interactions (See Table 2, Fig. 2).

For the previous structure determination, see: Zhdanov (1953). For background to phosphorus- and selenium-containing ligands, see: Muller et al. (2006, 2008); Roodt et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002); For ligand cone angles, see: Tolman (1977).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.
[Figure 2] Fig. 2. Packing diagram of (I) showing the dimeric units formed and the propagation along [100] with H···Se links as dashed lines.
Tris(4-methylphenyl)phosphine selenide top
Crystal data top
C21H21PSeF(000) = 784
Mr = 383.31Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3903 reflections
a = 9.8330 (4) Åθ = 2.5–28.3°
b = 19.0584 (9) ŵ = 2.14 mm1
c = 11.9136 (4) ÅT = 100 K
β = 124.969 (2)°Block, colorless
V = 1829.55 (13) Å30.36 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4555 independent reflections
Graphite monochromator3748 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.032
ω and φ scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 139
Tmin = 0.513, Tmax = 0.769k = 2524
12931 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.6745P]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max = 0.006
211 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H21PSeV = 1829.55 (13) Å3
Mr = 383.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8330 (4) ŵ = 2.14 mm1
b = 19.0584 (9) ÅT = 100 K
c = 11.9136 (4) Å0.36 × 0.14 × 0.13 mm
β = 124.969 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3748 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.769Rint = 0.032
12931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
4555 reflectionsΔρmin = 0.30 e Å3
211 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 640 frames were collected with a frame width of 0.5° covering up to θ = 28.41° with 99.1% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se0.35082 (2)0.927791 (11)0.29390 (2)0.01903 (7)
P0.53055 (6)0.85475 (3)0.32421 (5)0.01317 (11)
C11.0689 (3)0.81013 (13)0.9344 (2)0.0271 (5)
H1A1.11480.85520.98060.041*
H1B1.15840.78060.94720.041*
H1C1.01640.78660.97350.041*
C20.8493 (3)0.94613 (13)0.0318 (2)0.0278 (5)
H2A0.80350.91710.05020.042*
H2B0.97000.94000.09190.042*
H2C0.82330.99550.00500.042*
C30.2520 (3)0.55993 (11)0.1189 (2)0.0255 (5)
H3A0.22970.55130.02860.038*
H3B0.14920.55440.11320.038*
H3C0.33480.52630.18500.038*
C110.6948 (2)0.84178 (10)0.50352 (18)0.0138 (4)
C120.7425 (2)0.89697 (11)0.59514 (19)0.0172 (4)
H120.69090.94150.56290.021*
C130.8654 (2)0.88729 (11)0.73382 (19)0.0193 (4)
H130.89780.92550.79530.023*
C140.9415 (2)0.82244 (12)0.78349 (19)0.0182 (4)
C150.8954 (2)0.76788 (11)0.6907 (2)0.0184 (4)
H150.94890.72370.72280.022*
C160.7729 (2)0.77686 (11)0.55230 (19)0.0169 (4)
H160.74210.73880.49070.020*
C210.6314 (2)0.88090 (10)0.24281 (19)0.0147 (4)
C220.8020 (2)0.88731 (10)0.31340 (19)0.0169 (4)
H220.87140.87660.40840.020*
C230.8724 (3)0.90939 (11)0.2458 (2)0.0192 (4)
H230.98950.91430.29570.023*
C240.7742 (3)0.92422 (10)0.1068 (2)0.0181 (4)
C250.6036 (3)0.91762 (12)0.0366 (2)0.0245 (5)
H250.53460.92750.05870.029*
C260.5322 (3)0.89686 (12)0.1030 (2)0.0246 (5)
H260.41490.89340.05330.030*
C310.4463 (2)0.76849 (10)0.25790 (18)0.0138 (4)
C320.4990 (3)0.72710 (11)0.1928 (2)0.0191 (4)
H320.58010.74460.18060.023*
C330.4336 (3)0.66068 (11)0.1462 (2)0.0210 (4)
H330.46930.63340.10090.025*
C340.3169 (2)0.63330 (11)0.16437 (19)0.0177 (4)
C350.2645 (3)0.67488 (11)0.2292 (2)0.0203 (4)
H350.18420.65700.24200.024*
C360.3273 (2)0.74153 (11)0.2750 (2)0.0187 (4)
H360.28940.76910.31830.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se0.01853 (11)0.01859 (11)0.01791 (10)0.00640 (8)0.00924 (9)0.00104 (8)
P0.0130 (2)0.0139 (2)0.0114 (2)0.00109 (19)0.0064 (2)0.00008 (17)
C10.0196 (11)0.0416 (14)0.0134 (10)0.0004 (10)0.0055 (9)0.0040 (9)
C20.0286 (12)0.0355 (14)0.0263 (11)0.0021 (10)0.0198 (10)0.0042 (9)
C30.0248 (11)0.0173 (11)0.0307 (12)0.0015 (9)0.0137 (10)0.0017 (8)
C110.0125 (9)0.0181 (10)0.0111 (8)0.0012 (7)0.0070 (7)0.0004 (7)
C120.0183 (10)0.0191 (10)0.0160 (9)0.0017 (8)0.0109 (8)0.0010 (7)
C130.0193 (10)0.0255 (11)0.0139 (9)0.0025 (9)0.0100 (9)0.0049 (8)
C140.0118 (9)0.0299 (12)0.0132 (9)0.0026 (8)0.0073 (8)0.0014 (8)
C150.0132 (9)0.0198 (10)0.0192 (10)0.0014 (8)0.0076 (8)0.0062 (8)
C160.0146 (9)0.0177 (10)0.0162 (9)0.0003 (8)0.0076 (8)0.0004 (7)
C210.0173 (10)0.0140 (9)0.0135 (9)0.0011 (8)0.0091 (8)0.0005 (7)
C220.0177 (10)0.0171 (10)0.0142 (9)0.0002 (8)0.0082 (8)0.0002 (7)
C230.0151 (10)0.0212 (11)0.0208 (10)0.0004 (8)0.0100 (9)0.0001 (8)
C240.0237 (10)0.0150 (10)0.0195 (10)0.0008 (8)0.0147 (9)0.0002 (7)
C250.0232 (11)0.0330 (13)0.0143 (9)0.0013 (10)0.0091 (9)0.0047 (8)
C260.0166 (10)0.0350 (13)0.0175 (10)0.0041 (9)0.0070 (9)0.0041 (9)
C310.0114 (9)0.0154 (10)0.0117 (8)0.0009 (7)0.0050 (8)0.0003 (7)
C320.0189 (10)0.0213 (11)0.0227 (10)0.0017 (8)0.0152 (9)0.0038 (8)
C330.0230 (11)0.0214 (11)0.0236 (10)0.0005 (9)0.0163 (9)0.0051 (8)
C340.0145 (9)0.0165 (10)0.0163 (9)0.0021 (8)0.0054 (8)0.0023 (7)
C350.0212 (10)0.0192 (11)0.0273 (11)0.0004 (9)0.0179 (10)0.0022 (8)
C360.0213 (11)0.0198 (10)0.0216 (10)0.0013 (8)0.0161 (9)0.0001 (8)
Geometric parameters (Å, º) top
Se—P2.1119 (5)C15—C161.387 (3)
P—C311.806 (2)C15—H150.9500
P—C211.810 (2)C16—H160.9500
P—C111.8106 (19)C21—C221.385 (3)
C1—C141.509 (3)C21—C261.398 (3)
C1—H1A0.9800C22—C231.395 (3)
C1—H1B0.9800C22—H220.9500
C1—H1C0.9800C23—C241.386 (3)
C2—C241.509 (3)C23—H230.9500
C2—H2A0.9800C24—C251.386 (3)
C2—H2B0.9800C25—C261.383 (3)
C2—H2C0.9800C25—H250.9500
C3—C341.503 (3)C26—H260.9500
C3—H3A0.9800C31—C361.395 (3)
C3—H3B0.9800C31—C321.397 (3)
C3—H3C0.9800C32—C331.384 (3)
C11—C121.390 (3)C32—H320.9500
C11—C161.395 (3)C33—C341.386 (3)
C12—C131.391 (3)C33—H330.9500
C12—H120.9500C34—C351.394 (3)
C13—C141.389 (3)C35—C361.381 (3)
C13—H130.9500C35—H350.9500
C14—C151.391 (3)C36—H360.9500
C31—P—C21105.74 (9)C15—C16—C11120.03 (18)
C31—P—C11105.50 (9)C15—C16—H16120.0
C21—P—C11106.11 (9)C11—C16—H16120.0
C31—P—Se113.32 (6)C22—C21—C26118.64 (18)
C21—P—Se112.88 (7)C22—C21—P122.94 (14)
C11—P—Se112.64 (7)C26—C21—P118.40 (15)
C14—C1—H1A109.5C21—C22—C23120.34 (18)
C14—C1—H1B109.5C21—C22—H22119.8
H1A—C1—H1B109.5C23—C22—H22119.8
C14—C1—H1C109.5C24—C23—C22120.98 (19)
H1A—C1—H1C109.5C24—C23—H23119.5
H1B—C1—H1C109.5C22—C23—H23119.5
C24—C2—H2A109.5C25—C24—C23118.43 (19)
C24—C2—H2B109.5C25—C24—C2120.15 (18)
H2A—C2—H2B109.5C23—C24—C2121.41 (19)
C24—C2—H2C109.5C26—C25—C24121.11 (19)
H2A—C2—H2C109.5C26—C25—H25119.4
H2B—C2—H2C109.5C24—C25—H25119.4
C34—C3—H3A109.5C25—C26—C21120.48 (19)
C34—C3—H3B109.5C25—C26—H26119.8
H3A—C3—H3B109.5C21—C26—H26119.8
C34—C3—H3C109.5C36—C31—C32118.80 (18)
H3A—C3—H3C109.5C36—C31—P118.96 (15)
H3B—C3—H3C109.5C32—C31—P122.22 (15)
C12—C11—C16119.12 (17)C33—C32—C31120.29 (19)
C12—C11—P119.65 (15)C33—C32—H32119.9
C16—C11—P121.22 (14)C31—C32—H32119.9
C11—C12—C13120.32 (19)C32—C33—C34121.15 (19)
C11—C12—H12119.8C32—C33—H33119.4
C13—C12—H12119.8C34—C33—H33119.4
C14—C13—C12120.87 (19)C33—C34—C35118.29 (19)
C14—C13—H13119.6C33—C34—C3120.78 (19)
C12—C13—H13119.6C35—C34—C3120.90 (19)
C13—C14—C15118.43 (18)C36—C35—C34121.24 (19)
C13—C14—C1121.52 (19)C36—C35—H35119.4
C15—C14—C1120.0 (2)C34—C35—H35119.4
C16—C15—C14121.20 (19)C35—C36—C31120.22 (19)
C16—C15—H15119.4C35—C36—H36119.9
C14—C15—H15119.4C31—C36—H36119.9
C31—P—C11—C12155.80 (16)C21—C22—C23—C241.1 (3)
C21—P—C11—C1292.29 (17)C22—C23—C24—C251.0 (3)
Se—P—C11—C1231.70 (17)C22—C23—C24—C2178.22 (19)
C31—P—C11—C1623.05 (18)C23—C24—C25—C260.1 (3)
C21—P—C11—C1688.86 (17)C2—C24—C25—C26179.3 (2)
Se—P—C11—C16147.15 (14)C24—C25—C26—C211.0 (4)
C16—C11—C12—C130.6 (3)C22—C21—C26—C250.9 (3)
P—C11—C12—C13178.27 (15)P—C21—C26—C25179.49 (18)
C11—C12—C13—C140.6 (3)C21—P—C31—C36164.39 (15)
C12—C13—C14—C151.9 (3)C11—P—C31—C3683.44 (16)
C12—C13—C14—C1176.97 (19)Se—P—C31—C3640.24 (16)
C13—C14—C15—C162.0 (3)C21—P—C31—C3217.16 (19)
C1—C14—C15—C16176.88 (18)C11—P—C31—C3295.02 (17)
C14—C15—C16—C110.8 (3)Se—P—C31—C32141.31 (15)
C12—C11—C16—C150.5 (3)C36—C31—C32—C330.1 (3)
P—C11—C16—C15178.35 (15)P—C31—C32—C33178.60 (16)
C31—P—C21—C22111.10 (18)C31—C32—C33—C340.9 (3)
C11—P—C21—C220.6 (2)C32—C33—C34—C351.0 (3)
Se—P—C21—C22124.48 (16)C32—C33—C34—C3177.32 (19)
C31—P—C21—C2670.41 (18)C33—C34—C35—C360.3 (3)
C11—P—C21—C26177.85 (17)C3—C34—C35—C36178.00 (19)
Se—P—C21—C2654.02 (18)C34—C35—C36—C310.4 (3)
C26—C21—C22—C230.1 (3)C32—C31—C36—C350.5 (3)
P—C21—C22—C23178.38 (15)P—C31—C36—C35177.98 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Se0.953.043.495 (2)111
C12—H12···Sei0.953.183.890 (2)133
C2—H2B···Seii0.983.094.067 (2)176
C36—H36···Se0.953.133.556 (2)109
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H21PSe
Mr383.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.8330 (4), 19.0584 (9), 11.9136 (4)
β (°) 124.969 (2)
V3)1829.55 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.36 × 0.14 × 0.13
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.513, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
12931, 4555, 3748
Rint0.032
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.03
No. of reflections4555
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Se0.953.043.495 (2)111
C12—H12···Sei0.953.183.890 (2)133
C2—H2B···Seii0.983.094.067 (2)176
C36—H36···Se0.953.133.556 (2)109
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationZhdanov, G. S., Pospelov, V. A., Umanski, M. M. & Glushkova V. P. (1953). Dokl. Akad. Nauk SSSR (Russ.) (Proc. Nat. Acad. Sci. USSR), 92, 983–985.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds