organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-(2-furyl­methyl­­idene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 5 December 2010; accepted 6 December 2010; online 11 December 2010)

The asymmetric unit of the title compound, C7H8N2O3, contains two approximately planar mol­ecules (r.m.s. deviations = 0.058 and 0.070 Å). In the crystal, mol­ecules are linked into [010] chains by way of alternating N—H⋯O and N—H⋯(N,O) hydrogen-bond linkages.

Related literature

For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O3

  • Mr = 168.15

  • Monoclinic, C 2

  • a = 14.668 (5) Å

  • b = 7.7356 (15) Å

  • c = 14.720 (3) Å

  • β = 104.11 (4)°

  • V = 1619.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 7823 measured reflections

  • 3695 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.186

  • S = 0.89

  • 3695 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.86 2.07 2.867 (4) 155
N3—H3A⋯O2 0.86 2.30 3.085 (4) 152
N3—H3A⋯N2 0.86 2.53 3.232 (3) 140
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of methyl carbazate (0.1 mol), and furfural (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.085 mol, yield 85%). Colourless blocks of the title compound were obtained by recrystallization from ethanol at room temperature.

Refinement top

The absolute structure was indeterminate in the present study. H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

For a related structure, see: Li & Jian (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids.
Methyl 3-(2-furylmethylidene)carbazate top
Crystal data top
C7H8N2O3F(000) = 704
Mr = 168.15Dx = 1.379 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 14.668 (5) ÅCell parameters from 3695 reflections
b = 7.7356 (15) Åθ = 3.2–27.5°
c = 14.720 (3) ŵ = 0.11 mm1
β = 104.11 (4)°T = 293 K
V = 1619.8 (7) Å3Block, colorless
Z = 80.25 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2600 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.117
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
phi and ω scansh = 1618
7823 measured reflectionsk = 910
3695 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C7H8N2O3V = 1619.8 (7) Å3
Mr = 168.15Z = 8
Monoclinic, C2Mo Kα radiation
a = 14.668 (5) ŵ = 0.11 mm1
b = 7.7356 (15) ÅT = 293 K
c = 14.720 (3) Å0.25 × 0.22 × 0.18 mm
β = 104.11 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2600 reflections with I > 2σ(I)
7823 measured reflectionsRint = 0.117
3695 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.186H-atom parameters constrained
S = 0.89Δρmax = 0.37 e Å3
3695 reflectionsΔρmin = 0.28 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.18498 (16)0.9708 (3)0.08083 (14)0.0286 (5)
N40.22925 (19)0.8558 (3)0.25908 (17)0.0242 (5)
N30.1797 (2)0.7585 (3)0.18594 (17)0.0281 (6)
H3A0.15950.65720.19510.034*
O40.33569 (18)1.0262 (3)0.41175 (15)0.0358 (6)
O60.1200 (2)0.7115 (3)0.03597 (15)0.0397 (7)
C80.2972 (2)0.8690 (4)0.4211 (2)0.0276 (7)
C120.2438 (2)0.7836 (4)0.3391 (2)0.0260 (7)
H12A0.21940.67410.34430.031*
C130.1635 (2)0.8259 (4)0.0994 (2)0.0261 (7)
C90.3199 (3)0.8194 (5)0.5124 (2)0.0376 (9)
H9A0.30200.71800.53710.045*
C140.0973 (4)0.7748 (5)0.0591 (2)0.0489 (11)
H14A0.06660.68530.10050.073*
H14B0.15390.80860.07590.073*
H14C0.05620.87280.06400.073*
C110.3764 (3)0.9529 (6)0.5622 (2)0.0419 (9)
H11A0.40320.95640.62630.050*
C100.3839 (3)1.0730 (6)0.4994 (2)0.0421 (9)
H10A0.41761.17540.51370.051*
O20.04032 (17)0.4665 (3)0.19917 (14)0.0296 (5)
N10.1456 (2)0.2564 (4)0.18947 (19)0.0291 (6)
H1A0.15390.15310.17150.035*
N20.22041 (19)0.3544 (3)0.23547 (17)0.0265 (6)
C60.0590 (2)0.3252 (4)0.1731 (2)0.0272 (7)
O30.00370 (18)0.2153 (3)0.12255 (17)0.0371 (6)
C50.3004 (2)0.2814 (4)0.2473 (2)0.0264 (7)
H5A0.30370.16870.22640.032*
O10.37821 (19)0.5284 (3)0.3290 (2)0.0509 (8)
C10.3852 (2)0.3697 (4)0.2920 (2)0.0282 (7)
C20.4759 (3)0.3280 (5)0.3040 (2)0.0348 (8)
H2B0.49950.22570.28570.042*
C70.0995 (3)0.2726 (6)0.0996 (3)0.0501 (10)
H7A0.13860.18570.06290.075*
H7B0.10460.37800.06440.075*
H7C0.11940.29240.15620.075*
C40.5291 (3)0.4693 (6)0.3499 (3)0.0463 (10)
H4B0.59430.47810.36690.056*
C30.4682 (3)0.5862 (6)0.3638 (3)0.0587 (13)
H3B0.48420.69240.39290.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0362 (13)0.0239 (12)0.0235 (10)0.0029 (10)0.0033 (9)0.0002 (8)
N40.0261 (13)0.0244 (14)0.0213 (12)0.0009 (11)0.0044 (9)0.0031 (10)
N30.0392 (16)0.0191 (12)0.0258 (13)0.0054 (11)0.0074 (11)0.0036 (10)
O40.0394 (15)0.0431 (15)0.0218 (11)0.0052 (11)0.0018 (10)0.0004 (9)
O60.0650 (19)0.0328 (14)0.0197 (11)0.0137 (12)0.0070 (11)0.0089 (9)
C80.0252 (17)0.033 (2)0.0244 (15)0.0089 (13)0.0056 (12)0.0049 (12)
C120.0236 (15)0.0287 (17)0.0274 (15)0.0047 (12)0.0093 (12)0.0010 (12)
C130.0276 (16)0.0272 (17)0.0249 (15)0.0004 (13)0.0090 (12)0.0056 (12)
C90.040 (2)0.049 (2)0.0234 (16)0.0136 (17)0.0078 (14)0.0077 (14)
C140.078 (3)0.046 (2)0.0189 (16)0.018 (2)0.0044 (17)0.0067 (15)
C110.038 (2)0.064 (3)0.0198 (15)0.0132 (18)0.0010 (14)0.0020 (16)
C100.044 (2)0.052 (2)0.0260 (17)0.0013 (18)0.0013 (15)0.0107 (16)
O20.0335 (12)0.0265 (12)0.0247 (11)0.0025 (10)0.0006 (9)0.0045 (9)
N10.0292 (15)0.0200 (13)0.0360 (14)0.0038 (11)0.0039 (11)0.0066 (10)
N20.0294 (15)0.0209 (13)0.0273 (13)0.0028 (11)0.0035 (10)0.0039 (10)
C60.0319 (18)0.0264 (16)0.0206 (14)0.0028 (13)0.0015 (12)0.0025 (12)
O30.0319 (14)0.0315 (14)0.0434 (14)0.0036 (10)0.0006 (11)0.0118 (10)
C50.0294 (17)0.0275 (16)0.0223 (14)0.0021 (12)0.0062 (12)0.0001 (11)
O10.0242 (14)0.0374 (15)0.088 (2)0.0019 (11)0.0086 (13)0.0304 (14)
C10.0311 (18)0.0256 (17)0.0284 (16)0.0014 (13)0.0082 (13)0.0049 (12)
C20.0346 (19)0.0350 (18)0.0327 (17)0.0130 (15)0.0043 (14)0.0072 (14)
C70.033 (2)0.051 (2)0.058 (2)0.0012 (18)0.0055 (17)0.016 (2)
C40.0242 (19)0.055 (2)0.055 (2)0.0022 (17)0.0021 (16)0.023 (2)
C30.025 (2)0.054 (3)0.093 (3)0.0031 (18)0.006 (2)0.035 (2)
Geometric parameters (Å, º) top
O5—C131.214 (4)O2—C61.211 (4)
N4—C121.273 (4)N1—C61.344 (4)
N4—N31.368 (3)N1—N21.369 (4)
N3—C131.343 (4)N1—H1A0.8600
N3—H3A0.8600N2—C51.275 (4)
O4—C101.360 (4)C6—O31.338 (4)
O4—C81.361 (4)O3—C71.432 (5)
O6—C131.331 (4)C5—C11.431 (4)
O6—C141.442 (4)C5—H5A0.9300
C8—C91.359 (4)O1—C11.357 (4)
C8—C121.430 (4)O1—C31.370 (5)
C12—H12A0.9300C1—C21.339 (5)
C9—C111.412 (6)C2—C41.414 (6)
C9—H9A0.9300C2—H2B0.9300
C14—H14A0.9600C7—H7A0.9600
C14—H14B0.9600C7—H7B0.9600
C14—H14C0.9600C7—H7C0.9600
C11—C101.334 (6)C4—C31.321 (6)
C11—H11A0.9300C4—H4B0.9300
C10—H10A0.9300C3—H3B0.9300
C12—N4—N3115.1 (3)C6—N1—N2118.5 (3)
C13—N3—N4118.1 (3)C6—N1—H1A120.7
C13—N3—H3A121.0N2—N1—H1A120.7
N4—N3—H3A121.0C5—N2—N1115.0 (3)
C10—O4—C8105.9 (3)O2—C6—O3124.8 (3)
C13—O6—C14114.4 (3)O2—C6—N1125.3 (3)
C9—C8—O4110.1 (3)O3—C6—N1109.9 (3)
C9—C8—C12131.0 (3)C6—O3—C7115.9 (3)
O4—C8—C12118.9 (3)N2—C5—C1121.2 (3)
N4—C12—C8120.8 (3)N2—C5—H5A119.4
N4—C12—H12A119.6C1—C5—H5A119.4
C8—C12—H12A119.6C1—O1—C3106.6 (3)
O5—C13—O6124.2 (3)C2—C1—O1109.6 (3)
O5—C13—N3125.2 (3)C2—C1—C5132.1 (3)
O6—C13—N3110.6 (3)O1—C1—C5118.4 (3)
C8—C9—C11106.2 (3)C1—C2—C4106.9 (3)
C8—C9—H9A126.9C1—C2—H2B126.5
C11—C9—H9A126.9C4—C2—H2B126.5
O6—C14—H14A109.5O3—C7—H7A109.5
O6—C14—H14B109.5O3—C7—H7B109.5
H14A—C14—H14B109.5H7A—C7—H7B109.5
O6—C14—H14C109.5O3—C7—H7C109.5
H14A—C14—H14C109.5H7A—C7—H7C109.5
H14B—C14—H14C109.5H7B—C7—H7C109.5
C10—C11—C9106.6 (3)C3—C4—C2106.8 (3)
C10—C11—H11A126.7C3—C4—H4B126.6
C9—C11—H11A126.7C2—C4—H4B126.6
C11—C10—O4111.1 (4)C4—C3—O1110.2 (4)
C11—C10—H10A124.4C4—C3—H3B124.9
O4—C10—H10A124.4O1—C3—H3B124.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.072.867 (4)155
N3—H3A···O20.862.303.085 (4)152
N3—H3A···N20.862.533.232 (3)140
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H8N2O3
Mr168.15
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)14.668 (5), 7.7356 (15), 14.720 (3)
β (°) 104.11 (4)
V3)1619.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7823, 3695, 2600
Rint0.117
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.186, 0.89
No. of reflections3695
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.862.072.867 (4)155
N3—H3A···O20.862.303.085 (4)152
N3—H3A···N20.862.533.232 (3)140
Symmetry code: (i) x, y1, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds