organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­­oxy)acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 December 2010; accepted 11 December 2010; online 18 December 2010)

In the title compound, C9H12N2O2, the acetohydrazide group is approximately planar [maximum deviation = 0.034 (2) Å]. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds into infinite two-dimensional networks parallel to (001).

Related literature

For general background to and the biological activity of hydrazide derivatives, see: Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Holla & Udupa (1992[Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305-318.]); Ozdemir et al. (2009[Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825-831.]); Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Yale et al. (1953[Yale, H. L., Losee, K., Martins, J., Holsing, M., Perry, F. M. & Bernstein, J. (1953). J. Am. Chem. Soc. 75, 1933-1942.]). For the preparation of title compound, see: Conti (1964[Conti, L. (1964). Boll. Sci. Fac. Chim. Ind. Bologna, 22, 13-16.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184-o1185.], 2010a[Fun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010a). Acta Cryst. E66, o31-o32.],b[Fun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010b). Acta Cryst. E66, o53-o54.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2O2

  • Mr = 180.21

  • Monoclinic, P 21 /c

  • a = 6.3833 (2) Å

  • b = 4.0755 (1) Å

  • c = 35.9741 (12) Å

  • β = 90.018 (2)°

  • V = 935.87 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.46 × 0.33 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.991

  • 15060 measured reflections

  • 2150 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.149

  • S = 1.14

  • 2150 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.92 (3) 2.17 (3) 2.982 (3) 147 (2)
N2—H2N2⋯O2ii 0.90 (3) 2.14 (3) 3.022 (3) 168 (3)
N2—H1N2⋯O2iii 0.98 (3) 2.47 (3) 3.166 (3) 128 (2)
C1—H1A⋯O2iv 0.93 2.53 3.410 (3) 157
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The full therapeutic possibilities of hydrazides were realized after the discovery of isonicotinic acid hydrazide (INH). Hydrazides and their derivatives have been described as useful synthons of various heterocyclic rings (Isloor et al., 2009; Holla & Udupa, 1992). A large number of hydrazides and their derivatives are reported to possess a broad spectrum of biological activities (Ozdemir et al., 2009; Khattab, 2005). The most widely used method to prepare hydrazides is hydrazinolysis of the corresponding esters with hydrazine hydrate (Yale et al., 1953). Prompted by the diverse activities of hydrazides and its derivatives, we have synthesized the title compound to study its crystal structure.

The molecular structure is shown in Fig. 1. The acetohydrazide group (C7/C8/N1/N2/O2) is approximately planar, with the maximum deviation of 0.034 (2) Å at atom C7. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009, 2010a,b). In the solid state (Fig. 2), the molecules are linked via intermolecular N2–H1N2···O2, N2–H2N2···O2 and C1–H1A···O2 trifurcated acceptor bonds, together with N1–H1N1···N2 hydrogen bonds, into infinite two-dimensional networks parallel to plane (001).

Related literature top

For general background to and the biological activity of hydrazide derivatives, see: Isloor et al. (2009); Holla & Udupa (1992); Ozdemir et al. (2009); Khattab (2005); Yale et al. (1953). For the preparation of title compound, see: Conti (1964). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009, 2010a,b).

Experimental top

Ethyl(4-methylphenoxy)acetate (1.94 g, 0.01 mol) and hydrazine hydrate (99%, 0.02 mol) in ethanol (15 ml) was heated on a water-bath for 6 h. Excess ethanol was removed by distillation. On cooling, colourless needle-shaped crystals of 2-(4-methylphenoxy)acetohydrazide begin to separate. It was collected by filtration and recrystallized from ethanol. Yield: 1.2 g, 67.0 %, M.p.: 411-413K. (Conti, 1964).

Refinement top

H1N1, H1N2 and H2N2 were located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 –0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The highest residual electron density peak is located at 0.94 Å from H9C and the deepest hole is located at 0.94 Å from C8.

Structure description top

The full therapeutic possibilities of hydrazides were realized after the discovery of isonicotinic acid hydrazide (INH). Hydrazides and their derivatives have been described as useful synthons of various heterocyclic rings (Isloor et al., 2009; Holla & Udupa, 1992). A large number of hydrazides and their derivatives are reported to possess a broad spectrum of biological activities (Ozdemir et al., 2009; Khattab, 2005). The most widely used method to prepare hydrazides is hydrazinolysis of the corresponding esters with hydrazine hydrate (Yale et al., 1953). Prompted by the diverse activities of hydrazides and its derivatives, we have synthesized the title compound to study its crystal structure.

The molecular structure is shown in Fig. 1. The acetohydrazide group (C7/C8/N1/N2/O2) is approximately planar, with the maximum deviation of 0.034 (2) Å at atom C7. Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009, 2010a,b). In the solid state (Fig. 2), the molecules are linked via intermolecular N2–H1N2···O2, N2–H2N2···O2 and C1–H1A···O2 trifurcated acceptor bonds, together with N1–H1N1···N2 hydrogen bonds, into infinite two-dimensional networks parallel to plane (001).

For general background to and the biological activity of hydrazide derivatives, see: Isloor et al. (2009); Holla & Udupa (1992); Ozdemir et al. (2009); Khattab (2005); Yale et al. (1953). For the preparation of title compound, see: Conti (1964). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2009, 2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(4-Methylphenoxy)acetohydrazide top
Crystal data top
C9H12N2O2F(000) = 384
Mr = 180.21Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4756 reflections
a = 6.3833 (2) Åθ = 3.2–25.4°
b = 4.0755 (1) ŵ = 0.09 mm1
c = 35.9741 (12) ÅT = 296 K
β = 90.018 (2)°Block, colourless
V = 935.87 (5) Å30.46 × 0.33 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2150 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.959, Tmax = 0.991k = 55
15060 measured reflectionsl = 4645
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.8025P]
where P = (Fo2 + 2Fc2)/3
2150 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H12N2O2V = 935.87 (5) Å3
Mr = 180.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3833 (2) ŵ = 0.09 mm1
b = 4.0755 (1) ÅT = 296 K
c = 35.9741 (12) Å0.46 × 0.33 × 0.10 mm
β = 90.018 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2150 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1747 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.991Rint = 0.042
15060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.21 e Å3
2150 reflectionsΔρmin = 0.16 e Å3
131 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8895 (2)0.9310 (5)0.16293 (4)0.0486 (5)
O20.5021 (2)0.4131 (5)0.20181 (5)0.0518 (5)
N10.8051 (3)0.6119 (5)0.22475 (5)0.0386 (5)
N20.7875 (3)0.4400 (6)0.25893 (6)0.0424 (5)
C11.1646 (4)1.1960 (7)0.13257 (7)0.0492 (6)
H1A1.22591.22950.15570.059*
C21.2626 (4)1.3059 (7)0.10089 (8)0.0568 (7)
H2A1.39121.41130.10300.068*
C31.1765 (5)1.2649 (7)0.06605 (8)0.0581 (7)
C40.9852 (5)1.1122 (8)0.06415 (7)0.0614 (8)
H4A0.92261.08430.04100.074*
C50.8816 (4)0.9975 (7)0.09561 (7)0.0529 (7)
H5A0.75140.89670.09350.063*
C60.9740 (3)1.0352 (6)0.12983 (6)0.0407 (5)
C70.7042 (3)0.7393 (6)0.16147 (6)0.0405 (5)
H7A0.71830.57310.14230.049*
H7B0.58640.87840.15500.049*
C80.6637 (3)0.5776 (6)0.19811 (6)0.0374 (5)
C91.2895 (6)1.3842 (10)0.03148 (9)0.0890 (11)
H9A1.36021.20330.01990.133*
H9B1.39001.54890.03830.133*
H9C1.18971.47610.01440.133*
H1N10.919 (4)0.745 (7)0.2202 (7)0.058 (8)*
H2N20.712 (5)0.572 (8)0.2738 (8)0.066 (9)*
H1N20.705 (5)0.243 (9)0.2537 (8)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0452 (9)0.0592 (11)0.0415 (9)0.0185 (8)0.0003 (7)0.0002 (8)
O20.0347 (8)0.0604 (11)0.0604 (11)0.0179 (8)0.0005 (7)0.0015 (9)
N10.0297 (9)0.0437 (11)0.0424 (10)0.0053 (8)0.0015 (7)0.0008 (9)
N20.0350 (10)0.0473 (12)0.0448 (11)0.0032 (9)0.0032 (8)0.0029 (10)
C10.0411 (12)0.0547 (15)0.0519 (14)0.0064 (11)0.0038 (10)0.0032 (12)
C20.0443 (13)0.0590 (17)0.0671 (18)0.0089 (12)0.0074 (12)0.0027 (14)
C30.0676 (17)0.0532 (16)0.0534 (16)0.0053 (14)0.0135 (13)0.0042 (13)
C40.0749 (19)0.0663 (19)0.0431 (14)0.0118 (16)0.0020 (13)0.0015 (13)
C50.0507 (14)0.0592 (17)0.0487 (14)0.0118 (13)0.0026 (11)0.0002 (12)
C60.0405 (11)0.0396 (12)0.0418 (12)0.0001 (10)0.0020 (9)0.0010 (10)
C70.0329 (11)0.0430 (13)0.0455 (13)0.0068 (10)0.0008 (9)0.0037 (10)
C80.0283 (10)0.0385 (11)0.0453 (12)0.0015 (9)0.0027 (8)0.0053 (10)
C90.107 (3)0.091 (3)0.070 (2)0.022 (2)0.0300 (19)0.010 (2)
Geometric parameters (Å, º) top
O1—C61.375 (3)C3—C41.372 (4)
O1—C71.418 (3)C3—C91.518 (4)
O2—C81.238 (3)C4—C51.392 (4)
N1—C81.323 (3)C4—H4A0.9300
N1—N21.420 (3)C5—C61.374 (3)
N1—H1N10.92 (3)C5—H5A0.9300
N2—H2N20.90 (3)C7—C81.496 (3)
N2—H1N20.98 (3)C7—H7A0.9700
C1—C21.375 (4)C7—H7B0.9700
C1—C61.385 (3)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.378 (4)C9—H9C0.9600
C2—H2A0.9300
C6—O1—C7117.73 (17)C6—C5—H5A120.4
C8—N1—N2121.39 (19)C4—C5—H5A120.4
C8—N1—H1N1118.1 (16)C5—C6—O1125.0 (2)
N2—N1—H1N1120.5 (16)C5—C6—C1119.6 (2)
N1—N2—H2N2105.3 (19)O1—C6—C1115.4 (2)
N1—N2—H1N2106.3 (17)O1—C7—C8110.74 (17)
H2N2—N2—H1N2108 (2)O1—C7—H7A109.5
C2—C1—C6119.7 (2)C8—C7—H7A109.5
C2—C1—H1A120.2O1—C7—H7B109.5
C6—C1—H1A120.2C8—C7—H7B109.5
C1—C2—C3122.2 (2)H7A—C7—H7B108.1
C1—C2—H2A118.9O2—C8—N1123.2 (2)
C3—C2—H2A118.9O2—C8—C7118.52 (19)
C4—C3—C2117.1 (2)N1—C8—C7118.25 (19)
C4—C3—C9121.8 (3)C3—C9—H9A109.5
C2—C3—C9121.1 (3)C3—C9—H9B109.5
C3—C4—C5122.3 (3)H9A—C9—H9B109.5
C3—C4—H4A118.8C3—C9—H9C109.5
C5—C4—H4A118.8H9A—C9—H9C109.5
C6—C5—C4119.2 (2)H9B—C9—H9C109.5
C6—C1—C2—C30.7 (4)C7—O1—C6—C1174.4 (2)
C1—C2—C3—C40.9 (5)C2—C1—C6—C52.3 (4)
C1—C2—C3—C9179.1 (3)C2—C1—C6—O1179.2 (2)
C2—C3—C4—C50.9 (5)C6—O1—C7—C8165.76 (19)
C9—C3—C4—C5179.1 (3)N2—N1—C8—O24.7 (3)
C3—C4—C5—C60.6 (5)N2—N1—C8—C7173.8 (2)
C4—C5—C6—O1179.4 (2)O1—C7—C8—O2176.8 (2)
C4—C5—C6—C12.2 (4)O1—C7—C8—N14.6 (3)
C7—O1—C6—C57.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.92 (3)2.17 (3)2.982 (3)147 (2)
N2—H2N2···O2ii0.90 (3)2.14 (3)3.022 (3)168 (3)
N2—H1N2···O2iii0.98 (3)2.47 (3)3.166 (3)128 (2)
C1—H1A···O2iv0.932.533.410 (3)157
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H12N2O2
Mr180.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.3833 (2), 4.0755 (1), 35.9741 (12)
β (°) 90.018 (2)
V3)935.87 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.33 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15060, 2150, 1747
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.149, 1.14
No. of reflections2150
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.92 (3)2.17 (3)2.982 (3)147 (2)
N2—H2N2···O2ii0.90 (3)2.14 (3)3.022 (3)168 (3)
N2—H1N2···O2iii0.98 (3)2.47 (3)3.166 (3)128 (2)
C1—H1A···O2iv0.932.533.410 (3)157.
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship. AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for a Young Scientist Award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConti, L. (1964). Boll. Sci. Fac. Chim. Ind. Bologna, 22, 13–16.  CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010a). Acta Cryst. E66, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Isloor, A. M., Sunil, D. & Shetty, P. (2010b). Acta Cryst. E66, o53–o54.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o1184–o1185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318.  PubMed CAS Web of Science Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOzdemir, A., Turan-Zitouni, G., Kaplancikli, Z. A. & Tunali, Y. (2009). J. Enzyme Inhib. Med. Chem. 24, 825–831.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYale, H. L., Losee, K., Martins, J., Holsing, M., Perry, F. M. & Bernstein, J. (1953). J. Am. Chem. Soc. 75, 1933–1942.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds