organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4,5-Bis(pyridin-2-yl)-1H-imidazol-2-yl]phenol monohydrate

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China, and bSchool of Power and Energy Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang, Liaoning, Shenyang 110136, People's Republic of China
*Correspondence e-mail: xiaoguoyong@sohu.com

(Received 11 December 2010; accepted 12 December 2010; online 18 December 2010)

In the title hydrate, C19H14N4O·H2O, the dihedral angle between the two pyridine rings is 38.0 (2)°. The dihedral angle between the imidazole and benzene rings is 25.3 (2)°. The crystal structure is stabilized by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For early studies of lophine (2,4,5-triphenylimidazole), see: Radziszewsky (1877[Radziszewsky, B. (1877). Chem. Ber. 10, 70-75.]). For further synthetic details, see: Nakashima et al. (1995[Nakashima, K., Yamasaki, H., Kuroda, N. & Akiyama, S. (1995). Anal. Chim. Acta, 303, 103-107.]); Kuroda et al. (1993[Kuroda, N., Takatani, M., Nakashima, K., Akiyama, S. & Ohkura, Y. (1993). Biol. Pharm. Bull. 16, 220-222.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N4O·H2O

  • Mr = 332.36

  • Triclinic, [P \overline 1]

  • a = 8.5875 (17) Å

  • b = 9.0151 (18) Å

  • c = 11.353 (2) Å

  • α = 77.89 (3)°

  • β = 69.96 (3)°

  • γ = 73.66 (3)°

  • V = 786.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.985

  • 5731 measured reflections

  • 2746 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.09

  • 2746 reflections

  • 239 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.89 2.7003 (17) 171
O2—H2A⋯N3ii 0.88 (1) 1.91 (1) 2.7655 (16) 167 (2)
N2—H2C⋯O2ii 0.91 (1) 2.09 (1) 2.9715 (19) 164 (2)
O2—H2B⋯N4iii 0.87 (1) 1.99 (1) 2.8254 (17) 162 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lophine, 2,4,5-triphenylimidazole, is a well known potential chemiluminesscent (CL) compound (Radziszewsky, 1877). 2-(4-Hydroxyphenyl)-4,5-di(2-pyridyl)imidazole was synthesized by the methods similar to those previously reported (Nakashima et al., 1995; Kuroda et al., 1993). Recently, we have synthesized an analogic structure of imidazole derivative, namely, the title compound, 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole. We present its crystal structure here.

The compound consists of a 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole molecule and a water molecule of crystallization (Fig. 1). The central imidazole ring forms dihedral angles of 25.3 (2), 22.5 (2), and 29.2 (2)°, respectively, with the C1—C6 benzene ring, C9—C13/N3 pyridine ring, and C15—C19/N4 pyridine ring. The dihedral angle between the two pyridine rings is 38.0 (2)°. The dihedral angle between the central imidazole ring and the benzene ring is 25.3 (2)°. The crystal structure is stabilized by intermolecular O—H···O, O—H···N, and N—H···O hydrogen bonds (Fig. 2, and Table 1).

Related literature top

For early studies of lophine, see: Radziszewsky (1877). For further synthetic details, see: Nakashima et al. (1995); Kuroda et al. (1993).

Experimental top

The title compound was prepared by the reaction of 2, 2'-pyridyl (1.0 mmol), 4-hydroxybenzaldehyde (1.0 mmol) and ammonium acetate (10 mmol) in 8 ml acetic acid refluxed for 6 h. After cooling to room temperature, the mixture was poured into water, the precipitate was filtered off and dried to give the target compound in 20% yield. Colourless prisms of the title compound were grown by slow evaporation of a solution in mathanol.

Refinement top

H2A, H2B, and H2C atoms were located in a difference Fourier map, with N—H, O—H and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.45 (2) Å, respectively. The remaining H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Lophine, 2,4,5-triphenylimidazole, is a well known potential chemiluminesscent (CL) compound (Radziszewsky, 1877). 2-(4-Hydroxyphenyl)-4,5-di(2-pyridyl)imidazole was synthesized by the methods similar to those previously reported (Nakashima et al., 1995; Kuroda et al., 1993). Recently, we have synthesized an analogic structure of imidazole derivative, namely, the title compound, 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole. We present its crystal structure here.

The compound consists of a 2-(4-hydroxyphenyl)-4,5-di(2-pyridyl)imidazole molecule and a water molecule of crystallization (Fig. 1). The central imidazole ring forms dihedral angles of 25.3 (2), 22.5 (2), and 29.2 (2)°, respectively, with the C1—C6 benzene ring, C9—C13/N3 pyridine ring, and C15—C19/N4 pyridine ring. The dihedral angle between the two pyridine rings is 38.0 (2)°. The dihedral angle between the central imidazole ring and the benzene ring is 25.3 (2)°. The crystal structure is stabilized by intermolecular O—H···O, O—H···N, and N—H···O hydrogen bonds (Fig. 2, and Table 1).

For early studies of lophine, see: Radziszewsky (1877). For further synthetic details, see: Nakashima et al. (1995); Kuroda et al. (1993).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-[4,5-Bis(pyridin-2-yl)-1H-imidazol-2-yl]phenol monohydrate top
Crystal data top
C19H14N4O·H2OZ = 2
Mr = 332.36F(000) = 348
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5875 (17) ÅCell parameters from 2376 reflections
b = 9.0151 (18) Åθ = 2.6–27.9°
c = 11.353 (2) ŵ = 0.10 mm1
α = 77.89 (3)°T = 113 K
β = 69.96 (3)°Prism, colourless
γ = 73.66 (3)°0.22 × 0.20 × 0.16 mm
V = 786.0 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2746 independent reflections
Radiation source: fine-focus sealed tube2155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.980, Tmax = 0.985k = 1010
5731 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0736P)2]
where P = (Fo2 + 2Fc2)/3
2746 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H14N4O·H2Oγ = 73.66 (3)°
Mr = 332.36V = 786.0 (3) Å3
Triclinic, P1Z = 2
a = 8.5875 (17) ÅMo Kα radiation
b = 9.0151 (18) ŵ = 0.10 mm1
c = 11.353 (2) ÅT = 113 K
α = 77.89 (3)°0.22 × 0.20 × 0.16 mm
β = 69.96 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2746 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2155 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.985Rint = 0.027
5731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.20 e Å3
2746 reflectionsΔρmin = 0.25 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.35444 (13)0.11009 (12)0.44275 (9)0.0221 (3)
H11.35970.18070.38380.033*
N10.95455 (15)0.27226 (13)1.01220 (10)0.0162 (3)
N20.80962 (15)0.46738 (13)0.90993 (10)0.0152 (3)
N30.52123 (15)0.70299 (13)0.99216 (10)0.0187 (3)
N40.68226 (15)0.36680 (13)1.32116 (10)0.0175 (3)
C11.12180 (18)0.11950 (15)0.77615 (12)0.0175 (3)
H1A1.10670.05020.85030.021*
C21.22861 (18)0.06627 (16)0.66424 (12)0.0179 (3)
H21.28540.03810.66330.022*
C31.25179 (18)0.16872 (16)0.55213 (12)0.0160 (3)
C41.16603 (18)0.32453 (16)0.55465 (12)0.0173 (3)
H41.18080.39350.48040.021*
C51.05921 (18)0.37679 (16)0.66722 (12)0.0174 (3)
H51.00180.48100.66790.021*
C61.03582 (17)0.27565 (15)0.78036 (12)0.0155 (3)
C70.93382 (17)0.33457 (15)0.90045 (12)0.0154 (3)
C80.74579 (17)0.49413 (15)1.03485 (12)0.0144 (3)
C90.61392 (17)0.63503 (15)1.07191 (12)0.0153 (3)
C100.58923 (18)0.69920 (15)1.18034 (13)0.0187 (3)
H100.65750.65351.23250.022*
C110.46215 (19)0.83145 (16)1.20923 (14)0.0232 (3)
H110.44410.87631.28090.028*
C120.3623 (2)0.89615 (17)1.13019 (15)0.0272 (4)
H120.27300.98281.14930.033*
C130.39737 (19)0.83010 (16)1.02306 (14)0.0244 (4)
H130.33180.87590.96890.029*
C140.83707 (18)0.37066 (15)1.09693 (12)0.0145 (3)
C150.83185 (18)0.32729 (15)1.23068 (12)0.0151 (3)
C160.97916 (18)0.24099 (15)1.25986 (12)0.0174 (3)
H161.08010.21431.19560.021*
C170.97453 (19)0.19538 (16)1.38436 (13)0.0203 (3)
H171.07130.13621.40530.024*
C180.8229 (2)0.23941 (16)1.47772 (13)0.0220 (3)
H180.81660.21301.56270.026*
C190.68134 (19)0.32344 (16)1.44204 (12)0.0202 (3)
H190.57960.35161.50530.024*
O20.39964 (13)0.34896 (12)0.25546 (9)0.0233 (3)
H2A0.439 (2)0.337 (3)0.1750 (10)0.068 (7)*
H2B0.473 (2)0.374 (2)0.2803 (15)0.066 (7)*
H2C0.764 (2)0.5192 (18)0.8472 (12)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (6)0.0233 (6)0.0160 (5)0.0012 (4)0.0004 (4)0.0043 (4)
N10.0174 (7)0.0154 (6)0.0144 (6)0.0033 (5)0.0028 (5)0.0028 (5)
N20.0153 (7)0.0152 (6)0.0131 (6)0.0023 (5)0.0035 (5)0.0010 (5)
N30.0157 (7)0.0175 (6)0.0214 (6)0.0030 (5)0.0060 (5)0.0004 (5)
N40.0180 (7)0.0177 (6)0.0151 (6)0.0027 (5)0.0039 (5)0.0027 (5)
C10.0196 (8)0.0167 (7)0.0160 (7)0.0056 (6)0.0056 (6)0.0006 (6)
C20.0164 (8)0.0150 (7)0.0215 (7)0.0023 (6)0.0038 (6)0.0054 (6)
C30.0141 (7)0.0204 (7)0.0141 (7)0.0045 (6)0.0026 (6)0.0057 (6)
C40.0207 (8)0.0189 (7)0.0128 (7)0.0061 (6)0.0059 (6)0.0006 (5)
C50.0199 (8)0.0139 (7)0.0184 (7)0.0025 (6)0.0065 (6)0.0028 (5)
C60.0141 (7)0.0177 (7)0.0159 (7)0.0057 (6)0.0041 (6)0.0027 (6)
C70.0154 (8)0.0142 (7)0.0166 (7)0.0041 (6)0.0038 (6)0.0024 (6)
C80.0140 (7)0.0158 (7)0.0131 (7)0.0050 (6)0.0021 (6)0.0022 (5)
C90.0130 (7)0.0142 (7)0.0168 (7)0.0053 (6)0.0016 (6)0.0003 (5)
C100.0184 (8)0.0184 (7)0.0185 (7)0.0061 (6)0.0036 (6)0.0011 (6)
C110.0230 (8)0.0176 (7)0.0245 (8)0.0049 (6)0.0009 (6)0.0063 (6)
C120.0187 (8)0.0173 (7)0.0375 (9)0.0024 (6)0.0018 (7)0.0064 (7)
C130.0180 (8)0.0203 (8)0.0317 (8)0.0009 (6)0.0092 (7)0.0015 (6)
C140.0129 (7)0.0150 (7)0.0150 (7)0.0034 (5)0.0025 (6)0.0034 (5)
C150.0171 (8)0.0119 (7)0.0166 (7)0.0039 (5)0.0045 (6)0.0030 (5)
C160.0179 (8)0.0145 (7)0.0193 (7)0.0030 (6)0.0048 (6)0.0036 (6)
C170.0230 (8)0.0166 (7)0.0245 (8)0.0040 (6)0.0129 (7)0.0004 (6)
C180.0304 (9)0.0217 (8)0.0168 (7)0.0085 (7)0.0104 (7)0.0005 (6)
C190.0230 (9)0.0208 (8)0.0145 (7)0.0053 (6)0.0024 (6)0.0022 (6)
O20.0195 (6)0.0314 (6)0.0179 (6)0.0060 (5)0.0058 (4)0.0005 (5)
Geometric parameters (Å, º) top
O1—C31.3644 (17)C8—C141.382 (2)
O1—H10.8200C8—C91.4702 (19)
N1—C71.3252 (17)C9—C101.3950 (19)
N1—C141.3854 (18)C10—C111.381 (2)
N2—C71.3563 (18)C10—H100.9300
N2—C81.3807 (16)C11—C121.381 (2)
N2—H2C0.908 (9)C11—H110.9300
N3—C131.3397 (19)C12—C131.370 (2)
N3—C91.3473 (18)C12—H120.9300
N4—C191.3436 (17)C13—H130.9300
N4—C151.3505 (18)C14—C151.4747 (18)
C1—C21.3767 (19)C15—C161.393 (2)
C1—C61.3958 (19)C16—C171.3767 (18)
C1—H1A0.9300C16—H160.9300
C2—C31.3961 (19)C17—C181.384 (2)
C2—H20.9300C17—H170.9300
C3—C41.392 (2)C18—C191.381 (2)
C4—C51.3794 (19)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.3986 (19)O2—H2A0.876 (9)
C5—H50.9300O2—H2B0.870 (9)
C6—C71.4601 (18)
C3—O1—H1109.5C10—C9—C8122.56 (12)
C7—N1—C14105.45 (12)C11—C10—C9119.19 (14)
C7—N2—C8108.44 (11)C11—C10—H10120.4
C7—N2—H2C124.9 (11)C9—C10—H10120.4
C8—N2—H2C125.9 (11)C10—C11—C12119.02 (14)
C13—N3—C9118.20 (12)C10—C11—H11120.5
C19—N4—C15117.30 (12)C12—C11—H11120.5
C2—C1—C6121.15 (13)C13—C12—C11118.64 (14)
C2—C1—H1A119.4C13—C12—H12120.7
C6—C1—H1A119.4C11—C12—H12120.7
C1—C2—C3120.07 (13)N3—C13—C12123.43 (14)
C1—C2—H2120.0N3—C13—H13118.3
C3—C2—H2120.0C12—C13—H13118.3
O1—C3—C4122.37 (12)C8—C14—N1110.41 (12)
O1—C3—C2118.14 (12)C8—C14—C15132.74 (13)
C4—C3—C2119.45 (13)N1—C14—C15116.85 (12)
C5—C4—C3120.07 (12)N4—C15—C16122.02 (12)
C5—C4—H4120.0N4—C15—C14118.81 (13)
C3—C4—H4120.0C16—C15—C14119.11 (13)
C4—C5—C6121.06 (13)C17—C16—C15119.66 (14)
C4—C5—H5119.5C17—C16—H16120.2
C6—C5—H5119.5C15—C16—H16120.2
C1—C6—C5118.19 (12)C16—C17—C18118.66 (14)
C1—C6—C7121.05 (12)C16—C17—H17120.7
C5—C6—C7120.62 (12)C18—C17—H17120.7
N1—C7—N2111.15 (12)C19—C18—C17118.60 (13)
N1—C7—C6125.50 (13)C19—C18—H18120.7
N2—C7—C6123.27 (12)C17—C18—H18120.7
N2—C8—C14104.55 (12)N4—C19—C18123.71 (13)
N2—C8—C9120.20 (11)N4—C19—H19118.1
C14—C8—C9135.20 (12)C18—C19—H19118.1
N3—C9—C10121.40 (13)H2A—O2—H2B111.3 (13)
N3—C9—C8116.00 (11)
C6—C1—C2—C30.4 (2)C14—C8—C9—C1021.5 (2)
C1—C2—C3—O1177.92 (12)N3—C9—C10—C112.8 (2)
C1—C2—C3—C40.1 (2)C8—C9—C10—C11179.71 (12)
O1—C3—C4—C5177.80 (12)C9—C10—C11—C120.3 (2)
C2—C3—C4—C50.0 (2)C10—C11—C12—C132.5 (2)
C3—C4—C5—C60.4 (2)C9—N3—C13—C121.3 (2)
C2—C1—C6—C50.8 (2)C11—C12—C13—N31.8 (2)
C2—C1—C6—C7174.87 (12)N2—C8—C14—N10.65 (14)
C4—C5—C6—C10.9 (2)C9—C8—C14—N1176.67 (13)
C4—C5—C6—C7174.85 (12)N2—C8—C14—C15179.37 (13)
C14—N1—C7—N20.11 (14)C9—C8—C14—C153.3 (3)
C14—N1—C7—C6176.81 (12)C7—N1—C14—C80.48 (14)
C8—N2—C7—N10.29 (15)C7—N1—C14—C15179.53 (11)
C8—N2—C7—C6176.50 (11)C19—N4—C15—C161.93 (18)
C1—C6—C7—N124.1 (2)C19—N4—C15—C14179.00 (11)
C5—C6—C7—N1151.45 (13)C8—C14—C15—N430.9 (2)
C1—C6—C7—N2159.53 (12)N1—C14—C15—N4149.14 (12)
C5—C6—C7—N224.87 (19)C8—C14—C15—C16151.97 (15)
C7—N2—C8—C140.56 (14)N1—C14—C15—C1628.01 (17)
C7—N2—C8—C9177.25 (11)N4—C15—C16—C170.8 (2)
C13—N3—C9—C103.58 (19)C14—C15—C16—C17177.87 (11)
C13—N3—C9—C8178.78 (11)C15—C16—C17—C181.13 (19)
N2—C8—C9—N322.10 (17)C16—C17—C18—C191.86 (19)
C14—C8—C9—N3160.90 (14)C15—N4—C19—C181.17 (19)
N2—C8—C9—C10155.51 (12)C17—C18—C19—N40.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.892.7003 (17)171
O2—H2A···N3ii0.88 (1)1.91 (1)2.7655 (16)167 (2)
N2—H2C···O2ii0.91 (1)2.09 (1)2.9715 (19)164 (2)
O2—H2B···N4iii0.87 (1)1.99 (1)2.8254 (17)162 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC19H14N4O·H2O
Mr332.36
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.5875 (17), 9.0151 (18), 11.353 (2)
α, β, γ (°)77.89 (3), 69.96 (3), 73.66 (3)
V3)786.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.980, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5731, 2746, 2155
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.09
No. of reflections2746
No. of parameters239
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.892.7003 (17)171
O2—H2A···N3ii0.876 (9)1.905 (9)2.7655 (16)166.8 (17)
N2—H2C···O2ii0.908 (9)2.087 (10)2.9715 (19)164.4 (16)
O2—H2B···N4iii0.870 (9)1.986 (11)2.8254 (17)162.0 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y, z1.
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKuroda, N., Takatani, M., Nakashima, K., Akiyama, S. & Ohkura, Y. (1993). Biol. Pharm. Bull. 16, 220–222.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNakashima, K., Yamasaki, H., Kuroda, N. & Akiyama, S. (1995). Anal. Chim. Acta, 303, 103–107.  CrossRef CAS Web of Science Google Scholar
First citationRadziszewsky, B. (1877). Chem. Ber. 10, 70–75.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds