metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium bis­­[bis­­(1-benzyl-3-methyl­imidazolium)silver(I)] tris­­(hexa­fluoridophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 December 2010; accepted 11 December 2010; online 18 December 2010)

In the title compound, K[Ag(C11H12N2)2]2(PF6)3, the 12-coordinate potassium cation lies on a crystallographic twofold axis and one of the hexa­fluoro­phosphate anions is generated by [\overline{1}] symmetry. In the complex cation, the AgI ion is coordinated by two C atoms; the two imidazolium rings are orientated at a dihedral angle of 8.14 (14)°. In the 1-benzyl-3-methyl­imidazolium units, the dihedral angles between imidazolium and phenyl rings are 80.47 (15) and 76.53 (14)°. The F atoms of the general-position hexa­fluoro­phosphate anion are disordered over two sets of sites in a 0.767 (17):0.233 (17) ratio. In the crystal, the hexa­fluoro­phosphate anions link the cations into three-dimensional networks via inter­molecular C—H⋯F hydrogen bonds and are further consolidated by ππ stacking [centroid–centroid distances = 3.5518 (15) Å] inter­actions.

Related literature

For general background to and the biological activity of carbene derivatives, see: Lee et al. (2001[Lee, K.-M., Chen, J. C. C. & Lin, I. L. J. (2001). J. Organomet. Chem. 617-618, 364-375.]); Bourissou et al. (2000[Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39-91.]); Herrmann & Köcher (1997[Herrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]); Hermann et al. (1996[Hermann, W. A., Köcher, C., Gooben, L. J. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 1627-1636.]); Zhou et al. (2008[Zhou, Y., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205-215.]); Wang & Lin (1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]); Lin & Vasam (2007[Lin, I. J. B. & Vasam, C. S. (2007). Coord. Chem. Rev, 251, 642-670.]); Ray et al. (2007[Ray, S., Mohan, R., Singh, J. K., Samantaray, M. K., Shaikh, M. M., Panda, D. & Ghosh, P. (2007). J. Am. Chem. Soc. 129, 15042-15053.]); Özdemir et al. (2010[Özdemir, İ., Özcan, E. Ö., Günal, S. & Gürbüz, N. (2010). Molecules, 15, 2499-2508.]); Medvetz et al. (2008[Medvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, pp. 384010-384016.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Haque et al. (2010a[Haque, R. A., Washeel, A., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o2797-o2798.],b[Haque, R. A., Ghdhayeb, M. Z., Abdallah, H. H., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o80-o81.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • K[Ag(C11H12N2)2]2(PF6)3

  • Mr = 1378.65

  • Monoclinic, C 2/c

  • a = 19.917 (2) Å

  • b = 23.047 (2) Å

  • c = 11.5787 (12) Å

  • β = 103.108 (3)°

  • V = 5176.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.49 × 0.42 × 0.17 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.632, Tmax = 0.847

  • 66454 measured reflections

  • 7528 independent reflections

  • 7058 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.124

  • S = 1.11

  • 7528 reflections

  • 372 parameters

  • 51 restraints

  • H-atom parameters constrained

  • Δρmax = 1.68 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—C12 2.092 (2)
Ag1—C1 2.093 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯F1i 0.93 2.45 3.285 (5) 149
C15—H15A⋯F6 0.97 2.51 3.204 (5) 129
C15—H15B⋯F4i 0.97 2.51 3.415 (7) 156
C22—H22A⋯F6ii 0.96 2.42 3.171 (5) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Metal complexes of carbenes based on imidazol-2-ylidene have received much attention in the past few years (Lee et al., 2001). A major reason is that these N-heterocyclic carbenes(NHCs) can stabilize both high and low oxidation state metal ions and form stable complexes with a wide range of metals (Bourissou et al., 2000; Herrmann & Köcher, 1997; Hermann et al., 1996). Among these complexes, the family of silver NHC complexes have been receiving continuous attention (Zhou et al., 2008). The in-situ deprotonation method using Ag2O as a basic metal source developed by Lin and co-workers (Wang & Lin, 1998) has been widely employed to synthesise these Ag-NHC complexes. The silver complexes act as effective carbene transfer agents to other metals and are much more stable than the free carbene (Lin & Vasam, 2007). Biological activity of many Ag-NHC complexes as antimicrobial and antitumour agents has been confirmed (Ray et al., 2007; Özdemir et al., 2010; Medvetz et al., 2008).

The asymmetric unit of the title compound, (I), contains a bis(1-benzyl-3-methylimidazolium)silver(I) cation, a K cation and one and a half hexafluorophosphate anions (Fig. 1). The two imidazolium rings (N1/N2/C1-C3 and N3/N4/C12-C14) make a dihedral angle of 8.14 (14)°, indicating that they are almost parallel to each other. In the two 1-benzyl-3-methylimidazolium moieties [N1/N2/C1-C11 (A) and N3/N4/C12-C22 (B)], the dihedral angles between imidazolium and phenyl rings are 80.47 (15) and 76.53 (14)° in A and B, respectively. The P2 atom of the hexafluorophosphate anion is lying on a crystallographic inversion center (symmetry code: -x, -y, -z) whereas the 12-coordinate potassium cation (Fig. 2) lies on a crystallographic twofold axis (symmetry code: -x, y, -z+1/2). Six fluorine atoms (F1A-F6A) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.767 (17) : 0.233 (17). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Haque et al., 2010a,b)

In the crystal structure, (Fig. 3), the hexafluorophosphate anions link the cations into three-dimensional networks via intermolecular C14–H14A···F1, C15–H15A···F6, C15–H15BA···F4 and C22–H22A···F6 hydrogen bonds (Table 2) and are further consolidated by π-π stacking interactions between N1/N2/C1-C3 (centroid Cg1) and N3/N4/C12-C14 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.5518 (15) Å.

Related literature top

For general background to and the biological activity of carbene derivatives, see: Lee et al. (2001); Bourissou et al. (2000); Herrmann & Köcher (1997); Hermann et al. (1996); Zhou et al. (2008); Wang & Lin (1998); Lin & Vasam (2007); Ray et al. (2007); Özdemir et al. (2010); Medvetz et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Haque et al. (2010a,b).

For related literature, see: Allen et al. (1987).

Experimental top

To a stirred solution of 1-benzyl-3-methylimidazolium hexafluorophosphate (0.5 g, 1.57 mmol) in acetonitrile (40 ml), Ag2O (0.37 g, 1.6 mmol) was added. The mixture was refluxed at 70 °C for 18 h in glassware wrapped in aluminum foil to exclude the light. The mixture was filtered through celite to remove excess Ag2O and the solvent was evaporated under vacuum. The white residue was washed with diethyl ether (2 × 3 ml) to afford the complex as a white powder, the yield was 0.66 g, 70.3%, m. p. = 421-423 K. Colourless blocks of (I) were obtained by slow diffusion of diethyl ether into a solution of the complex in acetonitrile at ambient temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. Six fluorine atoms (F1A-F6A) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.767 (17) : 0.233 (17). The minor component of disorder was refined isotropically and subjected to rigid bond and similarity restraints. The highest residual electron density peak is located at 0.82 Å from Ag1 and the deepest hole is located at 0.69 Å from Ag1.

Structure description top

Metal complexes of carbenes based on imidazol-2-ylidene have received much attention in the past few years (Lee et al., 2001). A major reason is that these N-heterocyclic carbenes(NHCs) can stabilize both high and low oxidation state metal ions and form stable complexes with a wide range of metals (Bourissou et al., 2000; Herrmann & Köcher, 1997; Hermann et al., 1996). Among these complexes, the family of silver NHC complexes have been receiving continuous attention (Zhou et al., 2008). The in-situ deprotonation method using Ag2O as a basic metal source developed by Lin and co-workers (Wang & Lin, 1998) has been widely employed to synthesise these Ag-NHC complexes. The silver complexes act as effective carbene transfer agents to other metals and are much more stable than the free carbene (Lin & Vasam, 2007). Biological activity of many Ag-NHC complexes as antimicrobial and antitumour agents has been confirmed (Ray et al., 2007; Özdemir et al., 2010; Medvetz et al., 2008).

The asymmetric unit of the title compound, (I), contains a bis(1-benzyl-3-methylimidazolium)silver(I) cation, a K cation and one and a half hexafluorophosphate anions (Fig. 1). The two imidazolium rings (N1/N2/C1-C3 and N3/N4/C12-C14) make a dihedral angle of 8.14 (14)°, indicating that they are almost parallel to each other. In the two 1-benzyl-3-methylimidazolium moieties [N1/N2/C1-C11 (A) and N3/N4/C12-C22 (B)], the dihedral angles between imidazolium and phenyl rings are 80.47 (15) and 76.53 (14)° in A and B, respectively. The P2 atom of the hexafluorophosphate anion is lying on a crystallographic inversion center (symmetry code: -x, -y, -z) whereas the 12-coordinate potassium cation (Fig. 2) lies on a crystallographic twofold axis (symmetry code: -x, y, -z+1/2). Six fluorine atoms (F1A-F6A) of the hexafluorophosphate anion are disordered over two positions with refined site-occupancies of 0.767 (17) : 0.233 (17). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Haque et al., 2010a,b)

In the crystal structure, (Fig. 3), the hexafluorophosphate anions link the cations into three-dimensional networks via intermolecular C14–H14A···F1, C15–H15A···F6, C15–H15BA···F4 and C22–H22A···F6 hydrogen bonds (Table 2) and are further consolidated by π-π stacking interactions between N1/N2/C1-C3 (centroid Cg1) and N3/N4/C12-C14 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.5518 (15) Å.

For general background to and the biological activity of carbene derivatives, see: Lee et al. (2001); Bourissou et al. (2000); Herrmann & Köcher (1997); Hermann et al. (1996); Zhou et al. (2008); Wang & Lin (1998); Lin & Vasam (2007); Ray et al. (2007); Özdemir et al. (2010); Medvetz et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Haque et al. (2010a,b).

For related literature, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms. Both major and minor components of disorder are shown. Symmetry code: ($) -x, -y, -z. Coordination interactions between K cation and hexafluorophosphate anions have been omitted for clarity.
[Figure 2] Fig. 2. (a) Part of the crystal packing, highlighting the coordination environment for K cation. Displacement ellipsoids are drawn at the 30% probability level. Only major component of disorder is shown. (b) Extended coordination environment for K cations. Only major component of disorder is shown.
[Figure 3] Fig. 3. The crystal structure of (I), viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only major component of disorder is shown.
Potassium bis[bis(1-benzyl-3-methylimidazolium)silver(I)] tris(hexafluoridophosphate) top
Crystal data top
K[Ag(C11H12N2)2]2(PF6)3F(000) = 2752
Mr = 1378.65Dx = 1.769 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9934 reflections
a = 19.917 (2) Åθ = 2.5–37.7°
b = 23.047 (2) ŵ = 1.04 mm1
c = 11.5787 (12) ÅT = 100 K
β = 103.108 (3)°Block, colourless
V = 5176.4 (9) Å30.49 × 0.42 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
7528 independent reflections
Radiation source: fine-focus sealed tube7058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2827
Tmin = 0.632, Tmax = 0.847k = 3232
66454 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.072P)2 + 12.8353P]
where P = (Fo2 + 2Fc2)/3
7528 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 1.68 e Å3
51 restraintsΔρmin = 0.91 e Å3
Crystal data top
K[Ag(C11H12N2)2]2(PF6)3V = 5176.4 (9) Å3
Mr = 1378.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.917 (2) ŵ = 1.04 mm1
b = 23.047 (2) ÅT = 100 K
c = 11.5787 (12) Å0.49 × 0.42 × 0.17 mm
β = 103.108 (3)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
7528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7058 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.847Rint = 0.050
66454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03551 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.072P)2 + 12.8353P]
where P = (Fo2 + 2Fc2)/3
7528 reflectionsΔρmax = 1.68 e Å3
372 parametersΔρmin = 0.91 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.313945 (8)0.186742 (7)0.040241 (15)0.02197 (7)
N10.25175 (10)0.13210 (9)0.20778 (18)0.0220 (4)
N20.22372 (10)0.08198 (8)0.07022 (18)0.0219 (4)
N30.39227 (10)0.29823 (9)0.12655 (19)0.0236 (4)
N40.37731 (10)0.25291 (9)0.27988 (18)0.0227 (4)
C10.25902 (11)0.13002 (10)0.0883 (2)0.0205 (4)
C20.21334 (13)0.08620 (10)0.2628 (2)0.0250 (4)
H2A0.20200.07850.34370.030*
C30.19529 (12)0.05430 (10)0.1766 (2)0.0250 (4)
H3A0.16900.02050.18660.030*
C40.22223 (13)0.05954 (11)0.0474 (2)0.0257 (4)
H4A0.18220.03480.04140.031*
H4B0.21800.09170.09940.031*
C50.28652 (13)0.02546 (10)0.1002 (2)0.0240 (4)
C60.3103 (2)0.01707 (15)0.0352 (3)0.0424 (8)
H6A0.28720.02400.04290.051*
C70.3684 (2)0.04945 (18)0.0855 (3)0.0580 (11)
H7A0.38430.07770.04090.070*
C80.40217 (19)0.04004 (17)0.1999 (3)0.0491 (9)
H8A0.44050.06240.23370.059*
C90.37995 (17)0.00225 (15)0.2653 (3)0.0430 (7)
H9A0.40350.00880.34320.052*
C100.32197 (15)0.03570 (12)0.2157 (2)0.0310 (5)
H10A0.30730.06470.26020.037*
C110.28146 (14)0.17678 (12)0.2715 (2)0.0288 (5)
H11A0.29540.20950.22030.043*
H11B0.24760.18890.34010.043*
H11C0.32080.16120.29570.043*
C120.36699 (11)0.24814 (10)0.1601 (2)0.0210 (4)
C130.41715 (12)0.33379 (11)0.2217 (2)0.0272 (5)
H13A0.43630.37050.21960.033*
C140.40833 (14)0.30508 (12)0.3196 (2)0.0281 (5)
H14A0.42070.31790.39770.034*
C150.36321 (12)0.20739 (12)0.3596 (2)0.0267 (5)
H15A0.33390.17800.31380.032*
H15B0.33890.22400.41540.032*
C160.42893 (13)0.17983 (11)0.4265 (2)0.0242 (4)
C170.45994 (14)0.19764 (13)0.5417 (2)0.0303 (5)
H17A0.43960.22640.57860.036*
C180.52170 (15)0.17182 (16)0.6012 (3)0.0367 (6)
H18A0.54290.18430.67710.044*
C190.55127 (14)0.12872 (14)0.5493 (3)0.0362 (6)
H19A0.59180.11140.59060.043*
C200.52082 (16)0.11032 (13)0.4341 (3)0.0364 (6)
H20A0.54130.08120.39820.044*
C210.45960 (14)0.13608 (12)0.3739 (2)0.0304 (5)
H21A0.43900.12380.29760.036*
C220.39464 (16)0.31203 (12)0.0039 (3)0.0310 (5)
H22A0.35190.30090.04830.046*
H22B0.43190.29120.01710.046*
H22C0.40170.35300.00320.046*
K10.00000.08540 (3)0.25000.02658 (15)
P10.16091 (3)0.15499 (3)0.34572 (6)0.02586 (13)
F10.1121 (3)0.1369 (2)0.4315 (4)0.0663 (14)0.767 (17)
F20.2272 (4)0.1299 (3)0.4279 (6)0.079 (2)0.767 (17)
F30.1443 (3)0.0957 (2)0.2724 (5)0.0475 (11)0.767 (17)
F40.1743 (3)0.2155 (3)0.4111 (6)0.074 (2)0.767 (17)
F50.09354 (17)0.18170 (17)0.2567 (5)0.0448 (9)0.767 (17)
F60.20487 (19)0.1757 (3)0.2508 (3)0.0307 (8)0.767 (17)
F1A0.1259 (10)0.1383 (9)0.4538 (18)0.065 (4)*0.233 (17)
F2A0.2363 (8)0.1276 (6)0.4325 (14)0.035 (3)*0.233 (17)
F3A0.1448 (7)0.0905 (6)0.2965 (13)0.027 (2)*0.233 (17)
F4A0.1841 (8)0.2166 (5)0.4153 (12)0.029 (3)*0.233 (17)
F5A0.0936 (7)0.1771 (6)0.2895 (16)0.043 (3)*0.233 (17)
F6A0.2099 (8)0.1626 (7)0.2645 (16)0.045 (4)*0.233 (17)
P20.00000.00000.00000.02900 (19)
F70.00552 (14)0.06866 (9)0.0087 (2)0.0535 (5)
F80.05948 (12)0.00366 (12)0.1174 (2)0.0589 (6)
F90.05557 (11)0.00116 (10)0.0805 (2)0.0524 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02133 (11)0.02546 (11)0.01764 (11)0.00150 (5)0.00131 (7)0.00177 (5)
N10.0217 (8)0.0241 (9)0.0194 (8)0.0014 (7)0.0034 (7)0.0010 (7)
N20.0204 (8)0.0223 (8)0.0225 (9)0.0001 (7)0.0039 (7)0.0005 (7)
N30.0211 (8)0.0259 (9)0.0222 (9)0.0023 (7)0.0014 (7)0.0023 (7)
N40.0189 (8)0.0283 (9)0.0195 (9)0.0010 (7)0.0013 (7)0.0030 (7)
C10.0188 (9)0.0221 (9)0.0192 (9)0.0011 (7)0.0017 (7)0.0002 (7)
C20.0263 (10)0.0251 (10)0.0211 (10)0.0029 (8)0.0005 (8)0.0038 (8)
C30.0242 (10)0.0233 (10)0.0252 (11)0.0003 (8)0.0009 (8)0.0034 (8)
C40.0250 (10)0.0291 (11)0.0250 (11)0.0018 (8)0.0100 (9)0.0034 (9)
C50.0291 (11)0.0210 (9)0.0238 (10)0.0004 (8)0.0100 (9)0.0043 (8)
C60.067 (2)0.0360 (15)0.0256 (13)0.0220 (14)0.0136 (14)0.0044 (10)
C70.086 (3)0.053 (2)0.0436 (18)0.044 (2)0.0335 (19)0.0202 (16)
C80.0438 (16)0.0560 (19)0.0522 (19)0.0212 (15)0.0211 (15)0.0304 (16)
C90.0385 (15)0.0455 (16)0.0392 (16)0.0030 (12)0.0034 (12)0.0127 (13)
C100.0387 (13)0.0263 (11)0.0262 (12)0.0012 (10)0.0034 (10)0.0015 (9)
C110.0297 (12)0.0323 (11)0.0246 (11)0.0016 (9)0.0066 (9)0.0052 (9)
C120.0179 (9)0.0263 (10)0.0172 (9)0.0019 (7)0.0006 (7)0.0015 (7)
C130.0213 (10)0.0249 (10)0.0334 (12)0.0011 (8)0.0021 (9)0.0057 (9)
C140.0254 (11)0.0308 (11)0.0249 (11)0.0011 (9)0.0009 (9)0.0081 (9)
C150.0203 (10)0.0397 (13)0.0199 (10)0.0002 (9)0.0041 (8)0.0011 (9)
C160.0216 (10)0.0307 (11)0.0197 (10)0.0015 (8)0.0032 (8)0.0039 (8)
C170.0277 (12)0.0409 (13)0.0209 (11)0.0024 (10)0.0029 (9)0.0006 (10)
C180.0289 (12)0.0556 (17)0.0216 (12)0.0011 (12)0.0028 (10)0.0072 (11)
C190.0235 (11)0.0468 (15)0.0384 (14)0.0035 (10)0.0071 (10)0.0213 (12)
C200.0362 (14)0.0366 (13)0.0395 (15)0.0091 (11)0.0150 (12)0.0105 (11)
C210.0306 (12)0.0355 (13)0.0256 (11)0.0010 (10)0.0079 (9)0.0004 (9)
C220.0321 (13)0.0351 (13)0.0261 (12)0.0015 (9)0.0073 (10)0.0070 (9)
K10.0297 (3)0.0282 (3)0.0220 (3)0.0000.0061 (3)0.000
P10.0312 (3)0.0280 (3)0.0191 (3)0.0048 (2)0.0072 (2)0.0045 (2)
F10.100 (3)0.076 (2)0.0405 (19)0.052 (2)0.053 (2)0.0271 (16)
F20.069 (3)0.101 (4)0.049 (2)0.005 (2)0.023 (2)0.026 (2)
F30.066 (2)0.0377 (17)0.047 (2)0.0194 (14)0.0316 (19)0.0191 (17)
F40.079 (4)0.066 (2)0.092 (3)0.042 (2)0.050 (3)0.057 (3)
F50.0300 (13)0.065 (2)0.0393 (19)0.0101 (10)0.0067 (13)0.0182 (15)
F60.0294 (13)0.0433 (19)0.0212 (12)0.0078 (12)0.0091 (9)0.0043 (12)
P20.0251 (4)0.0345 (5)0.0291 (4)0.0088 (3)0.0096 (3)0.0127 (3)
F70.0752 (15)0.0358 (9)0.0569 (13)0.0114 (9)0.0306 (11)0.0140 (9)
F80.0468 (12)0.0796 (16)0.0428 (11)0.0010 (11)0.0054 (9)0.0118 (11)
F90.0472 (11)0.0645 (13)0.0559 (12)0.0226 (10)0.0333 (10)0.0300 (10)
Geometric parameters (Å, º) top
Ag1—C122.092 (2)C17—H17A0.9300
Ag1—C12.093 (2)C18—C191.361 (5)
N1—C11.359 (3)C18—H18A0.9300
N1—C21.374 (3)C19—C201.400 (5)
N1—C111.467 (3)C19—H19A0.9300
N2—C11.353 (3)C20—C211.393 (4)
N2—C31.389 (3)C20—H20A0.9300
N2—C41.463 (3)C21—H21A0.9300
N3—C121.351 (3)C22—H22A0.9600
N3—C131.372 (3)C22—H22B0.9600
N3—C221.467 (3)C22—H22C0.9600
N4—C121.360 (3)K1—F5Ai2.786 (14)
N4—C141.382 (3)K1—F5A2.786 (14)
N4—C151.466 (3)K1—F92.803 (2)
C2—C31.352 (4)K1—F9i2.803 (2)
C2—H2A0.9300K1—F3Ai2.813 (13)
C3—H3A0.9300K1—F3A2.813 (13)
C4—C51.509 (3)K1—F32.836 (5)
C4—H4A0.9700K1—F3i2.836 (5)
C4—H4B0.9700K1—F7i2.848 (2)
C5—C61.383 (4)K1—F72.848 (2)
C5—C101.384 (4)K1—F52.887 (4)
C6—C71.390 (5)K1—F5i2.887 (4)
C6—H6A0.9300P1—F5A1.444 (14)
C7—C81.359 (6)P1—F6A1.512 (16)
C7—H7A0.9300P1—F21.554 (5)
C8—C91.368 (6)P1—F41.580 (5)
C8—H8A0.9300P1—F11.596 (3)
C9—C101.399 (4)P1—F3A1.597 (14)
C9—H9A0.9300P1—F31.604 (4)
C10—H10A0.9300P1—F1A1.612 (17)
C11—H11A0.9600P1—F51.617 (4)
C11—H11B0.9600P1—F61.625 (3)
C11—H11C0.9600P1—F4A1.646 (14)
C13—C141.358 (4)P1—F2A1.725 (16)
C13—H13A0.9300P2—F71.588 (2)
C14—H14A0.9300P2—F7ii1.588 (2)
C15—C161.502 (3)P2—F81.590 (2)
C15—H15A0.9700P2—F8ii1.590 (2)
C15—H15B0.9700P2—F91.6010 (18)
C16—C211.389 (4)P2—F9ii1.6010 (18)
C16—C171.399 (4)P2—K1ii3.5004 (5)
C17—C181.399 (4)F8—K1ii2.966 (3)
C12—Ag1—C1175.99 (9)F5Ai—K1—F796.6 (4)
C1—N1—C2111.4 (2)F5A—K1—F795.2 (4)
C1—N1—C11125.1 (2)F9—K1—F746.86 (6)
C2—N1—C11123.6 (2)F9i—K1—F7119.74 (7)
C1—N2—C3111.1 (2)F3Ai—K1—F794.8 (3)
C1—N2—C4123.6 (2)F3A—K1—F785.8 (3)
C3—N2—C4124.9 (2)F3—K1—F780.62 (12)
C12—N3—C13111.7 (2)F3i—K1—F7100.69 (13)
C12—N3—C22124.0 (2)F7i—K1—F7164.42 (9)
C13—N3—C22124.3 (2)F5Ai—K1—F579.9 (2)
C12—N4—C14111.2 (2)F5A—K1—F57.7 (3)
C12—N4—C15125.3 (2)F9—K1—F5134.50 (12)
C14—N4—C15123.2 (2)F9i—K1—F5111.32 (10)
N2—C1—N1104.30 (19)F3Ai—K1—F5126.9 (3)
N2—C1—Ag1127.39 (17)F3A—K1—F548.3 (3)
N1—C1—Ag1128.29 (17)F3—K1—F545.51 (12)
C3—C2—N1106.8 (2)F3i—K1—F5124.94 (13)
C3—C2—H2A126.6F7i—K1—F5104.25 (12)
N1—C2—H2A126.6F7—K1—F587.83 (12)
C2—C3—N2106.4 (2)F5Ai—K1—F5i7.7 (3)
C2—C3—H3A126.8F5A—K1—F5i79.9 (2)
N2—C3—H3A126.8F9—K1—F5i111.32 (10)
N2—C4—C5111.51 (19)F9i—K1—F5i134.51 (12)
N2—C4—H4A109.3F3Ai—K1—F5i48.3 (3)
C5—C4—H4A109.3F3A—K1—F5i126.9 (3)
N2—C4—H4B109.3F3—K1—F5i124.94 (13)
C5—C4—H4B109.3F3i—K1—F5i45.51 (12)
H4A—C4—H4B108.0F7i—K1—F5i87.83 (12)
C6—C5—C10119.0 (3)F7—K1—F5i104.25 (12)
C6—C5—C4120.8 (2)F5—K1—F5i79.54 (13)
C10—C5—C4120.2 (2)F5A—P1—F6A110.1 (11)
C5—C6—C7120.5 (3)F5A—P1—F2168.8 (7)
C5—C6—H6A119.8F6A—P1—F281.1 (8)
C7—C6—H6A119.8F5A—P1—F486.8 (6)
C8—C7—C6120.3 (3)F6A—P1—F497.7 (7)
C8—C7—H7A119.9F2—P1—F490.4 (4)
C6—C7—H7A119.9F5A—P1—F174.8 (7)
C7—C8—C9120.2 (3)F6A—P1—F1171.4 (7)
C7—C8—H8A119.9F2—P1—F194.3 (4)
C9—C8—H8A119.9F4—P1—F189.6 (3)
C8—C9—C10120.4 (3)F5A—P1—F3A94.3 (7)
C8—C9—H9A119.8F6A—P1—F3A89.5 (8)
C10—C9—H9A119.8F2—P1—F3A87.0 (6)
C5—C10—C9119.7 (3)F4—P1—F3A171.9 (6)
C5—C10—H10A120.1F1—P1—F3A83.0 (6)
C9—C10—H10A120.1F5A—P1—F390.2 (6)
N1—C11—H11A109.5F6A—P1—F381.6 (7)
N1—C11—H11B109.5F2—P1—F393.0 (4)
H11A—C11—H11B109.5F4—P1—F3176.4 (4)
N1—C11—H11C109.5F1—P1—F391.4 (2)
H11A—C11—H11C109.5F5A—P1—F1A85.1 (8)
H11B—C11—H11C109.5F6A—P1—F1A164.8 (11)
N3—C12—N4104.1 (2)F2—P1—F1A83.9 (8)
N3—C12—Ag1123.54 (16)F4—P1—F1A83.9 (8)
N4—C12—Ag1131.89 (17)F3A—P1—F1A88.1 (8)
C14—C13—N3106.7 (2)F3—P1—F1A97.7 (8)
C14—C13—H13A126.6F6A—P1—F596.8 (8)
N3—C13—H13A126.6F2—P1—F5177.9 (3)
C13—C14—N4106.2 (2)F4—P1—F589.7 (3)
C13—C14—H14A126.9F1—P1—F587.8 (3)
N4—C14—H14A126.9F3A—P1—F593.2 (5)
N4—C15—C16110.98 (19)F3—P1—F586.9 (3)
N4—C15—H15A109.4F1A—P1—F598.3 (7)
C16—C15—H15A109.4F5A—P1—F6100.3 (8)
N4—C15—H15B109.4F2—P1—F690.6 (4)
C16—C15—H15B109.4F4—P1—F690.4 (3)
H15A—C15—H15B108.0F1—P1—F6175.1 (4)
C21—C16—C17119.2 (2)F3A—P1—F697.3 (5)
C21—C16—C15120.0 (2)F3—P1—F688.3 (2)
C17—C16—C15120.8 (2)F1A—P1—F6172.0 (8)
C18—C17—C16119.6 (3)F5—P1—F687.3 (3)
C18—C17—H17A120.2F5A—P1—F4A92.6 (7)
C16—C17—H17A120.2F6A—P1—F4A93.2 (8)
C19—C18—C17120.9 (3)F2—P1—F4A85.2 (5)
C19—C18—H18A119.6F1—P1—F4A93.6 (6)
C17—C18—H18A119.6F3A—P1—F4A171.2 (7)
C18—C19—C20120.3 (3)F3—P1—F4A174.7 (6)
C18—C19—H19A119.9F1A—P1—F4A87.1 (9)
C20—C19—H19A119.9F5—P1—F4A94.8 (4)
C21—C20—C19119.2 (3)F6—P1—F4A86.8 (6)
C21—C20—H20A120.4F5A—P1—F2A171.1 (9)
C19—C20—H20A120.4F6A—P1—F2A78.8 (8)
C16—C21—C20120.8 (3)F4—P1—F2A90.8 (5)
C16—C21—H21A119.6F1—P1—F2A96.6 (6)
C20—C21—H21A119.6F3A—P1—F2A86.9 (6)
N3—C22—H22A109.5F3—P1—F2A92.5 (5)
N3—C22—H22B109.5F1A—P1—F2A86.2 (8)
H22A—C22—H22B109.5F5—P1—F2A175.6 (5)
N3—C22—H22C109.5F6—P1—F2A88.3 (5)
H22A—C22—H22C109.5F4A—P1—F2A85.4 (6)
H22B—C22—H22C109.5P1—F1—K197.5 (2)
F5Ai—K1—F5A81.3 (6)P1—F3—K1101.7 (2)
F5Ai—K1—F9105.5 (3)P1—F5—K199.30 (19)
F5A—K1—F9141.6 (4)P1—F1A—K185.7 (9)
F5Ai—K1—F9i141.6 (4)P1—F3A—K1102.8 (6)
F5A—K1—F9i105.5 (3)P1—F5A—K1108.9 (7)
F9—K1—F9i92.34 (12)F7—P2—F7ii180.0
F5Ai—K1—F3Ai47.0 (4)F7—P2—F891.64 (14)
F5A—K1—F3Ai128.2 (4)F7ii—P2—F888.36 (14)
F9—K1—F3Ai70.8 (3)F7—P2—F8ii88.36 (14)
F9i—K1—F3Ai112.8 (3)F7ii—P2—F8ii91.64 (14)
F5Ai—K1—F3A128.2 (4)F8—P2—F8ii180.0
F5A—K1—F3A47.0 (4)F7—P2—F989.64 (12)
F9—K1—F3A112.8 (3)F7ii—P2—F990.36 (12)
F9i—K1—F3A70.8 (3)F8—P2—F991.02 (13)
F3Ai—K1—F3A175.2 (5)F8ii—P2—F988.99 (13)
F5Ai—K1—F3125.3 (3)F7—P2—F9ii90.36 (12)
F5A—K1—F345.2 (3)F7ii—P2—F9ii89.64 (12)
F9—K1—F3110.65 (9)F8—P2—F9ii88.98 (13)
F9i—K1—F376.28 (14)F8ii—P2—F9ii91.02 (13)
F3Ai—K1—F3170.9 (3)F9—P2—F9ii179.999 (1)
F3A—K1—F36.1 (3)F7—P2—K1ii126.84 (8)
F5Ai—K1—F3i45.2 (3)F7ii—P2—K1ii53.16 (8)
F5A—K1—F3i125.3 (3)F8—P2—K1ii57.49 (9)
F9—K1—F3i76.28 (14)F8ii—P2—K1ii122.51 (9)
F9i—K1—F3i110.65 (9)F9—P2—K1ii128.37 (7)
F3Ai—K1—F3i6.1 (3)F9ii—P2—K1ii51.63 (7)
F3A—K1—F3i170.9 (3)F7—P2—K153.16 (8)
F3—K1—F3i170.4 (2)F7ii—P2—K1126.84 (8)
F5Ai—K1—F7i95.2 (4)F8—P2—K1122.51 (9)
F5A—K1—F7i96.6 (4)F8ii—P2—K157.49 (9)
F9—K1—F7i119.74 (7)F9—P2—K151.63 (7)
F9i—K1—F7i46.87 (6)F9ii—P2—K1128.37 (7)
F3Ai—K1—F7i85.8 (3)K1ii—P2—K1180.0
F3A—K1—F7i94.8 (3)P2—F7—K1100.34 (11)
F3—K1—F7i100.69 (13)P2—F8—K1ii95.64 (11)
F3i—K1—F7i80.62 (12)P2—F9—K1101.77 (9)
C3—N2—C1—N10.4 (2)F5—P1—F3A—K136.3 (6)
C4—N2—C1—N1174.6 (2)F6—P1—F3A—K1124.0 (4)
C3—N2—C1—Ag1178.37 (16)F2A—P1—F3A—K1148.1 (7)
C4—N2—C1—Ag14.2 (3)F5Ai—K1—F3A—P122.0 (8)
C2—N1—C1—N20.5 (2)F5A—K1—F3A—P116.0 (7)
C11—N1—C1—N2179.7 (2)F9—K1—F3A—P1156.4 (5)
C2—N1—C1—Ag1178.26 (16)F9i—K1—F3A—P1119.4 (7)
C11—N1—C1—Ag11.0 (3)F3—K1—F3A—P186 (3)
C1—N1—C2—C30.4 (3)F7i—K1—F3A—P178.5 (6)
C11—N1—C2—C3179.6 (2)F7—K1—F3A—P1117.1 (6)
N1—C2—C3—N20.1 (3)F5—K1—F3A—P126.3 (5)
C1—N2—C3—C20.2 (3)F5i—K1—F3A—P112.4 (8)
C4—N2—C3—C2174.3 (2)F6A—P1—F5A—K1115.1 (10)
C1—N2—C4—C579.8 (3)F2—P1—F5A—K172 (3)
C3—N2—C4—C593.6 (3)F4—P1—F5A—K1147.9 (7)
N2—C4—C5—C648.9 (3)F1—P1—F5A—K157.5 (6)
N2—C4—C5—C10132.3 (2)F3A—P1—F5A—K124.0 (10)
C10—C5—C6—C70.8 (5)F3—P1—F5A—K134.0 (7)
C4—C5—C6—C7178.1 (3)F1A—P1—F5A—K163.7 (11)
C5—C6—C7—C80.6 (6)F5—P1—F5A—K1109 (3)
C6—C7—C8—C91.4 (6)F6—P1—F5A—K1122.2 (7)
C7—C8—C9—C100.7 (6)F4A—P1—F5A—K1150.6 (8)
C6—C5—C10—C91.4 (4)F5Ai—K1—F5A—P1166.3 (13)
C4—C5—C10—C9177.5 (3)F9—K1—F5A—P189.6 (10)
C8—C9—C10—C50.7 (5)F9i—K1—F5A—P125.1 (9)
C13—N3—C12—N40.6 (3)F3Ai—K1—F5A—P1162.0 (8)
C22—N3—C12—N4177.7 (2)F3—K1—F5A—P126.5 (6)
C13—N3—C12—Ag1172.52 (16)F3i—K1—F5A—P1155.2 (7)
C22—N3—C12—Ag19.2 (3)F7i—K1—F5A—P172.1 (9)
C14—N4—C12—N30.1 (3)F7—K1—F5A—P197.8 (9)
C15—N4—C12—N3175.1 (2)F5—K1—F5A—P1115 (3)
C14—N4—C12—Ag1172.17 (18)F5i—K1—F5A—P1158.7 (10)
C15—N4—C12—Ag112.6 (3)F5Ai—K1—P2—F750.6 (3)
C12—N3—C13—C140.8 (3)F5A—K1—P2—F741.6 (4)
C22—N3—C13—C14177.4 (2)F9—K1—P2—F7125.66 (18)
N3—C13—C14—N40.7 (3)F9i—K1—P2—F7152.39 (13)
C12—N4—C14—C130.4 (3)F3Ai—K1—P2—F794.2 (3)
C15—N4—C14—C13175.7 (2)F3A—K1—P2—F781.8 (3)
C12—N4—C15—C16105.0 (3)F3—K1—P2—F776.70 (18)
C14—N4—C15—C1669.7 (3)F3i—K1—P2—F795.36 (15)
N4—C15—C16—C2182.8 (3)F7i—K1—P2—F7178.38 (4)
N4—C15—C16—C1797.3 (3)F5—K1—P2—F736.96 (14)
C21—C16—C17—C181.0 (4)F5i—K1—P2—F752.71 (15)
C15—C16—C17—C18179.0 (3)F5Ai—K1—P2—F7ii129.4 (3)
C16—C17—C18—C191.4 (4)F5A—K1—P2—F7ii138.4 (4)
C17—C18—C19—C201.3 (5)F9—K1—P2—F7ii54.34 (18)
C18—C19—C20—C210.8 (4)F9i—K1—P2—F7ii27.61 (13)
C17—C16—C21—C200.6 (4)F3Ai—K1—P2—F7ii85.8 (3)
C15—C16—C21—C20179.5 (2)F3A—K1—P2—F7ii98.2 (3)
C19—C20—C21—C160.4 (4)F3—K1—P2—F7ii103.30 (18)
F5A—P1—F1—K149.5 (6)F3i—K1—P2—F7ii84.64 (15)
F2—P1—F1—K1133.3 (3)F7i—K1—P2—F7ii1.62 (4)
F4—P1—F1—K1136.3 (3)F7—K1—P2—F7ii180.0
F3A—P1—F1—K146.9 (5)F5—K1—P2—F7ii143.03 (14)
F3—P1—F1—K140.2 (3)F5i—K1—P2—F7ii127.29 (15)
F1A—P1—F1—K1162 (4)F5Ai—K1—P2—F813.6 (3)
F5—P1—F1—K146.6 (2)F5A—K1—P2—F8105.8 (4)
F4A—P1—F1—K1141.2 (4)F9—K1—P2—F861.46 (18)
F2A—P1—F1—K1133.0 (5)F3Ai—K1—P2—F830.0 (3)
F5Ai—K1—F1—P199.2 (5)F3A—K1—P2—F8146.0 (3)
F5A—K1—F1—P138.6 (5)F3—K1—P2—F8140.91 (18)
F9—K1—F1—P167.2 (4)F3i—K1—P2—F831.15 (15)
F9i—K1—F1—P1119.6 (3)F7i—K1—P2—F8117.41 (15)
F3Ai—K1—F1—P1137.2 (5)F7—K1—P2—F864.20 (17)
F3A—K1—F1—P137.1 (5)F5—K1—P2—F8101.17 (15)
F3—K1—F1—P130.2 (3)F5i—K1—P2—F811.50 (15)
F3i—K1—F1—P1139.1 (2)F5Ai—K1—P2—F8ii166.4 (3)
F7i—K1—F1—P1170.3 (3)F5A—K1—P2—F8ii74.2 (4)
F7—K1—F1—P16.3 (4)F9—K1—P2—F8ii118.54 (18)
F5—K1—F1—P135.15 (18)F9i—K1—P2—F8ii36.60 (13)
F5i—K1—F1—P1104.8 (3)F3Ai—K1—P2—F8ii150.0 (3)
F5A—P1—F3—K132.0 (8)F3A—K1—P2—F8ii34.0 (3)
F6A—P1—F3—K1142.3 (6)F3—K1—P2—F8ii39.09 (18)
F2—P1—F3—K1137.2 (4)F3i—K1—P2—F8ii148.85 (15)
F1—P1—F3—K142.8 (4)F7i—K1—P2—F8ii62.59 (15)
F3A—P1—F3—K181 (3)F7—K1—P2—F8ii115.79 (17)
F1A—P1—F3—K153.0 (8)F5—K1—P2—F8ii78.83 (15)
F5—P1—F3—K144.9 (3)F5i—K1—P2—F8ii168.50 (15)
F6—P1—F3—K1132.3 (2)F5A—K1—P2—F9167.2 (4)
F2A—P1—F3—K1139.5 (5)F9i—K1—P2—F981.94 (16)
F5Ai—K1—F3—P138.3 (4)F3Ai—K1—P2—F931.5 (3)
F5A—K1—F3—P122.8 (6)F3A—K1—P2—F9152.5 (3)
F9—K1—F3—P1166.4 (2)F3—K1—P2—F9157.63 (19)
F9i—K1—F3—P1106.3 (3)F3i—K1—P2—F930.31 (15)
F3A—K1—F3—P182 (3)F7i—K1—P2—F955.95 (15)
F7i—K1—F3—P165.9 (3)F7—K1—P2—F9125.66 (18)
F7—K1—F3—P1129.8 (3)F5—K1—P2—F9162.63 (15)
F5—K1—F3—P133.6 (3)F5i—K1—P2—F972.96 (16)
F5i—K1—F3—P128.9 (3)F5Ai—K1—P2—F9ii105.0 (3)
F5A—P1—F5—K161 (3)F5A—K1—P2—F9ii12.8 (4)
F6A—P1—F5—K1124.6 (7)F9—K1—P2—F9ii180.0
F4—P1—F5—K1137.7 (3)F9i—K1—P2—F9ii98.06 (16)
F1—P1—F5—K148.1 (2)F3Ai—K1—P2—F9ii148.5 (3)
F3A—P1—F5—K134.7 (6)F3A—K1—P2—F9ii27.5 (3)
F3—P1—F5—K143.5 (3)F3—K1—P2—F9ii22.37 (19)
F1A—P1—F5—K153.8 (8)F3i—K1—P2—F9ii149.69 (15)
F6—P1—F5—K1131.9 (3)F7i—K1—P2—F9ii124.05 (15)
F4A—P1—F5—K1141.6 (6)F7—K1—P2—F9ii54.33 (18)
F5Ai—K1—F5—P1150.9 (5)F5—K1—P2—F9ii17.37 (15)
F5A—K1—F5—P151 (2)F5i—K1—P2—F9ii107.04 (16)
F9—K1—F5—P1107.2 (2)F8—P2—F7—K1130.58 (12)
F9i—K1—F5—P19.2 (2)F8ii—P2—F7—K149.43 (12)
F3Ai—K1—F5—P1153.6 (4)F9—P2—F7—K139.57 (12)
F3A—K1—F5—P125.6 (5)F9ii—P2—F7—K1140.43 (12)
F3—K1—F5—P133.0 (2)K1ii—P2—F7—K1180.0
F3i—K1—F5—P1146.5 (2)F5Ai—K1—F7—P2135.0 (3)
F7i—K1—F5—P158.1 (2)F5A—K1—F7—P2143.2 (3)
F7—K1—F5—P1112.0 (2)F9—K1—F7—P229.90 (10)
F5i—K1—F5—P1143.1 (3)F9i—K1—F7—P232.02 (15)
F5A—P1—F1A—K146.5 (6)F3Ai—K1—F7—P287.7 (3)
F6A—P1—F1A—K1129 (4)F3A—K1—F7—P297.1 (3)
F2—P1—F1A—K1135.1 (5)F3—K1—F7—P2100.23 (16)
F4—P1—F1A—K1133.8 (4)F3i—K1—F7—P289.39 (15)
F1—P1—F1A—K116 (4)F7i—K1—F7—P24.04 (10)
F3A—P1—F1A—K148.0 (5)F5—K1—F7—P2145.43 (13)
F3—P1—F1A—K143.0 (4)F5i—K1—F7—P2135.93 (12)
F5—P1—F1A—K145.0 (4)F7—P2—F8—K1ii133.87 (11)
F4A—P1—F1A—K1139.4 (5)F7ii—P2—F8—K1ii46.13 (11)
F2A—P1—F1A—K1135.0 (6)F9—P2—F8—K1ii136.46 (11)
F5Ai—K1—F1A—P195.8 (7)F9ii—P2—F8—K1ii43.54 (11)
F5A—K1—F1A—P136.6 (6)K1—P2—F8—K1ii180.0
F9—K1—F1A—P172.8 (10)F7—P2—F9—K140.56 (13)
F9i—K1—F1A—P1123.3 (7)F7ii—P2—F9—K1139.44 (13)
F3Ai—K1—F1A—P1135.3 (6)F8—P2—F9—K1132.19 (13)
F3A—K1—F1A—P138.8 (6)F8ii—P2—F9—K147.81 (13)
F3—K1—F1A—P132.0 (4)K1ii—P2—F9—K1180.0
F3i—K1—F1A—P1136.9 (5)F5Ai—K1—F9—P2114.3 (4)
F7i—K1—F1A—P1174.7 (8)F5A—K1—F9—P218.6 (5)
F7—K1—F1A—P111.1 (9)F9i—K1—F9—P2100.15 (13)
F5—K1—F1A—P132.8 (4)F3Ai—K1—F9—P2146.5 (3)
F5i—K1—F1A—P1101.3 (7)F3A—K1—F9—P230.1 (3)
F5A—P1—F3A—K123.0 (10)F3—K1—F9—P223.9 (2)
F6A—P1—F3A—K1133.1 (7)F3i—K1—F9—P2149.16 (15)
F2—P1—F3A—K1145.8 (6)F7i—K1—F9—P2140.27 (11)
F1—P1—F3A—K151.1 (6)F7—K1—F9—P229.79 (10)
F3—P1—F3A—K190 (3)F5—K1—F9—P223.24 (19)
F1A—P1—F3A—K161.9 (9)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···F1iii0.932.453.285 (5)149
C15—H15A···F60.972.513.204 (5)129
C15—H15B···F4iii0.972.513.415 (7)156
C22—H22A···F6iv0.962.423.171 (5)135
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaK[Ag(C11H12N2)2]2(PF6)3
Mr1378.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)19.917 (2), 23.047 (2), 11.5787 (12)
β (°) 103.108 (3)
V3)5176.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.49 × 0.42 × 0.17
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.632, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
66454, 7528, 7058
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.124, 1.11
No. of reflections7528
No. of parameters372
No. of restraints51
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.072P)2 + 12.8353P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.68, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ag1—C122.092 (2)Ag1—C12.093 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···F1i0.932.453.285 (5)149
C15—H15A···F60.972.513.204 (5)129
C15—H15B···F4i0.972.513.415 (7)156
C22—H22A···F6ii0.962.423.171 (5)135
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH, AWS and CKW thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grant (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and CKQ thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaque, R. A., Ghdhayeb, M. Z., Abdallah, H. H., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o80–o81.  Google Scholar
First citationHaque, R. A., Washeel, A., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o2797–o2798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHermann, W. A., Köcher, C., Gooben, L. J. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 1627–1636.  Google Scholar
First citationHerrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef CAS Web of Science Google Scholar
First citationLee, K.-M., Chen, J. C. C. & Lin, I. L. J. (2001). J. Organomet. Chem. 617–618, 364–375.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, I. J. B. & Vasam, C. S. (2007). Coord. Chem. Rev, 251, 642–670.  Web of Science CrossRef CAS Google Scholar
First citationMedvetz, D. A., Hindi, K. M., Panzner, M. J., Ditto, A. J., Yun, Y. H. & Young, W. J. (2008). Met. Based Drugs, pp. 384010–384016.  Google Scholar
First citationÖzdemir, İ., Özcan, E. Ö., Günal, S. & Gürbüz, N. (2010). Molecules, 15, 2499–2508.  Web of Science PubMed Google Scholar
First citationRay, S., Mohan, R., Singh, J. K., Samantaray, M. K., Shaikh, M. M., Panda, D. & Ghosh, P. (2007). J. Am. Chem. Soc. 129, 15042–15053.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y., Zhang, X., Chen, W. & Qiu, H. (2008). J. Organomet. Chem. 693, 205–215.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds